基因的概念及发展
简述基因概念的发展

基因概念的发展
基因概念的发展可以大致分为三个阶段:
经典遗传学阶段:从孟德尔提出遗传因子,到约翰逊命名基因,再到摩尔根将基因定位于染色体上,这一阶段主要是通过遗传实验和逻辑推理来探索基因的存在和作用,但没有揭示基因的物质本质和结构特征。
分子遗传学阶段:从贝德尔和塔特姆提出一基因一酶假说,到艾弗里等人证明DNA 是遗传物质,再到沃森和克里克发现DNA双螺旋结构,这一阶段主要是通过生化分析和物理方法来揭示基因的分子结构和功能机制,建立了基因与蛋白质之间的关系。
现代遗传学阶段:从雅各布和莫诺德提出乳糖操纵子模型,到人类基因组计划完成,再到表观遗传学和系统遗传学的兴起,这一阶段主要是通过高通量技术和生物信息学来研究基因的表达调控和网络互作,揭示了基因在不同层次上的复杂性和多样性。
以上就是基因概念的发展过程。
基因的概念及发展

基因的概念及发展基因(gene)这个名词是1909年由遗传学家约翰逊(W.Johannsen)提出来的。
他用基因这一名词来表示遗传的独立单位,相当于孟德尔在豌豆试验中提出的遗传因子。
顾名思义,基因不仅是一个遗传物质在上下代之间传递的基本单位,也是一个功能上的独立单位。
在遗传学发展的早期阶段,基因仅仅是一个逻辑推理的概念,而不是一种已经证实了的物质和结构。
由于科学研究水平的不断提高,从浅入深,由宏观到微观,基因的概念也在不断的修正和发展。
在20世纪30年代,由于证明了基因是以直线的形式排列在染色体上,因此人们认为基因是染色体上的遗传单位。
20世纪50年代以后,随着分子遗传学的发展,1953年在沃森和克里克提出DNA的双螺旋结构以后,人们普遍认为基因是DNA的片段,确定了基因的化学本质。
20世纪60年代,本茨(S.Benzer)又提出了基因内部具有一定的结构,可以区分为突变子、互换子和顺反子三个不同单位。
DNA分子上的一个碱基变化可以引起基因突变,因此可以看成是一个突变子;两个碱基之间可以发生互换,可以看成是一个互换子;一个顺反子是具有特定功能的一段核苷酸序列,作为功能单位的基因应该是顺反子。
从分子水平来看,基因就是DNA分子上的一个个片段,经过转录和翻译能合成一条完整的多肽链。
可是,通过近年来的研究,认为这个结论并不全面,因为有些基因在转录出RNA以后,不再翻译成蛋白质,如rRNA和tRNA就属于这种类型。
另外,还有一类基因,如操纵基因,它们既没有转录作用,又没有翻译产物,仅仅起着控制和操纵基因活动的作用。
特别是近年来发现,在DNA分子上有相当一部分片段,只是某些碱基的简单重复,这类不含有遗传信息的碱基片段,在真核细胞生物中数量可以很大,甚至在50%以上。
关于DNA分子中这些重复碱基片段的作用,目前还不十分了解。
有人推测可能有调节某些基因活动和稳定染色体结构的作用,其真正的功能尚待研究。
因此,目前有的遗传学家认为,应该把基因看作是DNA 分子上具有特定功能的(或具有一定遗传效应的)核苷酸序列。
基因的概念及发展

基因的顺反子测试示意图
重复基因、断裂基因、跳跃基因、假基因、重叠基因概念及意义
互补试验 一个基因的核苷酸序列完全在另一个基因里面;
拟等位基因:基因内不同位点的突变体
T4噬菌体 rII 突变型的互补实验
rA突变体单独入侵
rB突变体单独入侵
rA、 rB突变体同时入侵
基因的顺反子测试示意图 A和B是否为同一基因?
Genetics
Genomics
Functional genomics
四、基因概念发展
不同类型的基因:
结构基因 调控基因 重复基因 重叠基因 隔裂基因 跳跃基因 假基因
1. 重复基因(repeated gene)
来源相同、结构相似、功能相关的基因在染色体 上成串存在,称为基因家族(gene family);
两个拟等位基因分别位于两条同源染色体上(野生型 基因也位于两条不同同源染色体上),使两条染色体都是 有缺陷的,表现为突变型。
cistron 概念的提出是对经典的基因概念的动摇
对于反式: 编码的DNA序列,即被表达的DNA区段
November 21, 1891—April 5, 1970
Gilbert (1978年)提出内含子、外显子概念
2.获得性遗传理论 (Inheritance of acquired
characteristics, Lamarck,拉马克, 1809)
物种的形成是对环境的适应过程,后天所获得 的性状(character)可以遗传给下一代。
例如长颈鹿的祖先是短颈的,因为地上的草不够,它 们需要伸长颈部去吃树上的叶,那么下一代的颈就会 变长。如此一代一代伸长下去,就变成今天的长颈鹿。
一些基因集中串联排列在一条染色体上,形成一 个基因簇(gene cluster),称为重复基因。
基因的概念与发展历史

• 1956年 华盛顿大学 A.Kornberg利用大肠杆菌的 细胞液,在体外合成了DNA,两年后分离出了 DNA聚合酶。(Nobel Prize)
• 1967 Kornberg在试管内合成了噬菌体的 DNA,并 用DNA连接酶将它们连接成环状。1970,发现和 分离了限制性内切酶。
• 1972年Stanford大学的Paul Berg用EcoRI把猿猴 空泡病毒和噬菌体的DNA切开,然后在这两种病 毒的节开的DNA末端用末端转移酶加A和T,使这 两个DNA在体外结合,再用DNA聚合酶补平缺口, 最合用它们的连接点封闭成一头的重组DNA分子-----
基因工程的理论依据
不同基因具有相同的物质基础。DNA DNA是可切割的。除少数基因重叠排列外,大
多数基因彼此之间存在着间隔序列。 基因是可以转移的。生物体内有的基因可以在
染色体DNA上移动,甚至可以在不同染色体间 进行跳跃 多肽与基因之间存在对应关系。 遗传密码是通用的。 基因可以通过复制把遗传信息传递给下一代。 获得相对稳定的转基因生物。
• 1993 基因工程西红柿在美国上市 • 1997 英国罗斯林研究所 多莉羊 • 1999.9 中国获准加入人类基因组计划.负责测定人类
基因组全部序列的1% • 2000.6.26 科学家公布人类基因组工作草图 • 2001.2.11 公布人类基因组基本信息 • 2002 水稻基因组 • 2009 玉米基因组 • 2010 苹果基因组 • 2012 柑橘基因组
在细胞分裂时,DNA 的合成应是“半保留复制”的模式。
细菌培养在含15N 的培养基 中 细菌培养在含14N 的培养基中 一代 两代
证实半保留复制的实验
DNA作为遗传物质的功能
(1)贮藏遗传信息的功能 (2)传递遗传信息的功能 (3)表达遗传信息的功能
关于基因的知识点总结

关于基因的知识点总结一、基因的发现和定义:基因的概念最早由著名的奥地利生物学家孟德尔提出,孟德尔通过对豌豆杂交实验的观察,提出了“遗传因子”的概念,这可以说是基因的最早定义。
后来,在20世纪初,美国生物学家摩尔根利用果蝇的杂交实验,证明了基因定位在染色体上,并提出了“基因是染色体上的遗传因子”的概念。
随着遗传学和分子生物学的发展,基因的定义也逐渐丰富和完善,现在,基因通过DNA序列编码蛋白质的概念被广泛接受,成为最具权威和普遍的定义。
二、基因的结构和功能:1.基因的结构:基因通常由一段DNA序列组成,这些DNA序列可以编码蛋白质、调控基因表达、以及其他未知功能。
基因的结构包括启动子、外显子、内含子、终止子等多个部分,不同的基因结构有着不同的影响方式。
启动子是转录启动的起始点,外显子是编码信息的部分,内含子是不编码信息的部分,终止子是转录结束的位置。
2.基因的功能:基因的主要功能是编码蛋白质,蛋白质是细胞的主要组成成分,也是生物体的重要功能和结构组分。
除了编码蛋白质之外,基因还能通过调控基因表达来影响细胞的功能和性状。
此外,基因还可能具有其他未知的功能,比如对DNA序列的修饰、对遗传物质的稳定性维护等。
三、基因的表达和调控:1.基因的表达:基因的表达是指基因的信息被转录成RNA,然后翻译成蛋白质的过程。
基因表达会受到多种因素的调控,包括细胞内外的环境信号、细胞生理状态等。
基因表达是生物体发育和生长中不可或缺的过程,也是维持细胞功能和体内稳态的关键。
2.基因的调控:基因的调控是指通过一系列的信号传导和细胞因子的作用,对基因的表达进行调控的过程。
基因的调控涉及到转录调控、后转录调控、转录组学和表观遗传学等多个层面。
通过基因的调控,生物体能够对环境的变化做出及时的反应和调整,保证细胞和生物体的正常功能。
四、基因的突变和遗传:1.基因的突变:基因的突变是指基因序列发生改变的过程,这种改变可能包括点突变、插入突变、缺失突变等多种类型。
基因和基因组

Protein
Replication Replication
15
(一) 原核生物的mRNA是多顺反子mRNA
DNA Promoter Gene 1 Gene 2 Gene 3 Terminator
Transcription
mR多NA顺原反核子5生′mR物NA的1 一(p个olym2cRiNsAtr分on子3ic带m有RN几A3′)个: 结构基因T的ra遗ns传lat信ion息,利用共同的启动 子 调Pr及控ote终单in止元s 信。号,组成操纵子的基因表达
47
复制起始区(OriC)
48
大肠杆菌强启动子
TTGAC
TATAAT 转录起始
49
终止子: GC丰富区、AT丰富区
DNA 5’…GCCGCCAGTTCGGCTGGCGGCATTTT…
3’
RNA 5’…GCCGCCAGUUCGGCUGGCGGCAUUUU…
3’
U CG
U G 强终止子:有反向重复顺
OriC
0
4000K
大肠杆菌 1000K
C-Value: 4.6×106bp
3000K
2000K
TerC
大肠杆菌染色体DNA
41
(二) 结构基因大多组成操纵子
po z
y
at
promoter operator structural gene terminator
ß-galactosidase半乳糖苷酶 z ß-galactoside permease透酶 y ß-galactoside transacetylase 半乳糖苷乙酰转移酶 a
-30
-25
+1
9
➢ CAAT盒(CAAT Box)
基因概念之演变

基因概念之演变基因(gene)是遗传学家约翰逊(W.Johannsen)在1909年提出来的。
他用基因这一名词来表示遗传的独立单位,相当于孟德尔在豌豆试验中提出的遗传因子。
在遗传学发展的早期阶段,基因仅仅是1个逻辑推理的概念,而不是一种已经证实了的物质和结构。
由于科学研究水平的不断提高,从浅入深,由宏观到微观,基因的概念也在不断的修正和发展。
从遗传学史的角度看,基因概念大致分以下几个阶段:孟德尔的遗传因子阶段;摩尔根的基因阶段;顺反子阶段和现代基因阶段。
一、孟德尔的遗传因子阶段19世纪60年代初,孟德尔对具有不同形态的豌豆作杂交实验,在解释实验中每种性状的遗传行为时,用A代表红花,a代表白花,表明生物的某种性状是由遗传因子负责传递的,遗传下来的不是具体的性状,而是遗传因子。
遗传因子是颗粒性的,在体细胞内成双存在,在生殖细胞内成单存在。
孟德尔所说的“遗传因子”是代表决定某个性状遗传的抽象符号。
孟德尔在阐明遗传因子在世代中传递规律时,就已经认识到了基因的两个基本属性:基因是世代相传的,基因是决定遗传性表达的。
现在所说的“基因是生物体传递遗传信息和表达遗传信息的基本物质单位”,实际上就是孟德尔所阐明的基因观。
二、摩尔根的基因阶段1909年,丹麦遗传学家约翰逊创造了“基因”这一术语,用来表达孟德尔的遗传因子,但还只是提出了遗传因子的符号,没有提出基因的物质概念。
摩尔根对果蝇的研究结果表明,1条染色体上有很多基因,一些性状的遗传行为之所以不符合孟德尔的独立分配定律,就是因为代表这些性状的基因位于同一条染色体上,彼此连锁而不易分离。
这样,代表特定性状的特定基因与某一条特定染色体上的特定位置联系起来。
基因不再是抽象的符号,而是在染色体上占有一定空间的实体,从而赋予基因以物质的内涵。
三、顺反子阶段早期的基因概念是把基因作为决定性状的最小单位、突变的最小单位和重组的最小单位,后来,这种“三位一体”的概念不断受到新发现的挑战。
基因概念的发展与认识

基因概念的发展与认识摘要:基因作为遗传学中的核心概念,其每一步发展都意味着遗传学的一次革命和突破。
随着对基因的不断的探索和研究,对基因的认识也不断加深,人们也更多的利用对基因的认识,来实践我们的生活之中,推动科学的不断发展。
关键词:基因概念发展认识正文:一、基因的发展史:在遗传学发展的早期,基因仅仅是一个逻辑推理的概念。
随着科学水平的提高。
基因的概念也不断的修正和发展。
基因的发展历程大致可分为以下几个阶段:1、经典遗传学阶段1.1孟德尔的遗传因子阶段①遗传学奠基人孟德尔,通过八年的豌豆杂交实验,利用花色等几种相对性状,于1866年发表了著名的《植物杂交试验》的论文。
文中指出,生物每一个性状都是通过遗传因子来传递的,遗传因子是一些独立的遗传单位。
这样遗传因子作为基因的雏形概念诞生了。
但此时并不知道基因的物质概念。
②1903年美国学者萨顿和鲍维里两人注意到在杂交试验中遗传因子的行为与减数分裂和受精中染色体的行为非常吻合,他们推论出“遗传因子”就在染色体上。
1.2基因术语的提出①1909年丹麦遗传学家约翰逊在《精密遗传学原理》一书中提出“基因”概念,以此来替代孟德尔假定的“遗传因子”。
从此,“基因”一词一直伴随着遗传学发展至今。
1.3摩尔根等对基因的研究①通过摩尔根和他的学生们利用果蝇作了大量研究。
于1926年出版了巨著《基因论》,从而建立了著名的基因学说,首次完成了当时最新的基因概念的描述,即基因以直线形式排列,它决定着一个特定的性状,而且能发生突变并随着染色体同源节段的互换而交换,它不仅是决定性状的功能单位,而且是一个突变单位和交换单位.。
“三位一体学说”②1941年,比德尔和塔特姆提出一个基因一个酶学说,证明基因通过它所控制的酶决定着代谢中生化反应步骤,进而决定生物性状。
因此经典遗传学认为:基因是一个最小的单位,不能分割;既是结构单位,又是功能单位。
具体指:①基因是化学实体,以念珠状直线排列在染色体上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
… …
全部子代 r47+,+r104,++, r47r104
只 有 + +
E.coli B
E.coli K(λ)
(3)结果:重组值计算
重组值 = 2× r+r+ 噬菌斑数 噬菌斑总数 × 100%
重组子 ------在发生性状重组时,可交换的最小单位, 基因 =顺反子,包含多个突变子和重组子,经得起 B菌株上生长的噬菌斑总数
2、顺反测验:设有两个独立起源的隐性突变具有类似的表
现型,判断是属于同一个基因突变,还是属于两个基因的
突变,即判断是否属于等位基因。
建立双突变杂合二倍体;
顺式杂合子
测定突变间有无互补作用。
反式杂合子
(1)有互补作用:突变来自不同基因,则每个突变的相对位
点上都有一个正常野生型基因→最终产生正常mRNA,其个体 表现型为野生型。
1 2
3
4
5
小麦赤霉病抗性相关TaPDR7基因DNA与cDNA比对结果
(5)跳跃基因(jumping gene):即
转座子,指染色体组上可以转移的基因。
实质:能够转移位置的DNA片段
功能:在同一染色体内或不同染色体之间移 动→插入突变、DNA结构变异(如重复、缺 Barbara McClintock 失等)→表型变异
1983 Nobile winner
(6)假基因(pseudogene):同已知的基因相似,由 于位点缺失或突变而不能转录或翻译→没有功能的基因
小麦Ω醇溶蛋白真假基因比对结果
总结
经典遗传学基因的概念:“三位一体” 现代基因的概念:顺反子、突变子、重组子
顺反测验:验证突变位点是否位于同一基因
基因精细作图 现代基因概念的发展
G F E D C B A
A
+ + + + -
B
+ + + + -
C
+ + + -
D
+ + -
E
+ + -
F
+ -
G
-
3个 A,D,F B,G C,E
第三节 基因概念的发展
结构基因: 指可编码mRNA或翻译蛋白质的一段
调控基因
重叠基因
DNA序列。
隔裂基因
跳跃基因
假基因
(1)调控基因(regulator gene):指其表达产物参与调控
个核苷酸对。
如镰形细胞贫血症: DNA → mRNA → 蛋白质 GAA GUA 谷氨酸 缬氨酸
正常HbA:G A A 镰形HbS:G T A
重组子------在发生性状重组时,可交换的最小单位,又称交
换子,可以只有一个核苷酸对。
Locus (loci ) : 基因座
Site: 位点
“三位一体”
3、基因的精细结构 Benzer利用经典的噬菌体突变和基因内重组技术→分析 T4噬菌体rⅡ区基因的精细结构。
第七章
基因概念的发展
The Development of Gene
什么是基因
顺反测是基因(gene)
早期概念:泛子 经典概念:遗传因子,基因
现代概念:具有遗传信息的DNA序列
基因概念的多样性
经典的基因概念 (classical theory of gene)
其他基因表达的基因。
(2)重叠基因
(overlapping gene):在同一段 DNA序列上,由于 阅读框架不同或终
?
止早晚不同,同时
编码两个以上基因 的现象。主要存在 于原核生物中。
(3)割裂基因(split
gene):由于基因内部存在 间隔序列,从而导致基因的 不连续性,使得每个基因由 几个互不相邻的段落组成, 这种不连续的基因即为断裂 基因
现代遗传学概念
随着科学技术的发展,1953年,DNA双螺旋结构被发现, 1977年,Sanger发明了DNA测序技术。
三位一体
第二节顺反测验和基因的精细结构
1、顺反测验的建立
果蝇眼色:杏色眼wa
白色w
wa+/+w和++/waw基因型相同都为+wa+w,但两个 突变基因在染色体上的位置不同。 wa+/+w为反式排列,表现为杏色眼; ++/waw为顺式排列,表现为红色眼。
顺式杂合子
不 同 基 因
功能基因1和2产物,因此表现型为野生型
反式杂合子
功能基因1和2产物,因此表现型为野生型
(2)无互补作用:在无互补作用的情况下,个体变现为突变
型。突变来自同一个基因,只能产生突变的mRNA→形成突变 酶和个体,显示突变的表现型。 顺式杂合子
同 一 基 因
有功能基因1产物,因此表现型为野生型
(1)原理: B
野生型rⅡ+
K12(λ ) B 突变型rⅡ K12(λ )
利用上述特点让两个rⅡ突变型杂交→ 侵染K12(λ )株,选 择重组体r+→ 计算出两个r+突变座位间的重组频率。
(2)方法:Benzer 重组实验示意图
r47+和+r104 同时感染 E.coliB
E.coli B
双重感染
遗传因子
1909年,丹麦遗传学家约翰生 遗传因子 (Gene)基因
经典的基因概念 (classical theory of gene)
• 基因是染色体上的实体 • 基因像念珠(bead)状呈线性排列
在染色体上
Theory of the Gene Thomas Hunt Morgan 1926
经典基因概念总结
转基因
谢谢
遗传因子 基因 顺反子
突变子 重组子
♣ 功能单位:控制有机体的性状。
♣ 突变单位:一个基因能突变为另一个基因,产生等位基因。
♣ 交换单位:基因间能进行重组,而且是交换的最小单位。
交换(cross-over unit)
最小的 “三位一体”的
突变(mutation unit)
功能(functional unit)
不可分割的 遗传单位
基本的
互补试验
B
K
rII区有3000多个突变
型,有相同的表型,是
否属于一个基因还是几 个基因?
两突变位点距离虽近,但顺反 都有功能,故不在同一顺反子
重组测验是以遗传图距 的方式确定突变的空间 关系;互补测验则是确 定突变的功能关系。
两突变位点距离虽远,但反式 没有功能,故在同一顺反子
例题:
果蝇的突变体 A,B,C,D,E,F和G都具有 相同的突变型:眼中缺乏 红色色素。经互补测验结 果如右表(“+”表示可 以互补,“-”表示不能 互补) 问: (1)这些突变涉及几个 基因? (2)那些突变体是属于 同一个基因发生的突变?
反式杂合子
无功能基因1产物,因此表现为突变体
(3)顺反子(本泽尔):表示功能的最小单位和顺反的位置
效应。
顺反测验:根据顺式表现型和反式表现型来确定两个突变体是
否属于同一个基因(顺反子)。
果蝇眼色
顺反子假说(Theory of cistron) 1957年,Benzer 在一个顺反子内部存在精细结构,可分解成更小的单位: 突变子------性状突变时,产生突变的最小单位,可小到只有一
又称交换子,可以只有一个核苷酸对。 顺反测验的一个功能单位。
=
2 × K(λ) 菌株上生长的噬菌斑数
× 100%
通过重组测验,可计算一个基因内部不同位点的距离,精确度 达0.001%,即0.001个图距单位。∴称为基因的精细作图。
r47 r47 r47 + r47 + r47 + B菌株 + r104 精细作图 + r106 + r102 K菌株 基因内重组
?
卵清蛋白的基因及其与cDNA的杂交图
?
1978年 Gilbort
内含子 (intron) ---在成熟的mRNA中
不出现的序列
外显子 (exon) ----在成熟的mRNA中 出现的编码序列
1993年诺贝尔生理学或医学奖
Phillip A. Sharp Richard J. Roberts