斜管沉淀池沉淀与排泥性能剖析
斜管沉淀和斜板沉淀

斜管沉淀和斜板沉淀斜管沉淀和斜板沉淀引言:在水处理领域,斜管沉淀和斜板沉淀是常见的沉淀技术,用于去除水中的悬浮物和固体颗粒。
本文将介绍斜管沉淀和斜板沉淀的原理和应用,并探讨它们在水处理中的重要性和优势。
一、斜管沉淀1. 斜管沉淀的原理斜管沉淀是一种通过重力沉降来分离固体颗粒和悬浮物的方法。
斜管沉淀池中,一组斜放的管道被用来提供足够大的沉降面积。
当水流从上部进入斜管沉淀池时,固体颗粒由于重力而沉降到底部,而清水则从斜管的顶部流出。
通过这种方式,水中的固体颗粒可以有效地被去除。
2. 斜管沉淀的应用斜管沉淀常用于污水处理、工业废水处理和饮用水处理等领域。
它可以去除悬浮固体和颗粒物,使水质得到改善。
斜管沉淀可以作为水处理系统的预处理单元,减少后续处理过程的负担,并提高整体处理效果。
斜管沉淀还常用于园林、游泳池和鱼塘等场所,以保持水的清澈和透明度。
3. 斜管沉淀的优势(1)高效去除悬浮物:斜管沉淀具有较大的沉淀面积,可以更有效地去除水中的固体颗粒和悬浮物。
(2)节约空间:与传统的沉淀池相比,斜管沉淀占用更少的空间,适用于有限的场地。
(3)易于维护:斜管沉淀的运行和维护相对简单,不需要频繁的清理和维修。
二、斜板沉淀1. 斜板沉淀的原理斜板沉淀是利用板块之间的间隙来实现沉淀的方法。
斜板沉淀池中,一系列斜放的板块被安装在沉淀池中,板块之间形成间隙。
当水流通过斜板沉淀池时,固体颗粒被拦截在板块之间,随着水流的下降而沉淀到底部。
清水则从斜板的顶部流出,实现固液分离。
2. 斜板沉淀的应用斜板沉淀广泛应用于各种水处理场所,如污水处理、工业废水处理和自来水处理等。
斜板沉淀可以去除颗粒物、油脂和悬浮物,提高水质。
它可以作为水处理系统的一部分,配合其他工艺单元一起使用,以达到更好的处理效果。
3. 斜板沉淀的优势(1)高效沉淀效果:斜板沉淀池的设计可以提供较大的沉淀面积,可有效去除水中的颗粒物和悬浮物。
(2)灵活性:斜板沉淀可以根据处理需求进行设计和调整,以适应不同的水质和处理流量。
斜管沉淀池积泥问题及解决方案

斜管沉淀池积泥问题及解决方案一、积泥现象形成原因1、原水的变化引起沉淀物增多造成进厂的原水浊度增高;另外由于近几年原水水质不断恶化,除不断更换净水剂外,投药量也有所增大,从而造成沉淀物增多。
2、吸泥机吸泥口不规范,吸泥效率低,距沉淀池底的距离偏大吸程达不到底部,排泥效果较差,从而使斜管沉淀池底部大量积泥。
如果吸泥口长而窄(V形梯形),会导致泥水水流不畅,易堵塞,吸泥效果较差。
3、存在刮泥死角和其他刮泥设备一样, 排泥机吸泥口距沉淀池边墙存在一段距离。
由于构筑物结构和设备等因素的影响, 吸泥口到不了墙边,从而造成刮泥死角,使沉淀池两端积泥较多。
4、运行方式不尽合理, 没有根据实际运行情况进行科学调整。
二、积泥问题解决措施1、降低并更换吸泥口出现沉淀池池底平均积泥厚度过大现象,常常是因为排泥机吸泥口距沉淀池底距离过远,吸程不能达到底部导致的。
因此,可根据实际情况将吸泥口高度降至距沉淀池底部较近的位置。
如某水厂原排泥机吸泥口距沉淀池底部达40 cm,,造成池底平均积泥厚度为70~80cm,后经过改造将吸泥口高度降至距沉淀池底部15 cm,积泥现象有所控制。
可参考《给水排水设计手册》中的《排泥机械部分》,对吸泥口进行制作更换,使其呈长形扁口形状,然后变截面圆滑过渡到圆管形截面, 提高吸泥口吸泥效率。
2、加固排泥机并延长其行程一方面,加固排泥机行架,更换排泥机轨道和轮子材料,改善排泥机性能。
另一方面,改造延长轨道,使排泥机行程延长,从而让吸泥机运行至端部时,吸泥口更靠近内构造柱基础边缘。
3、在斜管沉淀池南北两端增设斜墙由于沉淀池端部有构造柱、构造墩及排泥机底架结构的影响,排泥机吸泥口到不了沉淀池端部边沿,使得该处的泥无法排除。
为解决这一问题, 一些水厂在沉淀池端部吸泥口刮不到的部位增设带孔的高压水管,使泥不至于积厚。
但这种方法要求水压必须稳定,要控制在等强度等射流长的状态,且水压要适当。
由于其在水下,不便观察;而且冲水强度不易控制,强度低了达不到预期效果,高了又会泛起污泥。
斜管沉淀池在二次沉淀池中存在的问题与解决方法

斜管沉淀池在二次沉淀池中存在的问题与解决方法斜管沉淀池是一种常用于城市污水处理的设备,在初次沉淀池、混凝沉淀池中有着稳定的处理效果,且维护管理的工作量较小。
这是根据浅池沉淀原理设计出的一种高效组合式沉淀池,也统称为浅池沉淀池。
在沉降区域设置许多密集的斜管或斜板,使水中杂质在斜板或斜管中沉淀,水沿斜管或斜板上升流动分离出的泥渣在重力作用下沿着斜管(板)向下滑至池底,再集中排出。
这种池子可以提高沉降效率50-60%,在同一面积上能提高处理能力3-5倍。
适用于电镀、煤矿、印染、制革、食品、化工等工业污水的处理。
1、水温:常温;2、出水浊度:1NTU;3、过滤区滤速:9m/h;4、混凝反应时间:6~8min;5、斜管沉淀表面负荷:10m3/(m2h);6、出水水量:单套设备出水水量为30~150m3/h,其他特殊规格设备可根据用户实际情况设计;7、适用原水浊度:1500NTU,若原水浊度超过1500NTU,我公司可根据用户实际情况另行设计;8、进水压力要求:0.3MPa,出水可维持压力为0.25Mpa,(1)若原水高于0.3Mpa可在原水管道上安装减压阀(2)若对设备出水压力要求为0.3MPa以上,我公司根据实际情况另行设计设备结构。
下面将探讨斜管沉淀池在污水处理过程中的应用情况,以及其在二次沉淀池中存在的问题与解决方法。
一、应用1、初次沉淀池中的应用初次沉淀池是城市污水处理过程中最基本的一个环节,其主要功能是将大颗粒悬浮物和浮沫沉降下来,进一步提高后续处理的效率。
斜管沉淀池在初次沉淀池中应用广泛,其结构简单,污水流经斜板时会形成旋涡状,使得悬浮物沉降速度加快,同时也减少了上层水体对下层水体的扰动。
斜管沉淀池还能够有效减少底部污泥量,节约清理成本,因此在城市污水处理中得到了广泛应用。
2、混凝沉淀池中的应用混凝沉淀池是对初次沉淀池处理效果不理想的污水进行再次处理的环节,其主要目的是进一步去除泥沙和有机物。
影响斜板、斜管沉淀池效果的因素是什么

影响斜板、斜管沉淀池效果的因素是什么?影响斜板、斜管沉淀池效果的主要因素有∶(1)斜板、斜管的倾斜角度对沉淀效果的影响斜管的倾斜角度(见图2-2-5)对水中泥沙沉淀效果有很大影响。
检测结果说明,斜管的倾斜角度越小,除去沉淀的颗粒越小。
在实际生产中,对矾花颗粒来说,倾斜角35°~45°时效果好,从排泥通畅考虑一般选用60°角。
(2)斜板、斜管的长度对沉淀效果的影响从实际使用中证明,长度大时泥水分离充分,沉淀效果较好。
但是,斜板、斜管过长,不仅造价增加,制作及安装都有困难,沉淀效果的提高也不很显著。
实际生产中,异向流沉淀池的斜板、斜管长度采用1000mm左右;同向流沉淀池的斜板、斜管长度取2500mm左右。
(3)进水方向对于沉淀效果的影响斜管、斜板沉淀池的进水方向通常有两种,如图2-2-6所示。
经实际使用,(a)式的效果比较好;(b)式是从反应池进入的水流直接进入斜管的,对于沉淀与排泥畅通都不利。
(4)斜管中的上升流速对沉淀效果的影响一般来说,上升流速越小,沉淀效果越好。
但过小的上升流速,显示不出斜管沉淀池的优点,达不到提高处理水量的目的。
在处理低温水和处理水量比较大的时候,可以把上升流速选得低一些。
一般情况下,在倾斜角60°时,上升流速为3.5~5.0mm/s。
(5)斜板的间距和斜管管径对沉淀效果的影响斜板的间距越小越好,因为可以增加沉淀面积,能提高沉淀效果。
但为了加工方便,间距做成不小于50mm,而不宜大于150mm。
斜管可以做成正方形或六角形,其内切圆直径越小越好,然而管径太小,加工困难,成本费又高,对排泥也不利,一般斜管内径做成25~45mm。
生产运行中斜管、斜板沉淀池的进水量和加药量要尽量稳定,药量调节要及时,排泥装置要畅通可靠,否则,也会影响沉淀效果和出水水质。
污水处理—斜管沉淀池存在的问题及其解决方法

污水处理—斜管沉淀池存在的问题及其解决方法一、斜管沉淀池斜管沉淀池是目前广泛使用的污水物化处理工艺。
本文针对实际应用所遇到的问题,如沉淀池进口布水不均匀,污泥斗被堵死,矾花上浮等致使出水水质下降,通过分析原因,提出了相应的解决方案。
1.斜管沉淀池的原理及特点斜管沉淀池是根据浅池沉淀原理设计出的一种高效组合式沉淀池,也统称为浅池沉淀池。
在沉降区域设置许多密集的斜管或斜板,使水中杂质在斜板或斜管中沉淀,水沿斜管或斜板上升流动分离出的泥渣在重力作用下沿着斜管(板)向下滑至池底,再集中排出。
这种池子可以提高沉降效率50-60%,在同一面积上能提高处理能力3-5倍。
斜管沉淀池适用于电镀、煤矿、印染、制革、食品、化工等工业污水的处理。
根据浅池原理,在沉淀池有效容积一定的条件下, 沉淀池面积越大,沉淀池的沉淀效率就越高,与沉淀时间没有关系;沉淀池越浅,沉淀时间就越短。
斜管填料式沉淀池的沉淀区是由一系列平行的斜板或斜管把水流分隔成薄层,体现了浅池原理。
2.斜板斜管沉淀池的特点①利用了层流原理,水流在板间或管内流动,水力半径很小,所以雷诺数较低,一般情况下,雷诺数Re在200左右,水流呈现层流状态,对沉淀极为有利,斜管内水流的弗劳德数约在1*10^-3~1*10^-4之间,水流呈稳定状态。
②增加了沉淀池的面积,使沉淀效率提高。
当然,由于斜板的具体布置、进出水的影响及板或管内流态的影响等,处理能力不可能达到理论倍数。
实际提高的沉淀效率与理论沉淀效率比称为有效系数。
③缩短了颗粒沉淀距离,使沉淀时间大大缩短。
④斜板或斜管填料内絮状颗粒的再凝聚,促进了颗粒进一步长大,提高了沉淀效率。
3.斜管填料沉淀池的结构斜管斜板式沉淀池的结构与一般沉淀池相同,是由进口、沉淀区、出口与集泥区四个部分组成,只是在沉淀区设置有许多斜管或斜板。
图1为斜管式沉淀池的典型结构。
在斜板斜管沉淀池中,按照水流流过斜板的方向,可分为上向流、下向流和平向流三种,如图2所示。
斜管沉淀池

一、斜管沉淀器特点及优势集沉淀、浓缩、排泥三道工序于一体斜板沉淀池的最大特点是集沉淀、浓缩、排泥三道工序为一体。
污泥浓缩一次成功,取消了浓缩池、占地面积小。
简化了工艺流程,减少了设备。
设备投资省,生效快,污泥回收方便,轧钢废水可在半年之内回收所有投资设备费用。
污水进入斜板沉淀器通过穿孔板,水的流态(雷诺数)从105降至500之内,几乎达到了层流之标准。
单位表面积水力负荷大,沉淀效率高。
由于在沉淀池中加入大量斜板,增加了单位表面积,斜板之间雷诺数小,逆向流干扰小,属层流状态,有利于悬浮沉降。
单位表面积水力负荷大,可达4-5m3/m2·h,而平流式和福流式沉淀池水力负荷仅为0.6 m3/m2·h。
故斜板沉淀池沉淀效率高。
出水悬浮物稳固,对冲击负荷的适应范围广。
进水悬浮物含量3000-6000mg/l,许诺短时可达10000 mg/l,出水悬浮物仍然维持在100 mg/l以下。
由于斜板沉淀池可进行单元组合,能够组合方式进行设计。
沉淀池为单元组合,池与池之间干扰小,对设备保护、检修带来方便,并可做到不阻碍生产。
斜板沉淀器运行靠得住,操作方便,无二次污染。
可实现无污染工程之标准。
排泥浓度可人为操纵,可利用该池水面静压自动排泥。
由于斜管沉淀池是高架势结构,斜管沉淀池污泥排放利用该池水面产生的静压并通过螺旋输送机的机械挤压作用,污泥浓度可达到20-40%。
排泥采纳间歇方式,正常情形下,每池12h排泥一次,污泥浓度一样为20%-40%,可人工操纵。
对排泥量进行操纵,以维持池内有足够污泥贮存容积。
斜板沉淀池采纳塑料篷布组合件,该组合件防酸、防碱、耐油、耐高温。
斜板沉淀池施工周期短,配置设施简单,调试合格后,几乎无维修、保护,动用人力少,可实现全自动操纵。
而且斜板沉淀器的地平面上制造,出水能自流至玻璃钢冷却塔或用水点,不需要设备二次提升装置。
二、技术说明斜板沉淀器组合式高效斜板沉淀器依据分散颗粒浅层沉淀理论,在平流式沉淀池的基础上吸取国外多层、多格、斜板先进技术而不断进展更新、完善起来的,适用于冶金、市政工程、机械、化工、电力、建材等行业的废水,污水处置工程,具有处置效率高、表面积大、占地面积小、能耗低、投资省、操作方便、运行平安靠得住、无二次污染等优势。
斜管(板)沉淀池总结

斜板、斜管沉淀池总结
1、斜板、斜管沉淀原理
“浅池理论”:按照理想沉淀池理论,在保持截留沉速u0和水平流速v都不变的条件下,减少沉淀池的深度,就能相应地减少沉淀时间和沉淀池的长度。
斜板沉淀池1950年前后出现在瑞典,1960左右出现在其他地方,斜管沉淀池1960年前后在美国出现。
它具有沉淀效率高、停留时间短、占地少等优点,水流形式多样,有上向流、下向流和水平流。
2、影响斜板、斜管沉淀效果的因素
1)斜板、斜管中部为层流,进口段和出口段受进出、水影响,存在干扰;2)斜板、斜管中水流稳定性较好,有利于提高沉淀效果;
3)由于沉淀距离和沉淀时间都很短,要求进入沉淀池前有充分的絮凝;
4)浑水异重流对上向流的影响最小,上向流适用于高浊度水、下向流适用于很低浊度水。
3、设计要点
1)适用水质:浊度<1000度
2)沉淀区液面负荷:9.0~11.0m3/m2·h
3)斜管管径25~35mm(正六角形),斜长1.0m,倾角60o,材质:厚约0.4~0.5mm 的无毒聚丙烯。
4)清水区高度>1.0m,底部配水区高度>1.5m,絮凝池出口一般应考虑整流措施。
5)在池壁与斜板的间隙处应装设阻流板,以防止水流短路。
斜板上缘宜向池子进水端倾斜安装。
6)进水方式一般采用穿孔墙整流布水,出水方式一般采用多槽出水,在池面上增设几条平行的出水堰和集水槽,以改善出水水质,加大出水量。
7)斜板(管)沉淀池一般采用重力排泥。
每日排泥次数至少1~2次,或连续排泥。
8)斜板(管)沉淀池应设斜板(管)冲洗设施。
《浅池理论分析斜管沉淀池的沉淀原理》

浅池理论分析斜管沉淀池的沉淀原理.引言近几年来城市给水事业蓬勃发展,由浅池理论原理发展形成的斜管沉淀池也获得较为广泛的应用。
我国在1965年开始进行澄清池分离区加斜板的实验,1968年又在福州水厂做了斜管除沙的试验,1972年第一座生产性的上向流斜管沉淀池正式投入使用。
随着理论研究的不断深入和生产实践的不断总结积累,斜管沉淀技术正在不断发展。
1. 浅池理论原理设斜管沉淀池池长为L,池中水平流速为V,颗粒沉速为u0,在理想状态下,L/H=V/ u0。
可见L与V值不变时,池身越浅,可被去除的悬浮物颗粒越小。
若用水平隔板,将H分成3层,每层层深为H/3,在u0与v不变的条件下,只需L/3,就可以将u0的颗粒去除。
也即总容积可减少到原来的1/3。
如果池长不变,由于池深为H/3,则水平流速可正加的3v,仍能将沉速为u0的颗粒除去,也即处理能力提高倍。
同时将沉淀池分成n层就可以把处理能力提高n倍。
这就是20世纪初,哈真(Hazen)提出的浅池理论。
2. 斜管沉淀池设计原理为了创造理想的层流条件,提高去除率,需要控制雷偌数Re=,斜管由于湿周p长,故Re可控制在200以下。
远小于层流界限500。
又从佛劳德数Fr=可知,由于P长,W小,Fr数可达10-3-10-4。
异向流斜管沉淀池的水力计算可归纳为如下三种:2.1分离粒径法:可分离颗粒的粒径dp可表示为:若用可分离颗粒沉速us来表示,则:式中:Q—沉淀池流量A—斜管区水面面积Af—斜管总投影面积K—颗粒粒径与沉速的变换系数V—斜管中的水流速度L—颗粒沉降需要的长度d—斜管的垂直高度θ—斜管倾角2.2 特性系数法按照沉淀最不理的端面所求得的可分离沉速usc与us关系为:usc=us,s为一常数。
S值被称为斜管的特性参数,虽断面形状而定。
2.3加速沉淀法考虑到颗粒沉淀过程中的絮凝因素,假设颗粒的沉速以等加速改变,并设起始沉速为零。
结合考虑管内的流速分部,则斜管长度为:-d*tgθ式中a为颗粒沉速变化的加速度,即a=du/dtxxx污水处理(三期)菌种培植试运行方案上诉三种方法,各有不足之处,在目前还没有更完善的斜管沉淀池计算方法之前,认为分离粒径可作为斜管沉淀计算的出发点。