高中物理—气体压强和体积的关系

高中物理—气体压强和体积的关系
高中物理—气体压强和体积的关系

气体压强和体积的关系

知识点讲解

知识点一:气体的状态参量

一、气体的状态参量

1、温度:温度在宏观上表示物体的________;在微观上是________的标志。

温度有________和_______两种表示方法,它们之间的关系可以表示为:T=________.而且ΔT=____ 绝对零度为______,即______K,是低温的极限,它表示所有分子都停止了热运动.可以无限接近,但永远不能达到。

2、体积:气体的体积宏观上等于_____________________,微观上则表示___________________

3、压强:气体的压强在宏观上是___________;微观上则是_______________________产生的。【答案】1、冷热程度;大量分子平均动能;摄氏温度;热力学温度;t+273K;Δt;-273.15;0K

2、盛装气体的容器的容积;气体分子所能到达的空间体积;

3、器壁单位面积上受到的压力;大量分子频繁碰撞器壁;

二、封闭气体压强的求解

1、系统处于平衡状态下气体压强的计算:

(1)液体封闭的气体压强的确定。

①平衡法:选与气体接触的液柱为研究对象进行受力分析,利用它的受力平衡,求出气体的压强。

②取等压面法:根据同种液体在同一水平液面处压强相等,在连通器内灵活选取等压面,由两侧压强相等建立方程求出压强。液体内部深度为h处的总压强为p=p0+ρgh。

例如,图中同一水平液面C、D处压强相等,则p A=p0+ρgh。

(2)固体(活塞或汽缸)封闭的气体压强的确定:由于该固体(活塞或汽缸)必定受到被封闭气体的压力,所以可通过对该固体进行受力分析,由平衡条件建立方程来找出气体压强与其他各力的关系。

2、加速运动系统中封闭气体压强的计算:

一般选与气体接触的液柱或活塞(或汽缸)为研究对象,进行受力分析,利用牛顿第二定律列方程求出封闭气体的压强。

如图所示,当竖直放置的玻璃管向上加速时,对液柱受力分析有: pS -p 0S -mg =ma ,S 为横截面积。 得0

()

m g a p p S

+=+

一、温度不变的条件下,一定质量的气体压强与体积的关系 1、玻意耳定律(等温变化)

一定质量的气体,在温度不变的情况下,它的压强跟体积成______;其数学表达式为_______________

2、等温变化的微观解释

一定质量的气体,温度保持不变时,分子的____________一定.在这种情况下,体积减小时,分子的____________增大,气体的____________增大.

【答案】反比;1122pV p V =;平均动能;密集程度;压强

二、利用实验定律及气态方程解决问题的基本思路

知识点二:气体压强与体积的关系

【练一练】如图,一汽缸水平固定在静止的小车上,一质量为m 、面积为S 的活塞将一定量的气体封闭在汽缸内,平衡时活塞与汽缸底相距L 。现让小车以一较小的水平恒定加速度向右运动,稳定时发现活塞相对于汽缸移动了距离d 。已知大气压强为p 0,不计汽缸和活塞间的摩擦,且小车运动时,大气对活塞的压强仍可视为p 0,整个过程中温度保持不变。求小车加速度的大小。

【难度】★★ 【答案】

0()

p Sd

m L d -

【解析】设小车加速度为a ,稳定时汽缸内气体的压强为p 1,活塞受到汽缸内外气体的压力分别为: F 1=p 1S ,F 0=p 0S

由牛顿第二定律得:F 1-F 0=ma

小车静止时,在平衡情况下,汽缸内气体的压强为p 0,由玻意耳定律得 p 1V 1=p 0V ,式中V =SL ,V 1=S (L -d ) 联立各式得0()p Sd

a m L d =-

一、气体压强和体积的关系的图像

类型 特点

举例

等温 过程

p -V

pV =C (其中C 为恒量),即pV 之积越大的等温线温度越高,线离原点越远

p -1

V

p =C 1V ,斜率k =C ,即斜率

越大,温度越高

说明:

1、反应了在等温情况下,一定质量的气体压强跟体积成反比的规律.

2、图线上的点,代表的是一定质量气体的一个状态.

3、这条曲线表示了一定质量的气体由一个状态变化到另一个状态的过程,这个过程是一个等温过程,因此这条曲线也叫等温线.

知识点三:气体压强和体积的关系的图像

二、气体状态变化的图像的应用技巧

(1)、明确点、线的物理意义:求解气体状态变化的图像问题,应当明确图像上的点表示一定质量的理想气体的一个平衡状态,它对应着三个状态参量;图像上的某一条直线段或曲线段表示一定质量的理想气体状态变化的一个过程。

(2)、明确斜率的物理意义

【练一练】下列图中,p表示压强,V表示体积,T为热力学温度,各图中正确描述一定质量的气体不是等温变化的是()

【难度】★

【答案】D

课堂练习

考点一:玻意耳定律及其应用

【例1】在光滑水平面上有一个内外壁都光滑的质量为M的气缸,气缸内有一质量为m的活塞,已知M>m.活塞密封一部分理想气体.现对气缸施加一个水平向左的拉力F(如图甲)时,气缸的加速度为a1,封闭气体的压强为p1,体积为V1;若用同样大小的力F水平向左推活塞(如图乙),此时气缸的加速度为a2,封闭气体的压强为p2,体积为V2。设密封气体的质量和温度均不变,则()

A.a1<a2,p1>p2,V1<V2

B.a1>a2,p1>p2,V1>V2

C.a1=a2,p1<p2,V1<V2

D.a1=a2,p1<p2,V1>V2

【难度】★★★

【答案】D

【例2】如图所示,密闭圆筒的中央有一个活塞,活塞两边封闭着两部分气体,它们的压强都是750mmHg 。现在用力把活塞向右移动,使活塞右边气体的体积变为原来的一半,那么活塞两边的压强差为多大?(假定气体温度不变)

【难度】★★ 【答案】1000mmHg

【解析】在分析气体的变化规律时,由于质量一定且温度不变可以分别利用玻意耳定律研究左、右两部分气体的等温变化。

左边:p 0V 0=p 1·32V 0,得p 1=2

3p 0=500 mmHg

右边:p 0V 0=p 2·1

2V 0,得p 2=2p 0=1 500 mmHg

活塞两边的压强差Δp =p 2-p 1=1 000 mmHg

【例3】一种水下重物打捞方法的工作原理如图所示。将一质量M =3×103 k g 、体积V 0=0.5 m 3的重物捆绑在开口朝下的浮筒上。向浮筒内充入一定量的气体,开始时筒内液面到水面的距离h 1=40 m ,筒内气体体积V 1=1 m 3。在拉力作用下浮筒缓慢上升,当筒内液面到水面的距离为h 2时,拉力减为零,此时气体体积为V 2,随后浮筒和重物自动上浮。求V 2和h 2 【难度】★★★ 【答案】2.5 m 3;10 m

【解析】当F =0时,由平衡条件得 Mg =ρg (V 0+V 2)① 代入数据得V 2=2.5 m 3②

设筒内气体初态、末态的压强分别为p 1、p 2,由题意得 p 1=p 0+ρgh 1③ p 2=p 0+ρgh 2④

在此过程中筒内气体温度和质量不变,由玻意耳定律得 p 1V 1=p 2V 2⑤

联立②③④⑤式,代入数据得h 2=10 m

【变式训练】

1、一个气泡由湖面下20 m 深处上升到湖面下10 m 深处,它的体积约变为原来体积的(温度不变)

A .3倍

B .2倍

C .1.5倍

D .0.7倍

【难度】★ 【答案】C

【解析】外界大气压相当于10 m 水柱产生的压强,对气泡p 1=3p 0,p 2=2p 0,由p 1V 1=p 2V 2知V 2=1.5V 1,故C 项正确。

2、如图所示,在一端封闭的玻璃管中,用一段水银将管内气体与外界隔绝,管口向下放置,若将管倾斜,待稳定后则呈现的物理现象是

( )(多选)

A .封闭端内气体的压强增大

B .封闭端内气体的压强减小

C .封闭端内气体的压强不变

D .封闭端内气体的体积减小

【难度】★★ 【答案】AD

【解析】玻璃管由竖直到倾斜,水银柱压强p h 减小,由p +p h =p 0知气体压强增大,再由玻意耳定律知其体积减小,故A 、D 正确。

3、容积V =20 L 的钢瓶充满氧气后,压强为p =30个大气压,打开钢瓶盖阀门,让氧气分别装到容积为V 0=5 L 的小瓶子中去,若小瓶子已抽成真空,分装到小瓶子中的氧气压强均为p 0=2个大气压,在分装过程中无漏气现象,且温度保持不变,那么最多可装的瓶数是

A .4瓶

B .50瓶

C .56瓶

D .60瓶

【难度】★ 【答案】C

【解析】设最多可装的瓶数为n ,由玻意耳定律有pV =p 0(V +nV 0), 所以n =pV -p 0V p 0V 0=30×20-2×202×5=56瓶

4、如图所示,质量为M 导热性能良好的气缸由一根平行于斜面的细线系在光滑斜面上。气缸内有一个质量为m 的活塞,活塞与气缸壁之间无摩擦且不漏气。气缸内密封有一定质量的理想气体.如果大气压强减小,温度不变,则

A .气体的体积减小

B .细线的拉力增大

C .气体的压强增大

D .斜面对气缸的支持力不变 【难度】★★ 【答案】D

【解析】原来对活塞受力分析,如果大气压强减小,温度不变,气体对外界做功,气体的体积增大,压强减小,选项AC 错误;对活塞和气缸整体分析受力,由平衡条件可知,细线的拉力不变,斜面对气缸的支持力不变,选项D 正确,B 错误。

5、如图所示,开口向上竖直放置的内壁光滑汽缸,其侧壁是绝热的,底部导热,内有两个质量均为m 的密闭活塞,活塞A 导热,活塞B 绝热,将缸内理想气体分成Ⅰ、Ⅱ两部分。初状态整个装置静止不动且处于平衡状态,Ⅰ、Ⅱ两部分气体的高度均为l 0,温度为T 0。设外界大气压强为p 0保持不变,活塞横截面积为S ,且mg =p 0S ,环境温度保持不变。求在活塞A 上逐渐添加铁砂,当铁砂质量等于2m 时,两活塞在某位置重新处于平衡,活塞A 下降的高度。 【难度】★★★ 【答案】9

10

l 0

【解析】对Ⅰ部分气体,初状态p 1=p 0+mg

S =2p 0

末状态p ′1=p 0+3mg

S

=4p 0

由玻意耳定律得:p 1l 0S =p ′1l 1S ,解得l 1=1

2l 0

对Ⅱ部分气体,初状态p 2=p 1+mg

S =3p 0

末状态p ′2=p ′1+

mg

S

=5p 0 由玻意耳定律得:p 2l 0S =p ′2l 2S 解得l 2=3

5

l 0

A 活塞下降的高度为:Δl =(l 0-l 1)+(l 0-l 2)=9

10l 0

考点二:图像问题

【例1】如图为一定质量理想气体的压强p 与体积V 关系图像,它由状态A 经等容过程到状态B ,再经等压过程到状态C 。设A 、B 、C 状态对应的温度分别为T A 、T B 、T C ,则下列关系式中正确的是

A .T A

B ,T B

C B .T A >T B ,T B =T C C .T A >T B ,T B

D .T A =T B ,T B >T C

【难度】★★ 【答案】C

【例2】如图所示,各实线分别表示一定质量的理想气体经历的不同状态变化过程,其中气体温度增大的过程为

( ) A .a →b B .b →a C .b →c

D .b →d

【难度】★★ 【答案】C

【变式训练】

1、如图为一定质量的气体的两条等温线,则下列关于各状态温度的说法正确的有 (

)(多选)

A .t A =t

B B .t B =t

C C .t C >t A

D .t D >t A

【难度】★ 【答案】ACD

2、氧气瓶在储存过程中,由于密封不严,出现缓慢漏气,其瓶内氧气的压强和体积变化如图中A 到B 所示,则瓶内氧气的温度(设环境温度不变) (

A .一直升高

B .一直下降

C .先升高后降低

D .不变

【难度】★★★ 【答案】D

【解析】易错选B ,错误原因是只简单地对A 、B 及A 到B 的过程进行分析后,作出各状态下的等温线,如图所示,从图中可以看出t A >t 1>t 2>t B ,从而误选B ,而忽略了只有一定质量的气体才满足t A >t 1>t 2>t B .

正确答案应为D 。密封不严说明漏气,说明气体质量变化,B 不正确;漏气缓慢进行,故氧气瓶中氧气可充分同外界进行热交换,隐含与外界“等温”。

3、一定质量的理想气体,经历一膨胀过程,这一过程可以用图上的直线ABC 来表示,在A 、B 、C 三个状态上,气体的温度T A 、T B 、T C 相比较,大小关系为 (

A .T

B =T A =T

C B .T A >T B >T C C .T B >T A =T C

D .T B

p

b

a

c d

【答案】C

【解析】由题图中各状态的压强和体积的值可知:p A V A=p C V C

T A=T C

4、如图所示,D→A→B→C表示一定质量的某种气体状态变化的一个过程,则下列说法正确的是

()

A.D→A是一个等温过程

B.A→B是一个等温过程

C.A与B的状态参量相同

D.B→C体积减小,压强减小,温度不变

【难度】★★

【答案】A

【解析】D→A是一个等温过程,A对;A、B两状态温度不同,A→B是一个等容过程(体积不变),B、C错;B→C,V增大,p减小,T不变,D错

考点三:等温变化的实验

【例1】某同学利用DIS实验系统,用同一个注射器在实验室前后做了两次验证波意耳定律,操作完全正确。

(1)根据实验数据却在p-V图上画出了两条不同双曲线,如图所示,造成这种情况的可能原因是哪些()(多选)

A.两次实验中空气质量不同

B.两次实验中温度不同

C.其中一次实验时活塞受到的摩擦力太大

D.其中的一次在实验过程中发生了漏气现象

(2)实验中为了保持封闭气体的温度不变,采取的主要措施比较合理的是下列哪些项()(多选)

A.在活塞上涂上润滑油,保持良好的密封性

B.推拉活塞时要缓慢

C.不要用手直接握在注射器上

D.实验前注射器内要吸入尽量多的空气

【难度】★★

【答案】(1)AB(2)BC

【例2】如图所示,注射器连接着装有一定水的容器。初始时注射器内气体体积V1,玻璃管内外液面等高。将注射器内气体全部压入容器中后,有体积V2的水被排出流入量筒中,此时水充满了细玻璃管左侧竖直部分和水平部分。拉动活塞,使管内的水回流到容器内且管内外液面仍等高,最后注射器内气体体积V3,从管内回流的水体积为V4。整个过程温度不变,则V3_____V4,V1_____V2+V3.(选填>,<或=)

【难度】★★★

【答案】>;=

【解析】把注射器内的气体压入容器时,气体的压强变大,总体积变小,流出水的体积小于注射器内气体的体积V1>V2

拉动活塞,使管内的水回流到容器内时,容器(包括注射器)内气体压强变小,体积变大,注射器气体体积大于回流的水的体积V3>V4

管内的水回流到容器内且管内外液体仍等高,压强不变,气体总体积不变,则V1=V2+V3

【变式训练】

1、“用DIS研究温度不变时,一定质量的气体压强与体积的关系”实验。

(1)实验中不能用手握住注射器的气体部分,这是为了______________________________。(2)(多选)实验中获得了多组(p、V)值,然后以V为纵坐标,1/p为横坐标,画出了V-1/p图线是近似一条直线,将之延长,其延长线不通过坐标原点,而交于横轴上,如图所示,则不可能的原因是()(多选)

A.注射器漏气

B.各组(V,1/p)取值范围太小

C.实验时用手握住注射器而未能保持温度不变

D.注射器和压强传感器的连接部分的管中的气体体积未计入气体体积

【难度】★★

【答案】(1)保持气体温度不变(2)ABC

2、在“研究一定质量理想气体在温度不变时,压强和体积的关系”实验中。某同学按如下步骤进行实验:

①将注射器活塞移动到体积适中的V0位置,接上软管和压强传感器,通过DIS系统记录下此时的体积V0与压强p0。

②用手握住注射器前端,开始缓慢推拉活塞改变气体体积。

③读出注射器刻度表示的体积V,通过DIS系统记录下此时的V与压强p。

④重复②③两步,记录5组数据。作p-1/V图。

(1)在上述步骤中,该同学对器材操作的错误是:。因为该操作通常会影响气体的(填写状态参量)。 (2)若软管内容积不可忽略,按该同学的操作,最后拟合出的p -1/V 直线应是图a 中的______。(填写编号)

(3)由相关数学知识可知,在软管内气体体积ΔV 不可忽略时,p -1/V 图像为双曲线,试用玻意耳定律分析,该双曲线的渐近线(图b 中的虚线)方程是p =________。(用V 0、p 0、ΔV 表示) 【难度】★★

【答案】(1)用手握住注射器前端,温度 (2)1

(3)p 0(V 0+ΔV )/ΔV

1、一根粗细均匀的玻璃管,形状如图所示,管的两端都是开口的,右边U 形管部分盛有水银,两边水银是齐平的,把左边开口向下的玻璃管竖直插入水银中,使管口在水银面之下8cm ,这时进入左管中水银柱高4cm .如果在左管未插入水银槽前,先把右边开口B 封闭,再把左管插入水银槽中,使左管管口A 在水银面下7cm 处,这时进入管中水银柱高为3cm ,求左管在插入水银槽前右边管中空气柱长度为多长?(已知外界大气压p 0=76cmHg ,温度不变)

【难度】★★★ 【答案】39cm

【解析】第一次,研究左管:004(2)p L p L =+-左左() 76=80160L L -左左,40cm L =左

第二次,先研究左边,设左管中液面下降x

76=(3764L L x -++左左)(), 解得x =1cm ,

再研究右管:又因为278cmHg p p =-=右左

76=78(1L L -右右)

解得39cm L =右

挑战自我

p

p

图a 图b

1

2

3

2、容积为5L 的气缸内盛有压强为一个大气压的气体,现用一抽气容积为0.1升的抽气同进行抽气,为了使其压强减小一半,需抽气多少次? 【难度】★★★ 【答案】35次

【解析】设气缸容积为V ,原先压强为P 0,气体质量为m 0,抽气筒容积为V 0,当抽第一次时,质量为m 0的气体将均匀分布在(V +V 0)的空间里,由玻意耳等温定律的P 0V =P 1(V +V 0),所以气体

压强为1

00V

P P V V =+ 抽第二次时,质量为m 1的气体将均匀分布在(V +V 0)的空间里,由玻意耳定律得P 1V =P 2(V +V 0),所以气缸内气体压强为221000

()V V

P P P V V V V =

=++ 在抽了n 次后,气缸内留下气体的压强为,00

()n n V

P P V V =+ 所以051

()50.12

n n P P ==+,所以n =35次

3、如图所示,把上端A 封闭,下端B 开口的玻璃管插入水中,排出部分空气后放手,玻璃管可以竖直浮在水中。设玻璃管的质量m =40g ,横截面积S =2cm 2,水面以上部分长度h =1cm ,大气压强p 0=105Pa ,玻璃管壁厚度不计,管内空气质量不计。 (1)求玻璃管内外水面的高度差h 1;

(2)用手拿住玻璃管并缓慢地把它压人水中,当管的A 端在水面下超过某一深度时,放手后玻璃管既不下沉也不浮起,求这个深度

(3)如果玻璃管由于某种扰动偏离了(2)中的深度,它将怎样运动?

【难度】★★★

【答案】(1)0.5m (2)0.52m (3)玻璃管如果向下偏离,玻璃管将一直沉到水底;如果向上偏离,玻璃管将一直浮到水面上

【解析】(1)玻璃管静止,故玻璃管受到的浮力等于重力1gSh mg ρ=,得到 14

0.0410

m=0.5m 100010210mg h gS ρ-?=

=??? (2)玻璃管悬浮,设管的A 端距水面H ,玻璃管中空气长度为h 2 对试管受力分析2gSh mg ρ=,20.5m h =

以管内气体为研究对象

(如图甲)初状态:101P P gh ρ=+,11()V S h h =+ 末状态:202()P P g H h ρ=++,22=V h S

整个过程等温变化1122PV PV =得01022()()[()]P gh h h S P g H h h S ρρ++=++ 得H =0.52m

(3)玻璃管如果向下偏离,气体压强变大,体积变小,所受浮力变小,玻璃管将一直沉到水底;如果向上偏离,变化恰好相反,玻璃管将一直上浮直到漂浮在水面上。

1、利用气体实验定律解题的步骤是什么?

2、对于打气的问题,求解过程中要注意哪些问题?

3、如何通过p —V 图判断p 、V 、T 的变化情况?

1、如图所示,某种自动洗衣机进水时,与洗衣缸相连的细管中会封闭一定质量的空气,通过压力传感器感知管中的空气压力,从而控制进水量.设温度不变,洗衣缸内水位升高,则细管中被封闭的空气

A .体积不变,压强变小

B .体积变小,压强变大

C .体积不变,压强变大

D .体积变小,压强变小 【难度】★

回家作业

课堂总结

【答案】B

【解析】细管中封闭的气体,可以看成是一定质量的理想气体,洗衣缸内水位升高,气体压强增大,因温度不变,做等温变化,由玻意耳定律pV =C 得,气体体积减小,B 选项正确.

2、如图所示,将一只倒置的试管竖直地插入容器内,试管内原有的空气被压缩,此时,试管内外水面的高度差为h ,若使试管插入水中的深度增大一些,则试管内外水面的高度差将 (

A .增大

B .减少

C .保持不变

D .无法确定

【难度】★ 【答案】A

3、如图所示,一汽缸竖直倒放,汽缸内有一质量不可忽略的活塞,将一定质量的理想气体封在汽缸内,活塞与汽缸壁无摩擦,气体处于平衡状态,现保持温度不变把汽缸稍微倾斜一点,在达到平衡后,与原来相比,则 (

)(多选)

A .气体的压强变大

B .气体的压强变小

C .气体的体积变小

D .气体的体积变大 【难度】★★ 【答案】AC

【解析】汽缸竖直时,取活塞为研究对象,设大气压强为p 0,有p 1S +mg =p 0S p 1=p 0-mg S

汽缸与竖直方向夹角为θ时,沿汽缸壁方向分析活塞受力,则p 2S +mg cos θ=p 0S 则p 2=p 0-mg cos θ

S

可见p 2>p 1,A 正确,B 错误;又因气体温度不变,故气体体积一定变小,C 正确,D 错误.

4、空气压缩机的储气罐中储有1.0 atm 的空气6.0 L ,现再充入1.0 atm 的空气9.0 L 。设充气过程为等温过程,空气可看作理想气体,则充气后储气罐中气体压强为

( ) A .2.5 atm

B .2.0 atm

C .1.5 atm

D .1.0 atm

【难度】★★ 【答案】A

【解析】初状态:p 1=1.0 atm ,V 1=(6.0+9.0)L =15.0 L 末状态:p 2,V 2=6.0 L

根据玻意耳定律p 1V 1=p 2V 2得p 2=p 1V 1

V 2

,代入数据得p 2=2.5 atm ,故A 项正确,B 、C 、D 项均错。

5、如图所示是某气体状态变化的p -V 图象,则下列说法中正确的是

)(多选)

A .气体作的是等温变化

B .从A 至B 气体的压强一直减小

C .从A 至B 气体的体积一直增大

D .气体的三个状态参量一直都在变 【难度】★ 【答案】BCD

7、如图所示,一定质量的空气被水银封闭在静置于竖直平面的U 形玻璃管内,右管上端开口且足够长,右管内水银面比左管内水银面高h ,能使h 变大的原因是 (

)(多选) A .环境温度升高 B .大气压强升高 C .沿管壁向右管内加水银 D .U 形玻璃管自由下落 【难度】★★ 【答案】ACD

【解析】对于左端封闭气体,温度升高,由理想气体状态方程可知:气体发生膨胀,h 增大,故A 对.大气压升高,气体压强将增大,体积减小,h 减小,故B 错.向右管加水银,气体压强增大,内、外压强差增大,h 将增大,所以C 对.当管自由下落时,水银不再产生压强,气压压强减小,h 变大,故D 正确。

8、粗细均匀的玻璃棒,一端封闭,长为12cm ,一个人手持玻璃管开口向下潜入水中,当潜到水下某深度时看到水进入玻璃管口2cm ,求人潜入水中的深度。(取水面上大气压强为p 0=1.0×105Pa ,g =10 m/s 2) 【难度】★★ 【答案】2 m

【解析】确定研究对象为被封闭的一部分气体,玻璃管下潜的过程中气体的状态变化可视为等温过程。设潜入水下的深度为h ,玻璃管的横截面积为S ,气体的初末状态参量分别为 初状态:p 1=p 0,V 1=12S 末状态:p 2=p 0+ρgh ,V 2=10S 由玻意耳定律:p 1V 1=p 2V 2, 得:p 0p 0+ρgh =10S 12S

解得h =2 m

9、为适应太空环境,去太空旅行的航天员都要穿航天服.航天服有一套生命系统,为航天员提供合

适的温度、氧气和气压,让航天员在太空中如同在地面上一样.假如在地面上航天服内气压为1.0×105Pa ,气体体积为2 L ,到达太空后由于外部气压低,航天服急剧膨胀,内部气体体积变为4 L ,使航天服达到最大体积.若航天服内气体的温度不变,将航天服视为封闭系统。 (1)求此时航天服内的气体压强;

(2)若开启航天服封闭系统向航天服内充气,使航天服内的气压恢复到9.0×104 Pa ,则需补充1.0×105 Pa 的等温气体多少升? 【难度】★★★

【答案】(1)5.0×104 Pa (2)1.6 L 【解析】(1)航天服内气体经历等温过程, p 1=1.0×105 Pa ,V 1=2 L ,V 2=4 L 由玻意耳定律p 1V 1=p 2V 2 得p 2=5.0×104 Pa

(2)设需要补充的气体体积为V ,将补充的气体与原航天服内气体视为一个整体,充气后的气压p 3=9.0×104 Pa

由玻意耳定律p 1(V 1+V )=p 3V 2 得V =1.6 L

10、如图所示,一定质量的气体放在体积为V 0的导热容器中,一体积不计的光滑活塞C 将容器分成A 、B 两室,B 室的体积是A 室的两倍,A 室连接一“U ”形细管,细管两边水银柱高度差为76cm.,B 室连接有一阀门K ,可与大气相通(外界大气压等于76cmHg ,细管内气体体积忽略不计)。现将阀门K 打开,求:

(1)最终A 室内气体的体积;

(2)A 室内气体压强如何变化?从微观上解释压强变化的原因 【难度】★★

【答案】(1)2V 03(2)减小,原因见解析

【解析】(1)A 室气体等温变化.

p A 0=2×76 cmHg ,V A 0=V 03,p A =76 cmHg ,最终体积设为V A ,

由玻意耳定律得p A 0V A 0=p A V A 解得V A =2V 0

3

(2)减小。A 室内气体等温变化,气体分子平均动能不变,气体膨胀,体积增大,分子密集程度减小,气体压强减小.

12、如图甲所示是一种研究气球的体积和压强的变化规律的装置。将气球、压强传感器和大型注射器用T 型管连通。初始时认为气球内无空气,注射器内气体体积V 0,压强p 0。T 型管与传感器内少量气体体积可忽略不计。缓慢推动注射器,保持温度不变,装置密封良好。

(1)该装置可用于验证________定律。(填写气体实验定律名称)

(2)将注射器内气体部分推入气球,读出此时注射器内剩余气体的体积为2

3 V 0,压强传感器读数为

p 1,则此时气球体积为___________。

(3)继续推动活塞,多次记录注射器内剩余气体的体积及对应的压强,计算出对应的气球体积,得到如图乙所示的“气球体积和压强”关系图。根据该图像估算:若初始时注射器内仅有体积为0.5V 0、压强为p 0的气体。当气体、部压入气球后,气球内气体的压强将变为________p 0。(保留3位小数)

【难度】★★

【答案】(1)玻意耳(2)00

01

23PV V P (3)1.027

1.010 p

1.000 p 1.020 p 1.030 p 1.040 p 1.050

p 0 气球

图乙

气球

图甲

气体的压强跟温度的关系

三、气体的压强跟温度的关系 在日常生活中,我们常会遇到这样一些情况:夏天给旧的自行车车胎打气,不宜打得很足,不然,在太阳下骑行,车胎容易爆裂;卡车在运输汽水等饮料时,由于太阳曝晒,一些质地较差的汽水瓶往往会爆裂。这些现象都表明气体压强的大小跟温度的高低有关。 我们可以用实验的方法来研究一定质量的气体,在体积不变时,它的压强跟温度的关系。 查理定律 通过实验探索,我们初步得出一定质量气体在体积不变时,它的压强随着温度的升高而增大的结论。从实验数据描绘出的p -t 图象,基本上是一条倾斜的直线(图2-7),但是这样还没有反映出压强和温度间确切的关系。 最早定量研究气体压强跟温度的关系的是法国物理学家查理(1746-1823)。我们为了精确测量一定质量气体在体积不变时,不同温度下的压强,采用了图2-8所示的实验装置。容器A 中有一定质量的空气,空气的温度可由温度计读出,空气的压强可由跟容器A 连在一起的水银压强计读出。但温度升高后,容器A 中的空气会膨胀,由于压强计两臂间是用橡皮管相连的,它的右臂可以上下移动。移上时,受热膨胀后的空气就能被压缩到原来的体积。 控制变量法 自然界发生的各种现象,往往是错综复杂的。决定某一个现象的产生和变化的因素常常也很多。为了弄清事物变化的原因和规律,必须设法把其中的一个或几个因素用人为的方法控制起来,使它保持不变,然后来比较、研究其他两个变量之间的关系,这是一种研究问题的科学方法。 例如物体吸收热量温度会升高,温度升高多少是由多个因素决定的,跟吸收的热量、物体的质量以及组成物体的物质性质有关。在研究时,可以先使一些因素保持不变,如在物质 相同、质量相同的情况下,观察物体温度升高跟所吸收热量的关系;接着再研究同种物质, 图2-8 图2-7

标准大气的高度和气温、气压的关系

标准大气的高度和气温、气压的关系 工作中经常用到大气资料,总结如下 这里所说的标准大气指国际民航组织采用的“1964,ICAO标准大气”。在海拔32公里以下,它与“1976,U.S.标准大气”相同。近地面(32公里以下)大气气温的变化为: ---地面:气温的15.0℃,气压P=1013.25mb ---地面至海拔11公里的气温变化率:–6.5℃/公里 在11公里的界面上: 气温为–56.5℃气压P=226.32mb 海拔11—20公里的气温变化率:0.0℃/公里 海拔20—32公里的气温变化率:+1.0/公里 更详细的数据可以参考GJB365.1-87 《北半球标准大气(-2~80公里)》给出的大气参数。 气压的国际单位制是帕斯卡(或简称帕,符号是Pa),泛指是气体对某一点施加的流体静力压强,来源是大气层中空气的引力,即为单位面积上的大气压力。在一般气象学中人们用千帕斯卡(KPa)、或使用百帕(hPa)作为单位。测量气压的仪器叫气压表。其它的常用单位分别是:巴(bar,1bar=100,000帕)和厘米水银柱(或称厘米汞柱)。在海平面的平均气压约为101.325千帕斯卡(76厘米水银柱),这个值也被称为标准大气压。另外,在化学计算中,气压的国际单位是“atm”。一个标准大气压即是1atm。1个标准大气压等于101325帕,1.01325巴,或者76厘米水银柱。 大气压会随着高度的提升而下降,其关系为每提高12米,大气压下降1mm-Hg(1毫米水银柱),或者每上升9米,大气压降低100Pa。 下图给出了-0.5-20kM的大气温度、密度、压力分布图。从图中可以看出温度在0-11km成线性关系,压力和温度在0-3km(甚至5km)都成线性关系。

高中物理-封闭气体压强的计算

难点突破: 用气体实验定律解题的思路 1基本解题思路 (1)选取研究对象:它可以是由两个或多个物体组成的系统,也可以是全部气体和某一部分气体(状态变化时质量必须一定). (2)确定状态参量:找出状态变化前后的p、V、T数值或表达式. ⑶认识变化过程:除题设条件已指明外,常需通过研究对象跟周围环境的相互关系来确定. (4)列出相关方程. 圭寸闭气体压强的计算 1.系统处于平衡状态的气体压强的计算方法 (1)液体圭寸闭的气体压强的确定 ①平衡法:选与气体接触的液柱为研究对象进行受力分 析,利用它的受力平衡,求出气体的压强. ②取等压面法:根据同种液体在同一水平液面处压强相等, 在连通器内灵活选取等压面,由两侧压强相等建立方程求出 压强.液体内部深度为h处的总压强p= p o+ p gh 例如,图中 同一水平液面C、D处压强相等,则P A= p o + p gh (2)固体(活塞或汽缸)封闭的气体压强的确定:由于该固体 必定受到被封闭气体的压力,可通过对该固体进行受力分 析,由平衡条件建立方程来找出气体压强与其他各力的关系.

2?加速运动系统中封闭气体压强的计算方法 一般选与气体接触的液柱或活塞、汽缸为研究对象,进行受力分析,利用牛顿第二定律列方程求出封闭气体的压强. 如图所示,当竖直放置的玻璃管向上加速时,对液柱受力分析有:pS— p o S- m (g + a) mg= ma, S为玻璃管横截面积,得p= p o+ S . 3 ?分析压强时的注意点 (1)气体压强与大气压强不同,大气压强由于重力而产生,随高度增大而减小, 气体压强是由大量气体分子频繁碰撞器壁而产生的,大小不随高度而变化;封闭气体对器壁的压强处处相等. (2)求解液体内部深度为h处的总压强时,不要忘记液面上方气体的压强. 囱口用气体实验定律解题的思路 1 ?基本解题思路 (1)选取研究对象:它可以是由两个或多个物体组成的系统,也可以是全部气 体和某一部分气体(状态变化时质量必须一定). (2)确定状态参量:找出状态变化前后的p、V、T数值或表达式. (3)认识变化过程:除题设条件已指明外,常需通过研究对象跟周围环境的相互关系来确定. (4)列出相关方程. 2.对两部分气体的状态变化问题总结 多个系统相互联系的定质量气体问题,往往以压强建立起系统间的关系,各系统独立进行状态分析,要确定每个研究对象的变化性质,分别应用相应的实验定律,并充分应用各研究对象之间的压强、体积、温度等量的有效关联.若活塞可自由移动,一般要根据活塞平衡确定两部分气体的压强关系. □口变质量气体问题的分析方法 这类问题的关键是巧妙地选择研究对象,把变质量转化为定质量问题.常见变质量

气体的压强体积温度间的关系

高二新课固体液体和气体夏令营2006-08-21 §12.9 气体的压强、体积、温度间的关系 要点:巩固气体压强的微观解释 知道气体压强、体积和温度之间的关系 能用气体参量来叙述生活实例中的变化 教学难点:气体压强、体积和温度三者之间的制约关系 考试要求:高考Ⅰ(气体的状态和状态参量,气体的体积、压强、温度之间的关系),会考 课堂设计:学生已涉及到了气体压强的微观解释,本节可进一步从撞击、作用力、频繁等因素将气体压强转到宏观的决定参量温度和体积上来,并使学生认识到参量之 间是有联系和制约的,也能从一些生活事例中用气体状态参量的眼光观察和解 释。为降低难度,分别将相互关系分立讨论,再通过小结得到实用的定论。为 应付一般习题中的参量定性讨论,可介绍(PV/T=常量)式。 解决难点:在复习气体压强微观意义的基础上,将微观量转化为宏观的参量,继而结合学生的一些生活经验得出三参量之间的关系,并再在生活实例中应用检验,作为 定性了解可依据课本不再展开。 学生现状:用气体压强的微观意义来理解与温度和体积之间的关系有困难; 用微观意义来理解参量的变化尚不适应; 用微观意义定性知道生活实例不知所措。 培养能力:分析综合能力,理解推理能力 思想教育:唯物主义世界观 课堂教具:针筒,气球 一、引入 【问】气体压强是如何产生的? 分析:大量气体分子频繁的碰撞器壁而产生的 【问】影响气体压强大小的因素有哪些? 分析:温度、体积 那么气体的压强与气体的温度、体积之间有什么样的定量关系存在呢?这就是今天这堂课我们要解决的问题。 二、气体压强和体积的关系 学生阅读《气体压强和体积的关系》部分 我们研究的对象是什么?实验的先决条件是什么?得出了什么结论? 分析:我们研究的对象是密封在注射气内质量一定的气体;实验的先决条件是:气体的温度不变。实验结论:体积减小时,压强增大;体积增大时,压强减小。 【问】用气体分子热运动的理论即从微观方面解释这个实验结论。 分析:温度不变,分子的平均动能不变,质量一定,体积减小,单位体积内的分子数增多,即分子越密集,所以气体压强增大。 【问】如果压缩气体的同时,温度降低,还一定是“体积越小,压强越大”吗? 分析:温度降低,分子平均动能减小,所以压强不一定增大。 结论:一定质量的气体,温度不变,体积减小,压强增大。PV=常量

高中物理气体压强

气体压强计算问题归类例析 一、液体封闭的静止容器中气体的压强 1. 知识要点 (1)液体在距液面深度为h 处产生的压强:P gh h =ρ(式中ρ表示液体的密度)。 (2)连通器原理:在连通器中,同种液体的同一水平面上的压强相等; 帕斯卡定律(Pascal law ) 加在被封闭液体上的压强大小不变地由液体向各个方向传递。 2. 典型 例1 如图1、2、3、4玻璃管中都灌有水银,分别求出四种情况下被封闭气体A 的压强P A (设大气压强P cmHg 076=)。 解析:在图1中,液体在C 点产生的压强为P cmHg 15=,故C 点的压强为P P P C A =+1。根据连通器原理可知,P C 与管外液面处的压强相等,等于大气压强即P P C =0。故P P P cmHg A =-=-=0176571()。

在图2中,左管中与封闭气体接触液面处的压强为P A 。由连通器原理,右管中与上述液面处在同一水平面的液面处的压强也等于P A 。而C 点到该面的液体产生的压强为P 2=10cmHg ,故C 点的压强P P P C A =+2。C 点的压强就是大气压强P 0,所以P P P A =-02=()761066-=cmHg 。 在图3中,液柱在C 点产生的压强P cmHg 3106053=?=sin ,故C 点的压强为P C =P A +P 3。而C 点的压强又等于大气压强P 0,故P P P cmHg A =-=-037653()。 在图4中,右管液体在C 点产生的压强P h cmHg 42=,故C 点的压强P P P C =+04。左管液体对同一水平面处液面的压强为P h c m H g 51=。由连通器原理可知,P P P P A +=+504,解得P P h h A =+-021。 二、活塞封闭的静止容器中气体的压强 1. 解题的基本思路 (1)对活塞(或气缸)进行受力分析,画出受力示意图; (2)列出活塞(或气缸)的平衡方程,求出未知量。 注意:不要忘记气缸底部和活塞外面的大气压。 2. 典例 例2 如图5所示,一个横截面积为S 的圆筒形容器竖直放置,金属圆板A 的上表面是水平的,下表面是倾斜的,下表面与水平面的夹角为θ,圆板的质量为M 。不计圆板与容器内壁之间的摩擦。若大气压强为P 0,则被圆板封闭在容器中的气体压强P 等于( ) A. P Mg S 0+cos θ B. P Mg S 0cos cos θθ+ C. P Mg S 02+cos θ D. P Mg S 0+

大气压与温度的关系

大气压与温度的关系 大气压:和高度、湿度、温度的变化成反比--注意,这里说的是大气压,而非气压! 详细说明如下: 高度越高--空气越稀薄; 湿度越大--空气中的水分越多,尔水的分子量比空气的混合分子量小,水气的增加,等于稀释了空气; 温度越高--虽然增加了空气分子的对撞机会,但是空气迅速膨胀,对流,尔引起空气变得稀薄,其增加的对撞能量远小于空气变稀薄减小的对撞能量,自然空气压力减小。 有关常识如下: 定义: 1.亦称“大气压强”。重要的气象要素之一。由于地球周围大气的重力而产生的压强。其大小与高度、温度等条件有关。一般随高度的增大而减小。例如,高山上的大气压就比地面上的大气压小得多。 在水平方向上,大气压的差异引起空气的流动。 2.压强的一种单位。“标准大气压”的简称。科学上规定,把相当于760mm 高的水银柱(汞柱)产生的压强或1.01×十的五次方帕斯卡叫做1标准大气压,简称大气压。 地球的周围被厚厚的空气包围着,这些空气被称为大气层。空气可以像水那样自由的流动,同时它也受重力作用。因此空气的内部向各个方向都有压强,这个压强被称为大气压。在1643年意大利科学家托里拆利在一根80厘米长的细玻璃管中注满水银倒臵在盛有水银的水槽中,发现玻璃管中的水银大约下降了4厘米后就不再下降了。

这4厘米的空间无空气进入,是真空。托里拆利据此推断大气的压强就等于水银柱的长度。后来科学家们根据压强公式准确地算出了大气压在标准状态下为1.013×105Pa。由于当时的信息交流不畅意大利和法国对大气压实验研究结果并没有被全欧洲所熟知,所以在德国对大气压的早期研究是独立进行的。1654年奥托格里克在德国马德堡作了著名的马德堡半球实验,有力的验证了大气压强的存在,这让人们对大气压有了深刻的认识。在那个时期,奥托格里克还做了很多验证大气压存在且很大的实验,也正是在这一时候他第一次听到托里拆利早在11年前已测出了大气压。 标准大气压 1标准大气压=760毫米汞柱=76厘米汞柱=1.013×10的5次方帕斯卡=10.336米水柱。 标准大气压值及其变迁 标准大气压值的规定,是随着科学技术的发展,经过几次变化的。 最初规定在摄氏温度0℃、纬度45°、晴天时海平面上的大气压强为标准大气压,其值大约相当于76厘米汞柱高。后来发现,在这个条件下的大气压强值并不稳定,它受风力、温度等条件的影响而变化。 于是就规定76厘米汞柱高为标准大气压值。但是后来又发现76厘米汞柱高的压强值也是不稳定的,汞的密度大小受温度的影响而发生变化;g值也随纬度而变化。测量大气压的仪器叫气压计。 为了确保标准大气压是一个定值,1954年第十届国际计量大会决议声明,规定标准大气压值为 1标准大气压=101325牛顿/米2,即为101325帕斯卡(Pa)大气压的变化温度、湿度与大气压强的关系 湿度越大大气压强越大 初中物理告诉我们:“大气压的变化跟天气有密切的关系.一般地说,晴天的大气压比阴天高,冬天的大气压比夏天高.”对这段叙述,就是老师也往往不

高中物理:封闭气体压强的计算

专题:密闭气体压强得计算 一、平衡态下液体封闭气体压强得计算 1、理论依据 ①液体压强得计算公式p= ρgh。 ②液面与外界大气相接触。则液面下h处得压强为p= p0 + ρgh ③帕斯卡定律:加在密闭静止液体(或气体)上得压强能够大小不变地由液体(或气体)向各个方向传递 (注意:适用于密闭静止得液体或气体) ④连通器原理:在连通器中,同一种液体(中间液体不间断)得同一水平面上得压强就是相等得。 2、计算得方法步骤(液体密封气体) ①选取假想得一个液体薄片(其自重不计)为研究对象 ②分析液体两侧受力情况,建立力得平衡方程,消去横截面积,得到液片两面侧得压强平衡方程 ③解方程,求得气体压强 例1:试计算下述几种情况下各封闭气体得压强,已知大气压P0,水银得密度为ρ,管中水银柱得长度均为L。均处于静止状态 θθ 8 练1:计算图一中各种情况下,被封闭气体得压强。(标准大气压强p0=6cmHg,图中液体为水银 图一 练2、如图二所示,在一端封闭得U形管内,三段水银柱将空气柱A、B、C封在管中,在竖直放置时,AB两气柱得下表面在同一水平面上,另两端得水银柱长度分别就是h1与h2,外界大气得压强为p0,则A、B、C三段气体得压强分别就是多少? 、练3、如图三所示,粗细均匀得竖直倒置得U型管右端封闭,左端开口插入水银槽中,封闭着两段空气柱1与2。已知h1=15cm,h2=12cm,外界大气压强p0=76cmHg,求空气柱1与2得压强。 二、平衡态下活塞、气缸密闭气体压强得计算 1。解题得基本思路 (1)对活塞(或气缸)进行受力分析,画出受力示意图; (2)列出活塞(或气缸)得平衡方程,求出未知量、 注意:不要忘记气缸底部与活塞外面得大气压。 例2 如图四所示,一个横截面积为S得圆筒形容器竖直放置,金属圆板A得上表面就是水平得,下表面就是倾斜得,下表面与水平面得夹角为θ,圆板得质量为M。不计圆板与容器内壁之间得摩擦。若大气压强为P0,则被圆板封闭在容器中得气体压强P等于( ) A. B。C。 D、 图四 练习4:三个长方体容器中被光滑得活塞封闭一定质量得气体。如图五所示,M为重物质量,F就是外力,p0为大气压,S为活塞面积,G为活塞重,则压强各为: 练习5、如图六所示,活塞质量为m,缸套质量为M,通过弹簧吊在天花板上,气缸内封住了一定质量得空

高中物理热学 理想气体状态方程 试题及答案

高中物理热学-- 理想气体状态方程 试题及答案 一、单选题 1.一定质量的理想气体,在某一平衡状态下的压强、体积和温度分别为p 1、V 1、T 1,在另一平衡状态下的压强、体积和温度分别为p 2、V 2、T 2,下列关系正确的是 A .p 1 =p 2,V 1=2V 2,T 1= 21T 2 B .p 1 =p 2,V 1=21 V 2,T 1= 2T 2 C .p 1 =2p 2,V 1=2V 2,T 1= 2T 2 D .p 1 =2p 2,V 1=V 2,T 1= 2T 2 2.已知理想气体的内能与温度成正比。如图所示的实线为汽缸内一定 质量 的理想气体由状态1到状态2的变化曲线,则在整个过程中汽缸内气体的 内能 A.先增大后减小 B.先减小后增大 C.单调变化 D.保持不变 3.地面附近有一正在上升的空气团,它与外界的热交热忽略不计.已知大气压强随高度增加而降低,则该气团在此上升过程中(不计气团内分子间的势能) A.体积减小,温度降低 B.体积减小,温度不变 C.体积增大,温度降低 D.体积增大,温度不变 4.下列说法正确的是 A. 气体对器壁的压强就是大量气体分子作用在器壁单位面积上的平均作用力 B. 气体对器壁的压强就是大量气体分子单位时间作用在器壁上的平均冲量 C. 气体分子热运动的平均动能减少,气体的压强一定减小 D. 单位面积的气体分子数增加,气体的压强一定增大 5.气体内能是所有气体分子热运动动能和势能的总和,其大小与气体的状态有关,分子热运动的平均动能与分子间势能分别取决于气体的 A .温度和体积 B .体积和压强 C .温度和压强 D .压强和温度 6.带有活塞的汽缸内封闭一定量的理想气体。气体开始处于状态a ,然后经过过程ab 到达状态b 或进过过程ac 到状态c ,b 、c 状态温度相同,如V-T 图所示。设气体在状态b 和状态c 的压强分别为Pb 、和PC ,在过程ab 和ac 中吸收的热量分别为Qab 和Qac ,则 A. Pb >Pc ,Qab>Qac B. Pb >Pc ,QabQac D. Pb

气体压强与温度的关系

气体压强与温度的关系 第六章c 一、教学任务分析 本节内容是学生在学习了分子动理论和波意耳定律等知识后,对气体状态变化规律的研究过程和方法有一定了解的基础上,进一步研究气体的等容变化过程及其规律。从科学研究方法来看,热学作为一个独立的知识体系,它在继承力学的许多研究方法的同时,又增添一些新的研究方法——外推法,并导致热力学温标的创立;建立微观气体模型对宏观规律获得本质的认识等。 学习本节内容需要理解气体的体积、压强和温度这三个状态参量和气体的状态变化之物理意义,并且要了解探究气体状态变化规律常用的方法——控制变量法和使用DIS实验器材的一些必备技能。 通过气球加热后破裂等情景引入,使学生定性认识到一定质量的气体在体积不变时其压强变化与温度变化的趋向相同。 通过对不同种类、不同体积的气体进行DIS实验探究,在计算机上得到p-t图像,并要求学生作图,然后通过对p -t图像的分析、讨论,理解压强随温度变化是线性的关系和图线在纵轴与横轴上截距的物理意义。

应用外推法合理外推图线,创建热力学温标,并得到查理定律。 本节课的学习体现出以学生为学习的主体,在获得知识的同时,感受科学探究的过程与方法,学会应用DIS实验研究实际问题,应用物理思维方法进行推理分析、得出结论,促使学生形成乐于探究的情感。 二、教学目标 .知识与技能 知道一定量的气体在体积不变的情况下压强和温度间关系的图象表达,即p-t图像和p-T图像。 知道热力学温标,知道绝对零度的物理意义。 理解查理定律。 学会用DIS实验器材完成一定量的气体在体积不变的情况下压强和温度间关系的 探究任务,并正确处理实验数据。 .过程与方法 运用控制变量的方法进行DIS实验。 运用外推法建立热力学温标,并在对p-T图像分析的基础上得出查理定律。 .情感、态度价值观 领略物理思维方法在探究、分析推理过程中的作用。 由日常生活中的气体等容变化现象养成观察身边的物

(完整word版)高中物理选修3-3气体计算题

高中物理选修3-3 气体计算题 1.[2016·全国Ⅲ,33(2),10分]一U 形玻璃管竖直 放置,左端开口,右端封闭,左端上部有一光滑的轻活塞.初始时,管内汞柱及空气柱长度如图所示.用力向下缓慢推活塞,直至管内两边汞柱高度相等时为止.求此时右侧管内气体的压强和活塞向下移动的距离.已知玻璃管的横截面积处处相同;在活塞向下移动的过程中,没有发生气体泄漏;大气压强p 0=75.0 cmHg.环境温度不变. 1.【解析】 设初始时,右管中空气柱的压强为p 1,长度为l 1;左管中空气柱的压强为p 2=p 0,长度为l 2.活塞被下推h 后,右管中空气柱的压强p 1′,长度为l 1′;左管中空气柱的压强为p 2′,长度为l 2′.以cmHg 为压强单位.由题给条件得 p 1=p 0+(20.0-5.00) cmHg Ⅲ l 1′=? ? ???20.0- 20.0-5.002 cm =12.5 cm Ⅲ 由玻意耳定律得p 1l 1=p 1′l 1′ Ⅲ 联立ⅢⅢⅢ式和题给条件得p 1′=144 cmHg Ⅲ 依题意p 2′=p 1′ Ⅲ l 2′=4.00 cm +20.0-5.00 2 cm -h =(11.5-h ) cm Ⅲ 由玻意耳定律得p 2l 2=p 2′l 2′ Ⅲ 联立ⅢⅢⅢⅢ式和题给条件得h =9.42 cm Ⅲ 【答案】 144 cmHg 9.42 cm 2.[2016·全国Ⅲ,33(2),10分]一氧气瓶的容积为0.08 m 3,开始时瓶中氧气的压强为20个大气压.某实验室每天消耗1个大气压的氧气0.36 m 3.当氧气瓶中的压强降低到2个大气压时,需重新充气.若氧气的温度保持不变,求这瓶氧气重新充气前可供该实验室使用多少天. 2.【解析】 设氧气开始时的压强为p 1,体积为V 1,压强变为p 2(2个大气压)时,体积为V 2,根据玻意耳定律得p 1V 1=p 2V 2 Ⅲ

气体的压强体积温度间的关系

高二新课固体液体和气体 §12.9 气体的压强、体积、温度间的关系 要点:巩固气体压强的微观解释 知道气体压强、体积和温度之间的关系 能用气体参量来叙述生活实例中的变化 教学难点:气体压强、体积和温度三者之间的制约关系 考试要求:高考Ⅰ(气体的状态和状态参量,气体的体积、压强、温度之间的关系),会考 课堂设计:学生已涉及到了气体压强的微观解释,本节可进一步从撞击、作用力、频繁等因素将气体压强转到宏观的决定参量温度和体积上来,并使学生认识到参量之 间是有联系和制约的,也能从一些生活事例中用气体状态参量的眼光观察和解 释。为降低难度,分别将相互关系分立讨论,再通过小结得到实用的定论。为 应付一般习题中的参量定性讨论,可介绍(PV/T=常量)式。 解决难点:在复习气体压强微观意义的基础上,将微观量转化为宏观的参量,继而结合学生的一些生活经验得出三参量之间的关系,并再在生活实例中应用检验,作为 定性了解可依据课本不再展开。 学生现状:用气体压强的微观意义来理解与温度和体积之间的关系有困难; 用微观意义来理解参量的变化尚不适应; 用微观意义定性知道生活实例不知所措。 培养能力:分析综合能力,理解推理能力 思想教育:唯物主义世界观 课堂教具:针筒,气球 一、引入 【问】气体压强是如何产生的? 分析:大量气体分子频繁的碰撞器壁而产生的 【问】影响气体压强大小的因素有哪些? 分析:温度、体积 那么气体的压强与气体的温度、体积之间有什么样的定量关系存在呢?这就是今天这堂课我们要解决的问题。 二、气体压强和体积的关系 学生阅读《气体压强和体积的关系》部分 我们研究的对象是什么?实验的先决条件是什么?得出了什么结论? 分析:我们研究的对象是密封在注射气内质量一定的气体;实验的先决条件是:气体的温度不变。实验结论:体积减小时,压强增大;体积增大时,压强减小。 【问】用气体分子热运动的理论即从微观方面解释这个实验结论。 分析:温度不变,分子的平均动能不变,质量一定,体积减小,单位体积内的分子数增多,即分子越密集,所以气体压强增大。 【问】如果压缩气体的同时,温度降低,还一定是“体积越小,压强越大”吗? 分析:温度降低,分子平均动能减小,所以压强不一定增大。 结论:一定质量的气体,温度不变,体积减小,压强增大。PV=常量

高中物理选修3-3《气体》重点题型

选修3-3《气体》复习 一、气体压强的计算 (一).液体封闭的静止容器中气体的压强 1. 知识要点 (1)液体在距液面深度为h 处产生的压强:P gh h =ρ(式中ρ表示液体的密度)。 (2)连通器原理:在连通器中,同种液体的同一水平面上的压强相等; 2. 典型 例1 如图1、2、3、4玻璃管中都灌有水银,分别求出四种情况下被封闭气体A 的压强P A (设 大气压强P cmHg 076=)。 练习:1如图所示,粗细均匀的竖直倒置的U 型管右端封闭,左端开口插入水银槽中,封闭着两段空气柱1和2。已知h 1=15cm ,h 2=12cm ,外界大气压强p 0=76cmHg ,求空气柱1和2的压强。 2. 有一段12cm 长汞柱,在均匀玻璃管中封住了一定质量的气体。如 图所示。若管中向上将玻璃管放置在一个倾角为30°的光滑斜面上。在下滑过程中被封闭气体的压强(设大气压强为P 0=76cmHg )为( ) A. 76cmHg B. 82cmHg C. 88cmHg D. 70cmHg (二).活塞封闭的静止容器中气体的压强 1. 解题的基本思路 (1)对活塞(或气缸)进行受力分析,画出受力示意图; (2)列出活塞(或气缸)的平衡方程,求出未知量。 注意:不要忘记气缸底部和活塞外面的大气压。 2. 典例 例2 如图5所示,一个横截面积为S 的圆筒形容器竖直放置,金属圆板A 的上表面是水平的,下表面是倾斜的,下表面与水平面的夹角为θ,圆板的质量为M 。不计圆板与容器内壁之间的摩擦。若大气压强为P 0,则被圆板封闭在容器中的气体压强P 等于( ) A . P Mg S 0+ cos θ B. P Mg S 0cos cos θθ+ C . P Mg S 02+ cos θ D. P Mg S 0+ 练习:3如图所示,活塞质量为m ,缸套质量为M ,通过弹簧吊在天花板上,气缸内封住了一定质量的空气,而活塞与缸套间无摩擦,活塞面积为S ,则下列说法正确的是( ) (P 0为大气压强) A 、内外空气对缸套的总作用力方向向上,大小为Mg B 、内外空气对缸套的总作用力方向向下,大小为mg C 、气缸内空气压强为P 0-Mg/S D 、气缸内空气压强为P 0+mg/S 4. 如图7,气缸由两个横截面不同的圆筒连接而成。活塞A 、B 被轻刚性细杆连接在一起,可无摩擦移动。A 、B 的质量分别为m A =12kg ,m B =8.0kg ,横截面积分别为S A =4.0×10-2 m2, S B =2.0×10 -2 m 2。一定质量的理想气体被封闭在两活塞之间。活塞外侧大气压强 P 0=1.0×105Pa 。 (1)气缸水平放置达到如图7所示的平衡状态,求气体的压强。 (2)现将气缸竖直放置,达到平衡后。求此时气体的压强。取重力加速度g=10m/s 2。

统计规律理想气体的压强和温度

209-统计规律、理想气体的压强和温度 209统计规律、理想气体的压强和温度 1、选择题 1,理想气体中仅由温度决定其大小的物理量是 (A )气体的压强 (B )气体的内能 (C )气体分子的平均平动动 能 (D )气体分子的平均速率 [ ] 2,温度、压强相同的氦气和氧气,它们的分子平均动能ε和平均平动动能k ε的 关系为(A )ε和k ε都相等 (B )ε相等,而k ε不相等 (C )k ε相等,而ε不相等 (D )ε和k ε都不相等 [ ] 3,一瓶氢气和一瓶氧气温度相同,若氢气分子的平均平动动能为?J ,则氧气的温 度为 (A )100 K (B )200 K (C )273 K (D )300 K [ ] 4,理想气体处于平衡状态,设温度为T ,气体分子的自由度为i ,则每个气体分子 所具有的 (A )动能为 kT i 2 (B )动能为 RT i 2 (C )平均平动动能为kT i 2 (D )平均平动动能为 kT 23 [ ] 5,一氧气瓶的容积为V ,充了气未使用时的压强为1p ,温度为1T ,使用后瓶内 氧气的质量减少为原来的一半,其压强降为2p ,则此时瓶内氧气的温度2T 为 (A ) 1 2 12p p T (B )

2 112p p T (C ) 1 21p p T (D ) 2 112p p T [ ] 6,一个能量为12 10 ?eV 宇宙射线粒子射入氖管中,氖管中有氖气 mol 。如果 宇宙射线粒子的能量全部被氖气分子所吸收而变为分子热运动能量,则氖气升高的温度为 (A )7 10 ?K (B )7 10 ?K (C )6 10 ? K (D )6 10 ?K [ ] 7,设想在理想气体内部取一小截面dA ,则两边气体通过dA 互施压力。从分子运动论的观点来看,这个压力施于dA 的压强为 (A )k n p ε3 2= (B )k n p ε3 4= (C )kT p 2 3= (D )kT p 3= [ ]

高中物理选修3-3气体压强专项练习题

选修3-3 气体压强计算专项练习 一、计算题 1、一定质量的理想气体从状态A变化到状态B再变化到状态C,其状态变化过程的p﹣V图象如图所示.已知该气体 在状态A时的温度为27℃.则: ①该气体在状态B和C时的温度分别为多少℃? ②该气体从状态A经B再到C的全过程中是吸热还是放热?传递的热量是多少? 2、一定质量理想气体经历如图所示的A→B、B→C、C→A三个变化过程,T A=300 K,气体从C→A的过程中做功为100 J,同时吸热250 J,已知气体的内能与温度成正比。求: (i)气体处于C状态时的温度T C; (i i)气体处于C状态时内能U C。 3、如图所示,一个内壁光滑的导热气缸竖直放置,内部封闭一定质量的理想气体,环境温度为27℃,现将一个质量 为m=2kg的活塞缓慢放置在气缸口,活塞与气缸紧密接触且不漏气.已知活塞的横截面积为S=4.0×10﹣4m2,大气压强为P0=1.0×105Pa,重力加速度g取10m/s2,气缸高为h=0.3m,忽略活塞及气缸壁的厚度. (i)求活塞静止时气缸内封闭气体的体积. (ii)现在活塞上放置一个2kg的砝码,再让周围环境温度缓慢升高, 要使活塞再次回到气缸顶端,则环境温度应升高到多少摄氏度?

4、【2017·开封市高三第一次模拟】如图所示,一汽缸固定在水平地面上,通过活塞封闭有一定质量的理想气体, 活塞与缸壁的摩擦可忽略不计,活塞的截面积S=100 cm2.活塞与水平平台上的物块A用水平轻杆连接,在平台上有另 一物块B,A、B的质量均为m=62.5 kg,物块与平台间的动摩擦因数μ=0.8.两物块间距为d=10 cm.开始时活塞距缸 底L1=10 cm,缸内气体压强p1等于外界大气压强p0=1×105Pa,温度t1=27 ℃.现对汽缸内的气体缓慢加热,(g=10 m/s2)求: ①物块A开始移动时,汽缸内的温度; ②物块B开始移动时,汽缸内的温度. 5、如图所示,一导热性能良好、内壁光滑的气缸水平放置,横截面积为S=2×10﹣3m2质量为m=4kg厚度不计的活塞与 气缸底部之间封闭了一部分气体,此时活塞与气缸底部之间的距离为24cm,在活塞的右侧12cm处有一对与气缸固定 连接的卡环,气体的温度为300K,大气压强P0=1.0×105Pa.现将气缸竖直放置,如图所示,取g=10m/s2 求:(1)活塞与气缸底部之间的距离; (2)加热到675K时封闭气体的压强. 6、一个上下都与大气相通的直圆筒,内部横截面积为S = 0.01m2,中间用两个活塞A和B封住一定质量的气体。A、B都可沿圆筒无摩擦地上下滑动,且不漏气。A的质量不计,B的质量为M,并与一劲度系数为k = 5×103 N/m的较长的弹簧相连。已知大气压p0 = 1×105 Pa,平衡时两活塞之间的距离l0 = 0.6 m,现用力压A,使之缓慢向下移 动一段距离后,保持平衡。此时用于压A的力 F = 500 N。求活塞A下移的距离。

统计规律、理想气体的压强和温度

统计规律、理想气体的压强和温度 1、选择题 题号:20911001 分值:3分 难度系数等级:1 理想气体中仅由温度决定其大小的物理量是 (A )气体的压强 (B )气体的内能 (C )气体分子的平均平动动能 (D )气体分子的平均速率 [ ] 答案:( C ) 题号:20911002 分值:3分 难度系数等级:1 温度、压强相同的氦气和氧气,它们的分子平均动能ε和平均平动动能k ε的关系为 (A )ε和k ε都相等 (B )ε相等,而k ε不相等 (C )k ε相等,而 ε不相等 (D )ε和k ε都不相等 [ ] 答案:( C ) 题号:20911003 分值:3分 难度系数等级:1 一瓶氢气和一瓶氧气温度相同,若氢气分子的平均平动动能为21 10 21.6-?J ,则氧气的 温度为 (A )100 K (B )200 K (C )273 K (D )300 K [ ] 答案:( D ) 题号:20911004 分值:3分 难度系数等级:1 理想气体处于平衡状态,设温度为T ,气体分子的自由度为i ,则每个气体分子所具有的 (A )动能为 kT i 2 (B )动能为RT i 2

(C )平均平动动能为 kT i 2 (D )平均平动动能为kT 2 3 [ ] 答案:( D ) 题号:20912005 分值:3分 难度系数等级:2 一氧气瓶的容积为V ,充了气未使用时的压强为1p ,温度为1T ,使用后瓶内氧气的质量减少为原来的一半,其压强降为2p ,则此时瓶内氧气的温度2T 为 (A ) 1212p p T (B )2112p p T (C )121p p T (D )2 11 2p p T [ ] 答案:( A ) 题号:20912006 分值:3分 难度系数等级:2 一个能量为12 100.1?eV 宇宙射线粒子射入氖管中,氖管中有氖气0.1 mol 。如果宇宙射线粒子的能量全部被氖气分子所吸收而变为分子热运动能量,则氖气升高的温度为(A )71093.1-?K (B )71028.1-?K (C )61070.7-? K (D )6 1050.5-?K [ ] 答案:( B ) 题号:20912007 分值:3分 难度系数等级:2 设想在理想气体内部取一小截面dA ,则两边气体通过dA 互施压力。从分子运动论的观点来看,这个压力施于dA 的压强为 (A )k n p ε32= (B )k n p ε34= (C )kT p 2 3 = (D )kT p 3= [ ] 答案:( A ) 题号:20912008 分值:3分 难度系数等级:2 两瓶不同种类的气体,它们的温度和压强相同,但体积不同,则下列说法正确的是 (A )单位体积内的分子数相同,单位体积内的气体质量也相同 (B )单位体积内的分子数不相同,但单位体积内的气体质量相同 (C )单位体积内的分子数相同,但单位体积内的气体质量不相同 (D )单位体积内的分子数不相同,单位体积内的气体质量也不相同

气体的压强和体积的关系

气体的压强和体积的关系

————————————————————————————————作者:————————————————————————————————日期: ?

A.气体的压强和体积的关系 【基础知识】 1.知道一定质量气体的状态由压强、体积、温度三参量描述;并能从分子动理论角度知道气体压强产生的微观情景 2.掌握气体压强计算的一般方法,掌握压强的国际单位、常用单位及换算关系。 3.学会用DIS实验系统研究温度不变时,一定质量的气体压强与体积的关系,并能对实验数据进行探究(图像拟合、简单误差分析) 4.理解玻意耳定律的内容,能运用玻意耳定律求解质量不变气体,与压强、体积有关的实际问题并解释生活中的相关现象 5.会读、画一定质量气体的P—V图。 【规律方法】 1.能将初中有关压强、大气压强、液体内部的压强、连通器原理、托里拆利实验等物理概念、物理模型、实验迁移到本节学习过程中。 2.会求固态物封闭气体的压强、液态物封闭气体的压强。 3.通过DIS实验进一步感受控制变量法在研究多参量内在关系中的作用 4.通过描绘P-V、P---1/V图像,进一步增强利用图像描述物理规律的能力 作业4?气体的压强与体积的关系(玻意耳定律) 一、选择题 1.下列哪个物理量不表示气体的状态参量() A.气体体积 B.气体密度? C.气体温度??D.气体压强 答案:B 2.关于气体的体积,下列说法中正确的是() A.气体的体积与气体的质量成正比 B.气体的体积与气体的密度成反比 ?C.气体的体积就是所有气体分子体积的总和 ?D.气体的体积是指气体分子所能达到的空间 答案:D 3.气体对器壁有压强的原因是( ) A.单个分子对器壁碰撞产生压力 B.几个分子对器壁碰撞产生压力 C.大量分子对器壁碰撞产生压力 D.以上说法都不对 答案:C 4.如图所示,大气压是1标准大气压(相当于76厘米水银柱),管内被封闭的气体的压强应是( ) A.30厘米水银柱?C.50厘米水银柱 C.26厘米水银柱 D.46厘米水银柱 答案:C 5.如图所示,在玻璃罩内放入一个充气较多的气球,下列关于玻璃罩内气球的说法中,正确的是(??) A.通过胶管抽玻璃罩内的空气,气球的体积减小 B.通过胶管抽玻璃罩内的空气,气球的体积增大 C.通过胶管向玻璃罩内充气,气球的体积增大 D.通过胶管向玻璃罩内充气,气球的体积不变50cm 30cm

高中物理封闭气体压强的计算

高中物理封闭气体压强 的计算 公司内部档案编码:[OPPTR-OPPT28-OPPTL98-

难点突破: 用气体实验定律解题的思路 1.基本解题思路 (1)选取研究对象:它可以是由两个或多个物体组成的系统,也可以是全部气体和某一部分气体(状态变化时质量必须一定). (2)确定状态参量:找出状态变化前后的p、V、T数值或表达式. (3)认识变化过程:除题设条件已指明外,常需通过研究对象跟周围环境的相互关系来确定. (4)列出相关方程. 封闭气体压强的计算 1.系统处于平衡状态的气体压强的计算方法 (1)液体封闭的气体压强的确定 ①平衡法:选与气体接触的液柱为研究对象进行受 力分析,利用它的受力平衡,求出气体的压强. ②取等压面法:根据同种液体在同一水平液面处压 强相等,在连通器内灵活选取等压面,由两侧压强

相等建立方程求出压强.液体内部深度为h 处的总压强p =p 0+ρgh , 例如,图中同一水平液面C 、D 处压强相等,则p A = p 0+ρgh . (2)固体(活塞或汽缸)封闭的气体压强的确定:由于 该固体必定受到被封闭气体的压力,可通过对该固 体进行受力分析,由平衡条件建立方程来找出气体 压强与其他各力的关系. 2.加速运动系统中封闭气体压强的计算方法 一般选与气体接触的液柱或活塞、汽缸为研究对象,进行受力分析,利用牛顿第二定律列方程求出封闭气体的压强. 如图所示,当竖直放置的玻璃管向上加速时,对液柱受力分析有:pS -p 0S -mg =ma ,S 为玻璃管横截面积,得p =p 0+ S m (g +a ). 3.分析压强时的注意点 (1)气体压强与大气压强不同,大气压强由于重力而产生,随高度增大而减小,气体压强是由大量气体分子频繁碰撞器壁而产生的,大小不随高度而变化;封闭气体对器壁的压强处处相等. (2)求解液体内部深度为h 处的总压强时,不要忘记液面上方气体的压强. 用气体实验定律解题的思路

高中物理-封闭气体压强的计算

学习资料收集于网络,仅供参考 难点突破: 用气体实验定律解题的思路 1基本解题思路 (1)选取研究对象:它可以是由两个或多个物体组成的系统,也可以是全部气体和某一部分气体(状态变化时质量必须一定). (2)确定状态参量:找出状态变化前后的p、V、T数值或表达式. ⑶认识变化过程:除题设条件已指明外,常需通过研究对象跟周围环境的相互关系来确定. (4)列出相关方程. 圭寸闭气体压强的计算 1.系统处于平衡状态的气体压强的计算方法 (1)液体圭寸闭的气体压强的确定 ①平衡法:选与气体接触的液柱为研究对象进行受力分 析,利用它的受力平衡,求出气体的压强. ②取等压面法:根据同种液体在同一水平液面处压强相 等,在连通器内灵活选取等压面,由两侧压强相等建立方程求出压强.液体内部深度为h处的总压强p= p o+ p gh 例如,图中同一水平液面C、D处压强相等,则P A= p o + p gh (2)固体(活塞或汽缸)封闭的气体压强的确定:由于该固体 必定受到被封闭气体的压力,可通过对该固体进行受力分 学习资料收集于网络,仅供参考 jj%珂

析,由平衡条件建立方程来找出气体压强与其他各力的关系. 2?加速运动系统中封闭气体压强的计算方法 一般选与气体接触的液柱或活塞、汽缸为研究对象,进行受力分析,利用牛顿第二定律列方程求出封闭气体的压强. 如图所示,当竖直放置的玻璃管向上加速时,对液柱受力分析有:pS— p o S- m (g + a) mg= ma, S为玻璃管横截面积,得p= p o+ S . 3 ?分析压强时的注意点 (1)气体压强与大气压强不同,大气压强由于重力而产生,随高度增大而减小, 气体压强是由大量气体分子频繁碰撞器壁而产生的,大小不随高度而变化;封闭气体对器壁的压强处处相等. (2)求解液体内部深度为h处的总压强时,不要忘记液面上方气体的压强. 口口用气体实验定律解题的思路 1 ?基本解题思路 (1)选取研究对象:它可以是由两个或多个物体组成的系统,也可以是全部气 体和某一部分气体(状态变化时质量必须一定). (2)确定状态参量:找出状态变化前后的p、V、T数值或表达式. (3)认识变化过程:除题设条件已指明外,常需通过研究对象跟周围环境的相互关系来确定. (4)列出相关方程. 2.对两部分气体的状态变化问题总结 多个系统相互联系的定质量气体问题,往往以压强建立起系统间的关系,各系统独立进行状态分析,要确定每个研究对象的变化性质,分别应用相应的实验定律,并充分应用各研究对象之间的压强、体积、温度等量的有效关联.若活塞可自由移动,一般要根据活塞平衡确定两部分气体的压强关系. □口变质量气体问题的分析方法

相关文档
最新文档