丁玉美《数字信号处理》(第3版)(名校考研真题 多样样率数字信号处理)
数字信号处理 第三版 (高西全 丁玉美)信号处理5章

在通带和阻带内均为等
波纹幅频特性
第5章 无限长单位脉冲响应(IIR)数字滤波器的设计方法
典型滤波器的幅度平方函数都有自己的表达式,可以直接 引用,而设计的最终目的是确定系统函数Ha(s) 。 5.3.1 幅度平方函数确定系统函数
模拟滤波器幅度响应常用幅度平方函数|Ha(jΩ)|2表示
* | Ha ( j) |2 Ha ( j)Ha ( j)
以右图低通为例, 频率响应包括
通带、过渡带与阻带
1(2) 为通 ( 阻 ) 带的容限 ,
p(s)
为通(阻)带截止频率
p
s
第5章 无限长单位脉冲响应(IIR)数字滤波器的设计方法
通带允许的最大衰减(波纹)Ap和阻带应达到的最小衰减As
| H (e j 0 ) | j p Ap 20 lg 20 lg | H ( e ) | 20 lg(1 1 ) j p | H (e ) | 式中 |H(ej0)|=1 | H (e j 0 ) | (归一化) j s As 20 lg 20 lg | H ( e ) | 20 lg 2 | H (e js ) |
•
根据阶数N,查表得到归一化系统函数HaN(s)
•
根据Ωc将HaN(s)去归一化,得到实际要求的系统函数Ha(s)
Ha (s) HaN s c
第5章 无限长单位脉冲响应(IIR)数字滤波器的设计方法
•
低通巴特沃思滤波器设计步骤总结 step1: 已知Ωp, Ap,Ωs和As,计算滤波器阶数N和截止频率Ωc
k b z k
H ( z)
1 ak z k
k 1
k 0 N
第5章 无限长单位脉冲响应(IIR)数字滤波器的设计方法
数字信号处理第三版西安电子(高西全丁美玉)2356课后答案

(1)
上式中指数函数的傅里叶变换不存在,引入奇异函数 函数,它的傅里叶变换可以
表示成:
(2)
(3)
式中
式中
上式推导过程中,指数序列的傅里叶变换仍然不存在,只有引入奇异函数函数,才能写出它的傅里叶变换表达式。
14.求以下序列的Z变换及收敛域:
(2) ;
(3) ;
(6)
解:
(2)
(3)
(6)
16.已知:
y(n)的波形如题8解图(二)所示.
(3)
y(n)对于m的非零区间为 。
①
②
③
最后写成统一表达式:
11.设系统由下面差分方程描述:
;
设系统是因果的,利用递推法求系统的单位取样响应。
解:
令:
归纳起来,结果为
12.有一连续信号 式中,
(1)求出 的周期。
(2)用采样间隔 对 进行采样,试写出采样信号 的表达式。
解:
(1)x(n)的波形如题2解图(一)所示。
(2)
(3) 的波形是x(n)的波形右移2位,在乘以2,画出图形如题2解图(二)所示。
(4) 的波形是x(n)的波形左移2位,在乘以2,画出图形如题2解图(三)所示。
(5)画 时,先画x(-n)的波形,然后再右移2位, 波形如题2解图(四)所示。
3.判断下面的序列是否是周期的,若是周期的,确定其周期。
按照上式可以有两种级联型结构:
(a)
画出级联型结构如题2解图(二)(a)所示。
(b)
画出级联型结构如题2解图(二)(b)所示●。
3.设系统的系统函数为
,
试画出各种可能的级联型结构。
解:
由于系统函数的分子和分母各有两个因式,可以有两种级联型结构。
数字信号处理(第三版)高西全丁玉美课后答案.

西安电子(高西全丁美玉第三版)数字信号处理课后答案1.2 教材第一章习题解答1. 用单位脉冲序列()n δ及其加权和表示题1图所示的序列。
解:()(4)2(2)(1)2()(1)2(2)4(3)0.5(4)2(6)x n n n n n n n n n n δδδδδδδδδ=+++-+++-+-+-+-+-2. 给定信号:25,41()6,040,n n x n n +-≤≤-⎧⎪=≤≤⎨⎪⎩其它(1)画出()x n 序列的波形,标上各序列的值; (2)试用延迟单位脉冲序列及其加权和表示()x n 序列; (3)令1()2(2)x n x n =-,试画出1()x n 波形; (4)令2()2(2)x n x n =+,试画出2()x n 波形; (5)令3()2(2)x n x n =-,试画出3()x n 波形。
解:(1)x(n)的波形如题2解图(一)所示。
(2)()3(4)(3)(2)3(1)6()6(1)6(2)6(3)6(4)x n n n n n n n n n n δδδδδδδδδ=-+-+++++++-+-+-+-(3)1()x n 的波形是x(n)的波形右移2位,在乘以2,画出图形如题2解图(二)所示。
(4)2()x n 的波形是x(n)的波形左移2位,在乘以2,画出图形如题2解图(三)所示。
(5)画3()x n 时,先画x(-n)的波形,然后再右移2位,3()x n 波形如题2解图(四)所示。
3. 判断下面的序列是否是周期的,若是周期的,确定其周期。
(1)3()cos()78x n A n ππ=-,A 是常数;(2)1()8()j n x n eπ-=。
解:(1)3214,73w w ππ==,这是有理数,因此是周期序列,周期是T=14; (2)12,168w wππ==,这是无理数,因此是非周期序列。
5. 设系统分别用下面的差分方程描述,()x n 与()y n 分别表示系统输入和输出,判断系统是否是线性非时变的。
数字信号处理课后答案+第2章(高西全丁美玉第三版)

j k j k e 4 (e 4
n 0
3
~ (n)e x
j
2 kn 4
π 4
n 0
1
j kn e 2
1j k e 2源自j k e 4 )
2 cos(
π j k k) e 4
~ X ( k )以4为周期
证明输入x(n)=A cos(ω0n+j)的稳态响应为
y (n) A | H (e j0 ) | cos0 n j (0 )
解: 假设输入信号x(n)=ejω0n,系统单位脉冲响应为h(n), 则系统输出为
y ( n) h( n) x ( n) e j 0 n
(9)
x(n / 2) n 偶数 x9 (n) n 奇数 0
解:(1)
FT[ x(n n0 )]
n
x(n n0 )e jn
令n′=n-n0, 即n=n′+n0, 则
FT[ x(n n0 )]
(2)
FT[ x (n)]
n
x(n)e jn
令n′=-n, 则
FT[ x(n)]
n
x(n)e jn X (e j )
(4)
FT[x(n)*y(n)]=X(ejω)Y(ejω)
下面证明上式成立:
x ( n) y ( n)
m
x ( m) y ( n m)
FT[ x(n) y (n)]
n
x(n)e j2n X (e j2 )
西安电子(高西全丁美玉第三版)数字信号处理课后答案第1章

第 1 章 时域离散信号和时域离散系统
解:
x(n)=δ(n+4)+2δ(n+2)-δ(n+1)+2δ(n)+δ(n-1)
+2δ(n-2)+4δ(n-3)+0.5δ(n-4)+2δ(n-6)
2. 给定信号:
2n+5
-4≤n≤-1
(x(n)= 6 0
0≤n≤4 其它
(1) 画出x(n)序列的波形, 标上各序列值;
x(n-n0)=x(n)*δ(n-n0)
(3)
Xˆ
n
(
j
)
1 T
X
k
a
(
j
jks
)
这是关于采样定理的重要公式, 根据该公式要求对
信号的采样频率要大于等于该信号的最高频率的两倍以上,
才能得到不失真的采样信号。
xa
(t
)
n
xa
(nt
)
sin[π(t π(t
nT ) /T nT ) /T
这是一个线性卷积公式, 注意公式中是在-∞~∞之间 对m求和。 如果公式中x(n)和h(n)分别是系统的输入和单位 脉冲响应, y(n)是系统输出, 则该式说明系统的输入、 输出和单位脉冲响应之间服从线性卷积关系。
第 1 章 时域离散信号和时域离散系统
(2)
x(n)=x(n)*δ(n)
该式说明任何序列与δ(n)的线性卷积等于原序列。
(2) 0≤n≤3时,
n
y(n) 1 n 1 m0
第 1 章 时域离散信号和时域离散系统
(3) 4≤n≤6时,
n
数字信号处理课后答案+第3章(高西全丁美玉第三版)PPT课件

所以
DFT[X(n)]=Nx(N-k) k=0, 1, …, N-1 5. 如果X(k)=DFT[x(n)], 证明DFT的初值定理
x(0)
1
N 1
X (k)
证: 由IDFT定义式
N k0
x(n)
1 N
N 1
X (k )WNkn
k 0
n 0, 1, , N 1
可知
x(0)
1
N 1
X (k)
教材第3章习题与上机题解答
1. 计算以下序列的N点DFT, 在变换区间0≤n≤N-1内,
(1) x(n)=1
(2) x(n)=δ(n) (3) x(n)=δ(n-n0) (4) x(n)=Rm(n)
0<n0<N 0<m<N
j2π mn
(5) x(n) e N , 0 m N
(6) x(n) cos 2π mn, 0 m N N
sin
(0
2π N
k
)
/
2
k 0, 1, , N 1
或
1 e j0N
X
7
(k
)
1
e
j(0
2 N
k)
(8) 解法一 直接计算:
k 0, 1, , N 1
x8 (n)
sin(0n)
RN
(n)
1 [e j0n 2j
e j0n ]RN
(n)
X8(n)
N 1
x8 (n)WNkn
n0
1
N 1
[e j0n
1 WNk
j π (m1)k
e N
sin
π N
mk
sin
π N
《数字信号处理》第三版课后答案(完整版)

西安电子 ( 高西全丁美玉第三版 ) 数字信号处理课后答案1.2 教材第一章习题解答1. 用单位脉冲序列 (n) 及其加权和表示 题 1 图所示的序列。
解:x( n)(n4) 2 (n 2) ( n 1)2 (n)(n 1) 2 (n 2) 4 ( n 3)0.5(n 4)2 (n 6)2n 5, 4 n 12. 给定信号: x( n)6,0n 40, 其它(1)画出 x( n) 序列的波形,标上各序列的值; (2)试用延迟单位脉冲序列及其加权和表示 x(n) 序列;(3)令 x 1( n) 2x(n 2) ,试画出 x 1( n) 波形;(4)令 x 2 (n) 2x(n 2) ,试画出 x 2 (n) 波形;(5)令 x 3 (n) 2x(2 n) ,试画出 x 3 (n) 波形。
解:( 1) x(n) 的波形如 题 2 解图(一) 所示。
( 2)x(n)3 ( n 4)(n 3) (n 2) 3 ( n 1) 6 (n) 6 (n 1)6 ( n 2)6(n 3) 6 (n 4)( 3) x 1 (n) 的波形是 x(n) 的波形右移 2 位,在乘以 2,画出图形如 题 2 解图(二) 所示。
( 4) x 2 (n) 的波形是 x(n) 的波形左移 2 位,在乘以 2,画出图形如 题 2 解图(三) 所示。
( 5)画 x 3 (n) 时,先画 x(-n) 的波形,然后再右移2 位, x3 ( n) 波形如 题 2 解图(四) 所示。
3. 判断下面的序列是否是周期的,若是周期的,确定其周期。
(1) x( n)Acos(3n) ,A 是常数;78(2)x(n)j ( 1n)e 8。
解:(1)w 3214T=14 ;7,,这是有理数,因此是周期序列,周期是w3(2)w 1 , 216 ,这是无理数,因此是非周期序列。
8w5. 设系统分别用下面的差分方程描述,x(n) 与 y(n) 分别表示系统输入和输出,判断系统是否是线性非时变的。
数字信号处理(第三版)课后答案及学习指导(高西全-丁玉美)第八章

第8章 上机实验
x2n=ones(1, 128); %产生信号x2n=un hn=impz(B, A, 58); %求系统单位脉冲响应h(n) subplot(2, 2, 1); y=′h(n)′; tstem(hn, y);
%谐振器对正弦信号的响应y32n figure(3) subplot(2, 1, 1); y=′y31(n)′; tstem(y31n, y) title(′(h) 谐振器对u(n)的响应y31(n)′) subplot(2, 1, 2); y=′y32(n)′; tstem(y32n, y); title(′(i) 谐振器对正弦信号的响应y32(n)′)
%调用函数tstem title(′(d) 系统单位脉冲响应h1(n)′) subplot(2, 2, 2); y=′y21(n)′; tstem(y21n, y);
第8章 上机实验
title(′(e) h1(n)与R8(n)的卷积y21(n)′)
subplot(2, 2, 3); y=′h2(n)′; tstem(h2n, y);
注意在以下实验中均假设系统的初始状态为零
第8章 上机实验
3. (1) 编制程序, 包括产生输入信号、 单位脉冲响应 序列的子程序, 用filter函数或conv函数求解系统输出响应 的主程序。 程序中要有绘制信号波形的功能。 (2) 给定一个低通滤波器的差分方程为
y(n)=0.05x(n)+0.05x(n-1)+0.9y(n-1) 输入信号
第8章 上机实验
8.1.3
实验结果与波形如图8.1.1所示。
第8章 上机实验
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第8章 多样样率数字信号处理
1.图8-1是一个由正交镜像滤波器(QMF)所构成的二带分析/合成系统原理图。
图8-1中的高低通滤波器是一对QMF滤波器。
请利用Z变换知识证明:LPF和HPF的系统
传递函数,必须满足下式条件:[南京邮电大学2001研]
方可做到不失真分带/合带,即合成后的信号y(n)与输入信号s(n)相同。
图8-1
证明:将各信号在图8-2中标出:
图8-2
则有:
为使,则的系数为1,S(-z)的系数为0。
因此有:
按照QMF组中的关系,应是在频域中平移兀角的结果,即:
故:
图8-3
(2)当1T =0.01s ,2T =0.02s 时,信号y s (t )、y r (t )的频谱图如图8-4所示:
图8-4
将(1)时系统的输出记为y 1(t ),将(2)时系统的输出记为y 2(t )。
比较两图可
知,Y 1(jω)=2Y 2(j2ω),其时域等价表示为y 1(t )=y 2(
2
t )。
由此可知,当D/A 的频率与A/D 的频率不同时,输出信号将会变化一个尺度因子。
1.以20kHz 的采样率对最高频率为10kHz 的带限信号
采样,然后计算
x (n )的N =1000个采样点的DFT ,即:
(1)求k =150对应的模拟频率是多少?k =800呢?
(2
)求频谱采样点之间的间隔为多少?[
华南理工大学2007研]
解:(1
)根据数字频率与模拟频率的关系得:N 点的离散傅里叶变换DFT 是对离散信号的傅里叶变换DFT
在N 个频率点上的采样,即:
所以,X (k )对应的模拟频率为:
所以,当N =1000时,序号k =150
对应的模拟频率是
f =3kHz 。
当k =800
时:
当N =1000时,,此时对应的模拟频率为:
(2)由N 可得频谱采样点之间的间隔为:
3.已知连续时间信号:
,对
该信号进行抽样,抽样频率为4kHz ,得到抽样序列x[n]
,求x[nJ 的表达式。
[北京大学2005研]
解:已知连续时间信号为:
抽样频率后,直接令t =n s T ,代入
x a (t )得x (n ),即:
4.利用数字系统处理模拟信号的框图如图8-5所示,其中X (jw )为连续信号x (t )的频谱,)(Ωj e H 是离散系统h[k]的频率响应。
当抽样间隔s T 40
1=时,试画出信号x[k]、y[k]
、y (t )的频谱。
[北京交通大学2004研]
图8-5
解:因为抽样间隔为s T 40
1=
,则幅度最大值为1/T =40。
信号x[k]的频谱图如图8-6所示
图
8-6x[k]的频谱滤去(-0.75π,0.75π)之间的频谱为y[k]。
则信号y[k]的频谱图如图8-7所示
图8-7
信号y (t )的频谱如图8-8所示
图8-8
5.利用数字系统处理模拟信号的框图如图8-9所示,其中x (f )为连续信号x (t )的频谱,)(Ωj e H 是离散系统h[k]的频率响应。
[北京交通大学2003研]。