钣金展开计算方法

钣金展开计算方法
钣金展开计算方法

钣金展开计算方法

展开的计算方法

板材在弯曲过程中外层受到拉应力,内部受到压应力,从拉到压之间有一处不受拉力又不受压力的过渡层——中性层,中性层在弯曲过程中的长度和弯曲前一样,保持不变,所以中性层是计算弯曲件展开长度的基准。中性层位置与变形过程有关,当弯曲半径较大,折弯角度较小时,变形程度较小,中性层位置靠近板材料厚度的中心处,当弯曲半径变小,折弯角度增大时,变形程度随之增大,中性层位置逐渐向弯曲中心的内侧移动,中性层

到板材料内侧的距离用λ表示。

展开的基本公式:

展开长度=料内+料内+补偿量

钣金件折弯展开计算方法

一、折床工作原理 折弯就是将上、下模分别固定于折床的上、下工作台,利用液压伺服电机传输驱动工作台的相对运动,结合上、下模的形状,从而实现对板材的折弯成形。 二、展开的定义和折弯常识 ★折弯展开就是产品的下料尺寸,也就是钣金在折弯过程中发现形变,中间位置不拉伸,也叫被压缩的位置长度,也叫剪口尺寸。 ★折弯V槽选择公式:当R=0.5时,V=5T;当R>0.5时V=5T+R 折弯展开会根据上模和下模的不同而发生相应的变化,在更换模具时必须考虑进去。 ★折床的运动方式有两种: 上动式:下工作台不动,由上面滑块下降实现施压; 下动式:上部机台固定不动,由下工作台上升实现施压。 ★工艺特性 1.折弯加工顺序的基本原则:由内到外进行折弯;由小到大进行折弯;先折弯特殊形状,再折弯一般形状。 2.90°折弯及大于90°小于180°折弯选模:一般在SOP没有特殊要求或没有 特殊避位的最好选用刀口角度为88°或90的折弯上模,这样可以更好的保证折弯角度的稳定性。

三、折弯展开尺寸计算方法,如右图: <1>直角展开的计算 方法 当内R 角为0.5 时折弯系数(K )=0.4*T , 前提是料厚小于5.0MM , 下模为5T L1+L2-2T+0.4*T =展开 <2>钝角展开的计算方法 如图,当R=0.5时的展 开计算 A+B+K=展开 K= ×0.4 a=所有折弯角度 1800-2 900

<3>锐角展开的计算方法 900折弯展开尺寸=L1+L2-2T+折弯系 数(K),如右图: 当内R角为0.5时折弯系数(K) =0.4*T,L1和L2为内交点尺寸 展开=L1+L2+K K=( 180—@) /90 *0.4T <4>压死边的展开计算方法 选模:上模选用刀口角度为300小尖刀,下模根据SOP及材料厚度选择V槽角度为300的下模。 先用 4.4.1所选的模具将折弯角度折到约300-650. 展开=L1+L2-0.5T 死边

钣金冲压件折弯展开尺寸计算

开冲压模的朋友和做钣金冲压设计的工程师,经常会遇到计算冲压件展开长度的问题。目前有很多的计算方法,各种系数,各种公式,各种表格,各种软件也有自动展开的功能,但是很多都不够准确。 下面推荐的这种计算方法相对比较精确,值得收藏: 我们知道,弯曲件按中性层展开长度等于坯料长度的原则求得坯料的展开尺寸,如下图: 展开长度:L=L1+L2+L0 (其中L0 指的是中性层圆弧的弧长,注意,是弧长) 所以我们需要找到中性层的位移值xt,这个位移值的计算方法是材料厚度 t 乘以一个中性层位移系数 x ,即: 中性层位移值=xt

很明显,这种方法的关键就是要明确折弯中性层位移系数—— x 值 所谓的中性层位移系数 x 值,在一些三维软件(如:Pro/E或SolidWorks)中也叫折弯 K 因子 那么重点来了,怎样才能计算出 x 值呢? 拜托,当然不用你来算,前辈们早已算好了,折弯内 r 角与材料厚度 t 的比将决定 x 值的大小,下表直接查来就是了: 钣金折弯中性层位移系数x (K因子) 知道了位移值,就知道了中性层圆弧的半径R ,据据折弯角度a 的大小,就可以很方便的计算出中性层圆弧的弧长L0 ,再加长直边长度L1 和L2 ,就是工件的展开尺寸了。 重要小贴士:

1、r/t 值如果表格中没有,可以按下表已有数据近似推算。 2、现在估计没人会再去手工计算弧长L0 ,因为有CAD嘛,只需要按r/t 的值查出x 值(K因子),乘以料厚t,就是中性层位移值,将折弯内r 用偏移命令向外侧偏移该值,再直接量出弧长就行了。 3、如果有多处折弯的,可以偏移所有直边和内r ,并合并为多线段,查特性即可得到多线段的长度尺寸,也就是总的展开长度。 4、Pro/E或SolidWorks钣金折弯可以自动进行展开,很多人都觉得不准,其实奥秘就在于K因子。软件中有默认的K因子,这个默认值是基于r/t=1.0的情况下,也就是3.2左右,如果内折弯 r 角与材料厚度不同(r/t不是1.0),算出来的尺寸当然不准。怎么办呢?很简单,按上面表格中的数据修改默认的K因子数值,这样在软件中自动展开的尺寸才会更准确。

钣金件展开尺寸计算方法

钣金件展开尺寸计算方法 2008年10月27日星期一下午 08:36 只有通用的原理,就是中性面没有变化,但是实际生产过程中一般按经验公式计算 第一种方法是剪一个一百宽的料,用折弯机这一道弯,记住板厚。加减系数便出来了,试三次取中数即可。这是最简便的方法。 可以学习PROE。CAXA软件,哪里有自动展开功能。不过系数还要靠前面试出来。 由公式可以计算,不过不好记,给大家列一个常用系数吧 板厚系数(毫米) 1, 1.6-1.8。 1.5, 2.4-2.6。 2.0, 3.3-3.5。 2.5, 4.2-4.5 3.0, 5.0-5.3 。 (系数会随你折弯下摸所用的槽宽的大小变化)仅供参考。 公式的话L=pa/2*r+y*T比较准确。 用 catial三维软件构造,软件本身有展开的功能 展开尺寸-L;折弯角-β;厚度-T;半径-R 1。0°≤β≤90° L=A+B-2(R+T)+(R+T/3)*(180-β)∏/180 2.β=90° L=A+B-0.429R-1.47T 3.90°≤β≤150° L=A+B-2(R+T)tan[(180-β)/2]+(R=T/2)(180-β)∏/180 4.150°≤β≤180° L=A+B 折弯参数表 材质板厚折弯系数标准下模特殊折弯尺寸(最小值)

板厚T 折弯系数 Y因子 铁板 (SPCC、SECC) T=0.5 0.9 V4 A=3.0 B=4.5 0.5 0.9 1.0584074 T=0.8 1.4 V4 A=3.2 B=5 0.8 1.4 0.786504625 T=1.0 1.7 V6 A=3.5 B=5.4 1 1.7 0.7292037 T=1.2 1.9 V6 A=4.2 B=6.4 1.2 1.9 0.774336417 T=1.5 2.5 V8 A=4.8 B=7.3 1.5 2.5 0.619469133 T=2.0 3.4 V12 A=6 B=9.2 2 3.4 0.51460185 T=2.5 4.3 V16 A=9.0 B=12.2 2.5 4.3 0.45168148 T=3.0 5.1 V16 A=9.6 B=12.9 3 5.1 0.4430679 T=4.0 6.5 V16 A=16.8 B=21.3 4 6.5 0.482300925 #DIV/0! 铝板(AL) T=0.5 0.8 V4 A=2.9 B=4.4 0.5 0.8 1.2584074 T=0.8 1.2 V4 A=3.1 B=4.9 0.8 1.2 1.036504625 T=1.0 1.6 V6 A=3.3 B=5.3 1 1.6 0.8292037 T=1.2 1.9 V8 A=3.5 B=5.7 1.2 1.9 0.774336417 T=1.5 2.3 V8 A=4.7 B=7.2 1.5 2.3 0.752802467 T=2.0 3.2 V12 A=6 B=9.1 2 3.2 0.61460185 T=2.5 4.1 V16 A=8.9 B=12.1 2.5 4.1 0.53168148 T=3.0 5 V16 A=9 B=12.8 3 5 0.476401233 T=4.0 6.3 V16 A=16.5 B=21.2 4 6.3 0.532300925 #DIV/0! 铜板(CU) T=0.5 0.8 V4 A=2.9 B=4.4 0.5 0.8 1.2584074 T=0.8 1.3 V4 A=3.2 B=5.0 0.8 1.3 0.911504625 T=1.0 1.7 V6 A=3.4 B=5.4 1 1.7 0.7292037 T=1.2 2 V8 A=3.5 B=5.8 1.2 2 0.691003083 T=1.5 2.3 V8 A=4.7 B=7.2 1.5 2.3 0.752802467 T=2.0 3.3 V12 A=6 B=9.2 2 3.3 0.56460185 T=2.5 4.2 V16 A=8.6 B=12.2 2.5 4.2 0.49168148 T=3.0 5 V16 A=9 B=12.8 3 5 0.476401233 T=4.0 6.3 V16 A=16.5 B=21.2 4 6.3 0.532300925

冲压试题库与答案

1.冷冲压的优点有:生产率高、操作简便,尺寸稳定、互换性好,材料利用率高。2冷冲压是利用安装在压力机上的模具对材料施加压力,使其产生分离或塑性变形,从而获得所需零件的一种加工方法。 3.一般的金属材料在冷塑变形时会引起材料性能的变化。随着变形程度的增加,所有的强度、硬度都提高,同时塑性指标降低,这种现象称为冷作硬化。4.拉深时变形程度以拉深系数m表示,其值越小,变形程度越大。 5.材料的屈强比小,均匀延伸率大有利于成形极限的提高。 6冲裁件的断面分为圆角,光面,毛面,毛刺四个区域。 7.翻孔件的变形程度用翻孔系数K表示,变形程度最大时,口部可能出现开裂8.缩孔变形区的应力性质为双向压缩应力,其可能产生的质量问题是失稳起皱9.精冲时冲裁变形区的材料处于三向压应力,并且由于采用了极小的间隙,冲裁件尺寸精度可达IT8-IT6级。 10.冷冲压模具是实现冷冲压工艺的一种工艺装备。 11.落料和冲孔属于分离工序,拉深和弯曲属于成形工序。 12.变形温度对金属塑性的影响很大,一般来说,随着变形温度的升高,塑性提高,变形抗力降低。 13.压力机的标称压力是指滑块在离下止点前某一特定位置时,滑块上所容许承受的最大作用力。14.材料在塑性变形中,变形前的体积等于变形后的体积,

用公式来表示即:ε1+ε2+ε3=0。 15.冲裁的变形过程分为弹性变形,塑性变形,断裂分离三个阶段。16.冲裁模工作零件刃口尺寸计算时,落料以凹模为基准,冲孔以凸模为基准,凸模和凹模的制造精度比工件高2-3级。 17.冲裁件之间及冲裁件与条料侧边之间留下的余料称作搭边。它能补偿条料送进时的定位误差和下料误差,确保冲出合格的制件 18.弯曲零件的尺寸与模具工作零件尺寸不一致是由于弯曲回弹而引起的,校正弯曲比自由弯曲时零件的尺寸精度要高。 19.拉深时可能产生的质量问题是起皱和开裂 20在室温下,利用安装在压力机上的模具对被冲材料施加一定的压力,使之产生分离和塑性变形,从而获得所需要形状和尺寸的零件(也称制件)的一种加工方法。 21用于实现冷冲压工艺的一种工艺装备称为冲压模具。 22冲压工艺分为两大类,一类叫分离工序,一类是变形工序。 23物体在外力作用下会产生变形,若外力去除以后,物体并不能完全恢复自己的原有形状和尺寸,称为塑性变形。 24变形温度对金属的塑性有重大影响。就大多数金属而言,其总的趋势是:随着温度的升高,塑性增加,变形抗力降低。 25以主应力表示点的应力状态称为主应力状态,表示主应力个数及其符号的简图称为主应力图。 26塑性变形时的体积不变定律用公式来表示为:ε1+ε2+ε3=0。

钣金件下料尺寸计算方法分析

客车钣金件下料尺寸计算方法 2009-06-21 16:40 客车自制件在整个客车的构成中占有相当大的比重。随着钢材价格的不断上涨,控制客车自制件成本成为一个重要课题,被各客车厂家研究。怎么讯速、合理地确定自制件下料尺寸,是一项基本而又科学的工作。本文所介绍的客车钣金件的尺寸计算方法较为合理,也较为实用,希望能起到抛砖引玉的作用。 1 样板下料尺寸计算方法 这类制件下料尺寸计算分两部分:一部分为较复杂的钣金件(这部分暂不研究,因为钣金件展开需要单独分析);另一部分是简单的钣金样板件,一般取其外轮廓尺寸。 1)直线样板料板件料表的制作。分析:图l所示的两种板件为不规则梯形,制作这种类型的料表时一般按三角形或矩形来考虑。料表:98*110三角样;135 *175样。 2)弧线样板料板件料表的制作。图2所示的是一块带弧度的样板料,下料时在圆弧所在的方向最大尺寸应加5-10 mm的剪切余量。计算:(略),料表:605*115。 对图3所示的样板料,考虑其料较长,如下一块料不易剪料,所以下两块料制件。另外,在宽度上加5-10mm的余量。料表:235*1117(2)。

2折边制件类 1)基本计算方法(仅对折边角度为90°进行分析,其它折边角度类同。注:折边制件料的厚度(B)不大于6mm)。 图4所示的制件的截面展开长度等于所有展开单边外形轮廓尺寸之和减去板厚的1.5倍的折边次数所得差值。 ①图4(a)所示其截面展开尺寸为L0=H+L-1.5×B(B为板厚,下同)。 ②图4(b)所示其截面展开尺寸为L0=H+2L-2×1.5B。 ③图4(c)所示其截面展开尺寸为LO=H+LI+L2-2×1.5×B。 ④图4(d)所示其截面展开尺寸为ILl=(L-L1)+2B+LI+2H-4×1.5×B。 对于图4(c)、(d)两种情况,通过实践还可得出较简易的计算方法:

钣金展开图计算方法

钣金展开图计算方法 一般铁板0.5—4MM之内的都是A+B-1.6T。(A,B代表的是折弯的长度,T 就是板厚) 例如用2.5mm的铁板折180mm*180mm的直角,那么你下的料长就是 180mm+180mm再减去2.5mm*1.6也就是4mm就好了,也就是356mm 钣金展开图的计算是要用一个系数来计算的,这个系数一般都用1.645! 计算方法是工件的外形尺寸相加,再减去1.645*板厚*弯的个数, 例如,折一个40*60的槽钢用板厚3的冷板折,那么计算方法就是40+40+60(外形尺寸相加)—1.645(系数)*3(板厚)*2(弯的个数)=130.13(下料尺寸) 一般6毫米之内都是这样计算的了 展开的计算法 板料在弯曲过程中外层受到拉应力,内层受到压应力,从拉到压之间有一既不受拉力又不受压力的过渡层--中性层,中性层在弯曲过程中的长度和弯曲前一样,保持不变,所以中性层是计算弯曲件展开长度的基准.中性层位置与变形程度有关, 当弯曲半径较大,折弯角度较小时,变形程度较小,中性层位置靠近板料厚度的中心处,当弯曲半径变小, 折弯角度增大时,变形程度随之增大,中性层位置逐渐向弯曲中心的内侧移动.中性层到板料内侧的距离用λ表示. 展开的基本公式: 展开长度=料内+料内+补偿量 一般折弯:(R=0, θ=90°) L=A+B+K 0.3时, K=0≤T'1. 当0 2. 对于铁材:(如GI,SGCC,SECC,CRS,SPTE, SUS等) 1.5时, K=0.4T'T'a. 当0.3 2.5时, K=0.35T'T≤b. 当1.5 2.5时, K=0.3T/c. 当T 3. 对于其它有色金属材料如AL,CU: 0.3时,?当T K=0.5T 2.0时, 按R=0处理.≤注: R 一般折弯(R≠0 θ=90°) L=A+B+K K值取中性层弧长 1.5 时'1. 当T λ=0.5T 1.5时/ 2. 当T λ=0.4T

五金钣金展开计算参数

1. 目的:为完善作业标准,制订本文件。 2. 范围:适用于本公司设计部门之作业。 3. 职责:针对设计计算展开统一计算参数。 4. 内容: 展开计算原理 板料在弯曲过程中外层受到拉应力,内层受到压应力,从拉到压之间有一既不受拉力又不受压力的过渡层一中性层,中性层在弯曲过程中的长度和弯曲前一样,保持不变,所以中性层是计算弯曲件展开长度的基准。中性层位置与变形程度有关,当弯曲半径较大,折弯角度较小时,变形程度较小,中性层位置靠近板料厚度的中心处,当弯曲关径弯小,折弯角度增大时,变形程度随之增大,中性层位置逐渐向弯曲中收的内侧移动,中性层到板料内侧的距离用入表示 展开的基本公式: 展开长度=料内+料内+补偿量 4.1中性层系数 注明:K1适用于有顶底的V形或U形弯曲,K2适用于无顶底的V形弯曲?但通常我们习惯取K2值。 4.2压弯90度角的修正系数a值 注明:此数据可单独用于90度角的折弯修正,也可与中性层系数互相检查核对。 4.3其余图形展开计算方法:

r/t W0.5时,均可按90度清角计算展开长度展开注意事项为了防止产品展开过程中的失误,造成下料模的多次修改,特制定下料模的制作方式. (1) .凡对一些展开存在不确定因素的产品,例如,有拉伸性质的展开,多次折弯,Z折,有拉料现象 等产品的下料模,经工程分析有必要先试模的,其制作方式如下: A. 下料模的模板先不完全加工完毕,先完成机加及热处理部分,线割部分暂缓加工. B. 成型模先做,试模时先镭射(按下料模展开尺寸)试模,产品先做实测,不合格时修正展开尺寸再镭射,一直 修到合格为止,合格样品送客户先承认. C. 样品经客户承认后,按修正展开尺寸整理下料模,进行下料模的线割加工. (2) .对展开较直观的,可基本控制的产品,一般只要经俩人展开核对无误,下料模可按正常方式加工

金钣金展开计算参数

金钣金展开计算参数 Modified by JACK on the afternoon of December 26, 2020

1.目的:为完善作业标准,制订本文件。 2.范围:适用于本公司设计部门之作业。 3.职责:针对设计计算展开统一计算参数。 4.内容: 展开计算原理 板料在弯曲过程中外层受到拉应力,内层受到压应力,从拉到压之间有一既不受拉力又不受压力的过渡层—中性层,中性层在弯曲过程中的长度和弯曲前一样,保持不变,所以中性层是计算弯曲件展开长度的基准。中性层位置与变形程度有关,当弯曲半径较大,折弯角度较小时,变形程度较小,中性层位置靠近板料厚度的中心处,当弯曲关径弯 小,折弯角度增大时,变形程度随之增大,中性层位置逐渐向弯曲中收的内侧移动,中性层到板料内侧的距离用λ表示. 展开的基本公式: 展开长度=料内+料内+补偿量 4.1中性层系数 注明:K1适用于有顶底的V形或U形弯曲,K2适用于无顶底的V形弯曲.但通常我们习惯取K2值。 4.2压弯90度角的修正系数a值 注明:此数据可单独用于90度角的折弯修正,也可与中性层系数互相检查核对。

4.3其余图形展开计算方法:

4.4当折弯角度为90度,r=0(俗称“90度清角”)时,各材料厚度对应的经验值: r/t≦时,均可按90度清角计算展开长度. 展开注意事项 为了防止产品展开过程中的失误,造成下料模的多次修改, 特制定下料模的制作方式. (1). 凡对一些展开存在不确定因素的产品, 例如, 有拉伸性质的展开, 多次折弯, Z折,有拉料现象 等产品的下料模, 经工程分析有必要先试模的, 其制作方式如下: A.下料模的模板先不完全加工完毕,先完成机加及热处理部分,线割部分暂缓加工.

冲压件检测计算

K———跟踪图放大倍数,有10、20、30、50等。 如图724所示为K倍图,图中内、外包络线1、2即凸模线和凹模线。内、外包络线之间的距离δ: δ=Kd 2 +Δ- z 2 式中 K———放大倍数; d———电极丝直径; z———凸、凹模双面配合间隙; Δ———单面放电间隙。 3.线控线切割加工 线控线切割加工是借助于编制的加工程序进行的。加工时的图形关系如图725所示。加工凸模时[图725(a)所示],钼丝中心轨迹1在凸模轮廓线2的外侧;而加工凹模时[如图725(b)所示],钼丝中心轨迹1在凹模轮廓线3的内侧。 钼丝中心与轮廓线的垂直距离f为: f=a+d 2 式中 a———单边放电间隙; d———钼丝直径。 (a)加工凸模 (b)加工凹模 图725 加工图形关系 第二节 冲压件检测计算 一、冲压件常用测量方法 1.冲压件质量检测范围 冲压件的质量检测分尺寸检测和表面质量检查两大类。 173

(1)冲压件尺寸检测。对冲压件的尺寸使用一定的检测用具进行检查是冲压生产中不可缺少的环节,包括对成品冲压件和中间工序件的检测。 ①成品冲压件:成品冲压件的尺寸检测是根据产品零件图和冲压工艺文件(包括冲压工艺卡、检验卡等)对冲压件相应尺寸进行测量检查。 测量尺寸的范围包括线性尺寸、角(锥)度、形状位置尺寸和曲线、曲面形状等。 线性尺寸如长度、高度、深度、孔径、孔距、孔边距等尺寸。 形状位置尺寸如孔位的对称度、位移度、成形平面的平面度、直线度、平行度、垂直度等。 曲线、曲面形状是指经冲压后工件的曲线、曲面部分与设计要求的吻合程度。 ②中间工序件:对冲压中间工序件的尺寸检测是根据冲压工艺文件(如冲压工艺卡,对产品的关键件还有检验卡)中要求检测的尺寸进行测量检查。 冲压工艺文件中要求检测的尺寸有重要线性尺寸和孔位尺寸等,主要是指因冲模调整、坯料(半成品件)定位、模具磨损等原因受到影响的尺寸。 (2)表面质量检查。冲压件表面质量包括冲裁件毛刺高度和断面质量、成形件表面拉伤、缩颈、开裂、皱折等。 2.冲压件质量检查的方法 (1)冲压件质量检查的模式。冲压件生产均为批量生产,检查方式有首检、巡检、末检和抽检。首检模具调试合格后,确认模具质量和调试效果,决定能否进入正式批量冲压。一般检查3~10件,大尺寸零件取下限。 ①巡检:冲压过程中的检查,由检查员随意抽查几件,主要检查有否因模具磨损、损坏、操作定位不正确等引起的质量缺陷。 ②末检:本批冲压完成时的检查,确定下批加工前模具是否需要修理。 ③抽检:一批工件冲压后,确认此批制件质量作抽件检查。 (2)冲压件检查用工具。对冲压件表面质量检查除毛刺检查需进行测量外,其余多为目测检查。而尺寸检测则需使用一定的量具。冲压生产中使用的量具有通用量具和专用量具两大类。 ①通用量具:冲压生产中常用的通用量具有:钢尺、游标卡尺、百分尺、万能角度尺、高度尺、直角尺、深度尺、塞尺、百分表等。精密测量的有工具显微镜、三坐标测量机等。 ②专用量具:专用量具是对某一零件使用的,主要检查曲线、曲面的符合程度。常用的有平面曲线样板、三维(立体)检验样架,后者可用于大型覆盖件的检查。 二、冲压件角度测量换算 一般情况下,冲裁件和各类成形工件的外角度可以直接采用万能角度尺进273

钣金加工计算公式集合

钣金折弯计算公式 1.生产车间经验值 2.PROE计算公式 PROE钣金展开经验公式 经验公式(车间老师傅的算法,在实际中略有不同,需要调整) 前提条件:r<2 壁厚<2.5 折弯角度90°

展开长度L=L1+L2-2T+0.5T (1)L1 L2为外径T为板厚 也即L=L1'+L2'+0.5T (2) L1' L2'为径T为板厚 还即L=L1"+L2"+2r+0.5T (3) L1" L2"为直段长度r为折弯径 我这里是用的0.5T,大多数人有用0.3T的 如果r/T>2,就直接用中性层K=0.5计算好了再看PROE中的展开 PROE中的展开长度就是: L=L1"+L2"+DL L1" L2"为直段长DL为弧段展开长 请记住这个DL,这个DL就是我们要制作的折弯表的值! 再回过来看看上贴的第三个公式 L=L1"+L2"+2r+0.5T 很容易导出: DL=2r+0.5T DL为弧段展开长r为折弯径现在要制作折弯表了 折弯系数DL弧长=2(R+KT)*3.14*(折弯角/360) K为K因子 T为厚 R为侧半径 折弯系数DL弧长=2R+0.2T =K=0.41因子折弯扣除L=2R-0.2T 折弯系数DL弧长=2R+0.3T =K=0.46因子折弯扣除L=2R-0.3T 折弯系数DL弧长=2R+0.35T =K=0.5因子折弯扣除L=2R-0.35T 钣金展开经验计算方法

声明:本计算方法为本人经验算法,只在本人现工作之处适用,照搬可能会有偏差。先说一个名词:折弯余量 折弯余量这个名词我在论坛别的贴子已经说过,这里再重复一下: 一个已成形的钣金折弯,它有三个尺寸:两个轮廓尺寸和一个厚度尺寸,定义两个轮廓尺寸为L1、L2,厚度尺寸为T,我们都已知道,L1+L2是要大于展开长度L的,它们的差值就是折弯余量,我定义为K,那么一个弯的展开尺寸L=L1+L2-K。一般冷轧钢板的K值(条件:90度弯,标准折弯刀具) T=1.0 K=1.8 T=1.2 K=2.1 T=1.5 K=2.5 T=2.0 K=3.5 T=2.5 K=4.3 T=3.0 K=5.0 3. 3 展开计算原理 板料在弯曲过程中外层受到拉应力,层受到压应力,从拉到压之间有一既不受拉力又不受压力的过渡层--中性层,中性层在弯曲过程中的长度和弯曲前一样,保持不变,所以中性层是计算弯曲件展开长度的基准. 中性层位置与变形程度有关,当弯曲半径较大,折弯角度较小时,变形程度较小,中性层位置靠近板料厚度的中心处,当弯曲半径变小,折弯角度增大时,变形程度随之增大,中性层位置逐渐向弯曲中心的侧移动.中性层到板料侧的距离用λ表示. 4 计算方法 展开的基本公式: 展开长度=料+料+补偿量

冲压习题与答案

<<冲压工艺与模具设计>>习题及答案 一填空题 1.冷冲压的优点有:生产率高、操作简便,尺寸稳定、互换性好,材料利用率高。2.冷冲压是利用安装在压力机上的模具对材料施加压力,使其产生分离或塑性变形,从而获得所需零件的一种加工方法。 3.一般的金属材料在冷塑变形时会引起材料性能的变化。随着变形程度的增加,所有的强度、硬度都提高,同时塑性指标降低,这种现象称为冷作硬化。 4.拉深时变形程度以拉深系数m 表示,其值越小,变形程度越大。 5.材料的屈强比小,均匀延伸率大有利于成形极限的提高。 6.冲裁件的断面分为圆角,光面,毛面,毛刺四个区域。 7.翻孔件的变形程度用翻孔系数K 表示,变形程度最大时,口部可能出现开裂8.缩孔变形区的应力性质为双向压缩应力,其可能产生的质量问题是失稳起皱 9.精冲时冲裁变形区的材料处于三向压应力,并且由于采用了极小的间隙,冲裁件尺寸精度可达IT8-IT6级。 10.冷冲压模具是实现冷冲压工艺的一种工艺装备。 11.落料和冲孔属于分离工序,拉深和弯曲属于成形工序。12.变形温度对金属塑性的影响很大,一般来说,随着变形温度的升高,塑性提高,变形抗力降低。 14.材料在塑性变形中,变形前的体积等于变形后的体积,用公式来表示即:ε1+ε2+ε3=0 。 15.冲裁的变形过程分为弹性变形,塑性变形,断裂分离三个阶段。16.冲裁模工作零件刃口尺寸计算时,落料以凹模为基准,冲孔以凸模为基准,凸模和凹模的制造精度比工件高2-3级。 17.冲裁件之间及冲裁件与条料侧边之间留下的余料称作搭边。它能补偿条料送进时的定位误差和下料误差,确保冲出合格的制件。 18.弯曲零件的尺寸与模具工作零件尺寸不一致是由于弯曲回弹而引起的,校正弯曲比自由弯曲时零件的尺寸精度要高。

钣金件的展开计算---准确计算

钣金中的展开计算 一、钣金的计算方法概论 钣金零件的工程师和钣金材料的销售商为保证最终折弯成型后零件所期望的尺寸,会利用各种不同的算法来计算展开状态下备料的实际长度。其中最常用的方法就是简单的―掐指规则‖,即基于各自经验的算法。通常这些规则要考虑到材料的类型与厚度,折弯的半径和角度,机床的类型和步进速度等等。 总结起来,如今被广泛采纳的较为流行的钣金折弯算法主要有两种,一种是基于折弯补偿的算法,另一种是基于折弯扣除的算法。 为了更好地理解在钣金设计的计算过程中的一些基本概念,先了解以下几点: 1、折弯补偿和折弯扣除两种算法的定义,它们各自与实际钣金几何体的对应关系 2、折弯扣除如何与折弯补偿相对应,采用折弯扣除算法的用户如何方便地将其数据转换到折弯补偿算法 3、K因子的定义,实际中如何利用K因子,包括用于不同材料类型时K因子值的适用范围 二、折弯补偿法

为更好地理解折弯补偿,请参照图1中表示的是在一个钣金零件中的单一折弯。图2是该零件的展开状态。 折弯补偿算法将零件的展开长度(LT)描述为零件展平后每段长度的和再加上展平的折弯区域的长度。展平的折弯区域的长度则被表示为―折弯补偿‖值(BA)。因此整个零件的长度就表示为方程(1):LT = D1 + D2 + BA (1) 折弯区域(图中表示为淡***的区域)就是理论上在折弯过程中发生变形的区域。简而言之,为确定展开零件的几何尺寸,让我们按以下步骤思考: 1、将折弯区域从折弯零件上切割出来 2、将剩余两段平坦部分平铺到一个桌子上 3、计算出折弯区域在其展平后的长度 4、将展平后的弯曲区域粘接到两段平坦部分之间,结果就是我们需要的展开后的零件

钣金展开图计算方法

当前位置: > > 钣金展开图计算方法 钣金展开图计算方法 一般铁板0.5—4MM之内的都是A + B - 1.645 T。(A,B代表的是折弯的外形尺寸,T就是板厚)计算方法是工件的外形尺寸相加,再减去1.645 * 板厚* 折弯的次数, 例如,折一个40 * 60的”U”形槽钢用T=3.0的冷板折,那么计算方法就是40+40+60(外形尺寸相加)—1.645(系数)* 3(板厚)* 2(弯的个数)=130.13(下料尺寸) 一般6毫米之内都是这样计算的了 展开的计算法 板料在弯曲过程中外层受到拉应力,内层受到压应力,从拉到压之间有一既不受拉力又不受压力的过渡层--中性层,中性层在弯曲过程中的长度和弯曲前一样,保持不变,所以中性层是计算弯曲件展开长度的基准.中性层位置与变形程度有关, 当弯曲半径较大,折弯角度较小时,变形程度较小,中性层位置靠近板料厚度的中心处,当弯曲半径变小, 折弯角度增大时,变形程度随之增大,中性层位置逐渐向弯曲中心的内侧移动.中性层到板料内侧的距离用λ表示. 展开的基本公式: 展开长度=料内+料内+补偿量 一般折弯:(R=0, θ=90°) L=A+B+K 0.3时, K=0≤T'1. 当0 2. 对于铁材:(如GI,SGCC,SECC,CRS,SPTE, SUS等) 1.5时, K=0.4T'T'a. 当0.3 2.5时, K=0.35T'T≤b. 当1.5 2.5时, K=0.3T/c. 当T 3. 对于其它有色金属材料如AL,CU: 0.3时,?当T K=0.5T 2.0时, 按R=0处理.≤注: R 一般折弯(R≠0 θ=90°) L=A+B+K K值取中性层弧长 1.5 时'1. 当T λ=0.5T 1.5时/ 2. 当T λ=0.4T 一般折弯(R=0 θ≠90°)

钣金件折弯展开计算方法(改正版)

?折床工作原理 折弯就是将上、下模分别固定于折床的上、下工作台,利用液压伺服电机传输驱动工作台的相对运动,结合上、下模的形状,从而实现对板材的折弯成形。 ? ? ? ?展开的定义和折弯常识 ★折弯展开就是产品的下料尺寸,也就是钣金

在折弯过程中发现形变,中间位置不拉伸,也叫被压缩的位置长度,也叫剪口尺寸。 ★折弯V槽选择公式:当R=0.5时,V=5T;当R>0.5时V=5T+R 折弯展开会根据上模和下模的不同而发生相应的变化,在更换模具时必须考虑进去。 ★折床的运动方式有两种: 上动式:下工作台不动,由上面滑块下降实现施压; 下动式:上部机台固定不动,由下工作台上升实现施压。 ★工艺特性 1.折弯加工顺序的基本原则:l由内到外进行折弯;由小到大进行折弯;先折弯特殊形状,再折弯一般形状。 2.90°折弯及大于90°小于180°折弯选模:一般在SOP没有特殊要求或没有 特殊避位的最好选用刀口角度为88°或90的折弯上模,这样可以更好的保证折弯角度的稳定性。

三、折弯展开尺寸计算方法,如右图: <1>直角展开的计算方法 当内R角为0.5时折弯系数(K)=0.4*T,前提是料厚小于5.0MM,下模为5T L1+L2-2T+0.4*T=展开 <2>钝角展开的计算方法 如图,当 R=0.5时的展开计算 A+B+K=展开

K= 1800-2/900 ×0.4 a=所有折弯角度 <3>锐角展开的计算方法 900折弯展开尺寸=L1+L2-2T+折弯系数(K),如右图: 当内R角为0.5时折弯系数(K)=0.4*T,L1和

L2为内交点尺寸 展开=L1+L2+K K=( 180—@) /90 *0.4T <4>压死边的展开计算方法 选模:上模选用刀口角度为300小 尖刀,下模根据SOP及材料厚度选 择V槽角度为300的下模。先用 4.4.1所选的模具将折弯角度折到约 300-650.

冲压件常用公式及数据表

第三章常用公式及数据表 第四节冲压件模具设计常用公式一.冲裁间隙分类见表4-1 表4-1 冲裁间隙分类(JB/Z 271-86) 二.冲裁间隙选取(仅供参考) 见表4-2 (见下页)

表4-2 冲裁间隙比值(单边间隙) (单位:%t) (注: 1. 本表适用于厚度为10mm以下的金属材料, 厚料间隙比值应取大些; 2. 凸,凹模的制造偏差和磨损均使间隙变大, 故新模具应取最小间隙; 3. 硬质合金冲模间隙比钢模大20% 左右.) 注: 冲裁间隙选取应综合考虑下列因素: 1.冲床﹑模具的精度及刚性. 2.产品的断面质量﹑尺寸精度及平整度. 3.模具寿命. 4.跳屑. 5.被加工材料的材质﹑硬度﹑供应状态及厚度. 6.废料形状. 7.冲子﹑模仁材质﹑硬度及表面加工质量. 三.冲裁力﹑卸(剥)料力﹑推件力﹑顶件力 F冲= 1.3 * L * t *τ(N) (公式4-1) F卸= K卸* F冲(N) (公式4-2) F推= N * K推* K冲(N) (公式4-3) F顶= K顶* F冲(N) (公式4-4) 其中:

L ――冲切线长度(mm) t ――材料厚度(mm) τ――材料抗剪强度(N/mm2 ) 1.3 ――安全系数 K卸――卸(剥)料力系数 K推――推料力系数 K顶――顶料力系数 K卸K推K顶数值见表4-3 表4-3 卸料力﹑推件力和顶件力系数 注:卸料力系数K卸在冲多孔﹑大搭边和轮廓复杂时取上限值. 四.中性层弯曲半径 R = r + x * t (mm) (公式4-5) 其中: R――中性层弯曲半径(mm) r ――零件内侧半径(mm) x ――中性层系数

钣金展开的计算法

南通特雷卡电梯产品有限公司资料 展开的计算法 板料在弯曲过程中外层受到拉应力,内层受到压应力,从拉到压之间有一既不受拉力又不受压力的过渡层--中性层,中性层在弯曲过程中的长度和弯曲前一样,保持不变,所以中性层是计算弯曲件展开长度的基准.中性层位置与变形程度有关, 当弯曲半径较大,折弯角度较小时,变形程度较小,中性层位置靠近板料厚度的中心处;当弯曲半径变小, 折弯角度增大时,变形程度随之增大,中性层位置逐渐向弯曲中心的内侧移动.中性层到板料内侧的距离用λ表示. 展开的基本公式: 展开长度=料内+料内+补偿量

一般折弯:(R=0, θ=90°) L=A+B+K 1. 当0T时, K=0 2. 对于铁材:(如 GI,SGCC,SECC,CRS,SPTE, SUS等) a.当T时, K= b. 当T时, K= c. 当T时, K= 3. 对于其它有色金属材料如AL,CU: 当T时, K= 注: R时, 按R=0处理. 一般折弯(R≠0 θ=90°) L=A+B+K K值取中性层弧长 1. 当T时λ=

2. 当T时λ= 一般折弯(R=0 θ≠90°) L=A+B+K’ 1. 当T时K’=0 2. 当T时K’=(/90)*K 注: K为90°时的补偿量 一般折弯(R≠0 θ≠90°) L=A+B+K 1. 当T时λ= 2. 当T时λ= K值取中性层弧长 注: 当R, 且用折刀加工时, 则按R=0来计算, A﹑B依倒零角后的直边

Z折1(直边段差). 1. 当H5T时, 分两次成型时,按两个90° 折弯计算 2. 当H5T时, 一次成型, L=A+B+K K值依附件中参数取值

钣金件展开计算方法

(工艺设计部) 页次:1 OF 9 工程展开计算方法 一. 目的: 统一展开计算方法, 做到展开的快速准确. 二. 适用范围: 君雄钣金部 三. 展开计算原理: 1. 板料在弯曲过程中外层受到拉应力, 内层受到压应力, 从拉到压之间有一既不受拉力又不受 压力的过渡层称为中性层; 中性层在弯曲过程中的长度和弯曲前一样, 保持不变, 所以中性层是计算弯曲件展开长度的基准. 2. 中性层位置与变形程度有关, 当弯曲半径较大, 折弯角度较小时, 变形程度较小, 中性层位 置靠近板料厚度的中心处; 当弯曲半径变小, 折弯角度增大时, 变形程度随之增大, 中性层位置逐渐向弯曲中心的内侧移动. 中性层到板料内侧的距离用λ表示. 四. 展开计算方法: 展开计算的基本公式: 展开长度= 料内+ 料内+ 补偿量 一般折弯1 (R=0, θ=90°): L=A+B+K 1. 当0

(工艺设计部) 页次:2 OF 9 工程展开计算方法 一般折弯2 (R≠0, θ=90°): L=A+B+K (K值取中性层弧长) 1. 当T<1.5时, λ=0.5T 2. 当T≧1.5时, λ=0.4T 注: 当用折刀加工时: 1. 当R≦ 2.0时, 按R=0处理. 2. 当2.0

冲压件展开计算方法

冲压件展开计算方法 冲压件是常件的金属件,在冲压前,要对冲压件下料,这时,往往要对冲压件展开计算: 1 90?无内R轧形展开 K值取值标准: a. t≦,K= b. c. d. t>材料展开长度不易准确计算,应先试轧,得出展开系数后再调整展开尺寸. e. 软料t≦,K=(主要有铝料,铜料). 注意:无内R是指客户对内R无要求,或要求不高时,为便于材料的折弯成形,我们的下模做成尖角的形式.有时客户的部品图中有内R,一般客户没有特别指出的条件下我们均以尖角起模.

2 非90?无内R轧形展开 L=A+B+Kt(C?/90?) K值取值标准: a. t≦,K= b. c. d. t>材料展开长度不易准确计算,应先试轧,得出展开系数后再调整展开尺寸. e.软料t≦,K=(主要有铝料,铜料). 注意:无内R是指客户对内R无要求,或要求不高时,为便于材料的折弯成形,我们的下模做成尖角的形式.有时客户的部品图中有内R,一般客户没有特别指出的条件下我们均以尖角起模. 3 有内R轧形展开

备注:当客户部品图中没有特别要求做轧形内R时,我们尽量按尖角设计.有要求时按以上方式进行展开. 中性层系数确定: 弯曲处的中性层是假设的一个层面.首先将材料延厚度方向划分出无穷多个厚度趋于0的层面,那么在材料弯曲的过程中长度方向尺寸不变的层面即为材料弯曲处的中性层.由上述可知中性层的尺寸等于部品的展开尺寸. 1)铝料/ Al料中性层系数 角度( 0?角度( 90?角度 ( >180? ) R内/T S(从弯曲内 侧往外) R内/T S(从弯曲内 侧往外) R 内 /T S(从弯曲内 侧往外)

钣金件展开计算方法及工艺处理

钣金展开计算方法及工艺处理 、钣金件展开方法: 1、展开的计算原理: 板材在弯曲过程中外层客观存在到拉应力,内层受以压应力,从拉到压之间有一既不受拉力又不受压力的过渡层一一中性层,中性层的长度在弯曲后与弯曲前一样,保持不变,所以中性层是计算折弯件展开长度的基准。中性层位置与变形程度有关,当弯曲半径(下图所示的R角)较大,折弯角度(下图所示0角)增大时,变形程度随之增大,中性层位置逐渐向弯曲中心的内侧移动,中性层到板料内层的距离用<90时) 2.计算方法: 2.1展开的基本公式: 展开长度=料内+料内+补偿量展开长度=料外+料外-补偿量 直角折弯: 1 (RW 2.0 0 =90) . L=A+B-k, (k 值见附表二) 2. ( R>2 0 =90) L=a+b+K K=(R+入)* n /2 注:当R> 5T时,入=0.5T . 当R< 5T 时,入=0.4T. a.b是与R切点的直边值. 钝角折弯: 1( R< 2.0 0 >90): L=A+B+(0 /90)*k (k 值见附表一) 2(R>2 0 >90 ) :L=A+B+K K=(R+ 入)* n0 /180 注: 当R> 5T 时,入=0.5T. 当R< 5T 时,入=0.4T. A.B是与R切点的直边值. T i 1 = B―

锐角折弯: 2 (RM 0 0 <90): L=A+B+K K=(R+入)* n0 /180 注: 当R> 5T 时,入=0.5T. 当R< 5T 时,入=0.4T. A.B是与R切点的直边值. Z折(直边段差) 1.当H》4T时,分两次成型,按两个90折弯计算。 2.当H<4T时,一次成型。 L=A+B+K (K值见附表三所示) Z折(斜边段差) 1.当H<2T时,按直边段差的方式计算,即: L=D+K (K值见附表三所示) 2.当H》2T时,按两段折弯展开(0工90) 反折压平 1.L=A+B-0.4T N折 1.当N折加工方式为垫片反折压平,则按L=A+B+K计 算。(K值见附表四所示)。 2.当N折以其它方式加工时,按一般折弯计算 (RM 0 0M 90)” 2.2 .标注公差的尺寸设计值:取上下极限尺寸的中间值作设计标准值-D ---- Z L B ■ R b

钣金折弯展开快速计算方法【干货】

钣金折弯展开快速计算方法【干货】 内容来源网络,由“深圳机械展(11万m2, 1100多家展商,超10万观众)” 收集整理! 更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、自动化、数字无人 工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展。 钣金折弯跟展平时,材料一侧会被拉长,一侧被压缩,受到的因素影响有:材料类型、材料 厚度、材料热处理及加工折弯的角度。 展开计算原理: 1.板料在弯曲过程中外层受到拉应力,内层受到压应力,从拉到压之间有一既不受拉力又不受压力的过渡层称为中性层;中性层在弯曲过程中的长度和弯曲前一样,保持不变,所以中性层是计算弯曲件展开长度的基准. 2.中性层位置与变形程度有关,当弯曲半径较大,折弯角度较小时,变形程度较小,中性层位置靠近板料厚度的中心处;当弯曲半径变小,折弯角度增大时,变形程度随之增大,中性层位置逐渐向弯曲中心的内侧移动.中性层到板料内侧的距离用入表示. 展开计算的基本公式:展开长度=料内+料内+补偿量

2.1 R=0?折穹角e =90 0 (T<1.2.不含1.2mm) L?(A-T)+(B-T)+K T<1.2mm =A-B ?2T丰0.4T 上式中取:入-T/4 K?A U/2 = T/4e x/2 -0.4T 2.2 R-0? 0 ?90G(T±12含 L?(A?T)+(B?T)+K ?A*B ?2T+O?ST 上式中取:入-T/3 K=A U/2 ■T/3F2 =0.5T 23 R=0 0 =90 f L?(A-T-R)*(B?T?R)+(R*入)?M2 当R M5T 时A =T/2 ITS R : L=A? T+C+B + K (3)当CW3T时<一次成型〉: L=A ?T+C*B + K/2

相关文档
最新文档