2017届北京市西城区北师大附属实验高三上学期期中考试数学(理)试题(word版,缺答案)

合集下载

北京市北京师范大学附属中学2024-2025学年高三上学期10月期中考试数学试题

北京市北京师范大学附属中学2024-2025学年高三上学期10月期中考试数学试题

北京市北京师范大学附属中学2024-2025学年高三上学期10月期中考试数学试题一、单选题1.已知集合{20},{10}M x x N x x =+≥=-<∣∣,则M N = ()A .{21}x x -≤<∣B .{21}x x -<≤∣C .{2}xx ≥-∣D .{1}xx <∣2.设ln 2a =,cos 2b =,0.22c =,则()A .b c a <<B .c b a <<C .b a c<<D .a b c <<3.设x ∈R ,则“sin 1x =”是“cos 0x =”的()A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件4.将y =cos 26x π⎛⎫+ ⎪⎝⎭的图象向右平移6π个单位长度,所得图象的函数解析式为()A .sin 2y x =B .cos 2y x =C .cos 23y x π⎛⎫=+ ⎪⎝⎭D .cos 26y x π⎛⎫=- ⎪⎝⎭5.已知函数()21xf x =-,则不等式()f x x ≤的解集为()A .(],2-∞B .[]0,1C .[)1,+∞D .[]1,26.设函数()e ln x f x x =-的极值点为0x ,且0x M ∈,则M 可以是()A .10,2⎛⎫ ⎪⎝⎭B .1,12⎛⎫ ⎪⎝⎭C .()1,2D .()2,47.在ABC V 中,90,4,3C AC BC =︒==,点P 是AB 的中点,则CB CP ⋅=()A .94B .4C .92D .68.已知{}n a 是递增的等比数列,其前n 项和为*(N )n S n ∈,满足26a =,326S =,若2024n n S a +>,则n 的最小值是()A .6B .7C .9D .109.设R c ∈,函数(),0,22,0.x x c x f x c x -≥⎧=⎨-<⎩若()f x 恰有一个零点,则c 的取值范围是()A .()0,1B .{}[)01,+∞ C .10,2⎛⎫ ⎪⎝⎭D .{}10,2⎡⎫+∞⎪⎢⎣⎭10.北宋科学家沈括在《梦溪笔谈》中记载了“隙积术”,提出长方台形垛积的一般求和公式.如图,由大小相同的小球堆成的一个长方台形垛积的第一层有ab 个小球,第二层有(1)(1)a b ++个小球,第三层有(2)(2)a b ++个小球……依此类推,最底层有cd 个小球,共有n 层,由“隙积术”可得这些小球的总个数为[(2)(2)()]6n b d a d b c c a ++++-.若由小球堆成的某个长方台形垛积共8层,小球总个数为240,则该垛积的第一层的小球个数为()A .2B .3C .4D .5二、填空题11.若复数4i1iz =-,则复数z 的模z =.12.已知{}n a 为等差数列,n S 为其前n 项和.若16a =,260a a +=,则8S =.13.在ABC V 中,222a cb +=+.则B ∠的值是;cos y A C =+的最大值是.14.设函数()()()11,1,lg 1.x a x x f x x a x ⎧-++<=⎨-≥⎩①当0a =时,((10))f f =;②若()f x 恰有2个零点,则a 的取值范围是.15.已知函数()222f x x x t =-+,()e xg x t =-.给出下列四个结论:①当0t =时,函数()()y f x g x =有最小值;②t ∃∈R ,使得函数()()y f x g x =在区间[)1,+∞上单调递增;③t ∃∈R ,使得函数()()y f x g x =+没有最小值;④t ∃∈R ,使得方程()()0f x g x +=有两个根且两根之和小于2.其中所有正确结论的序号是.三、解答题16.如图,在ABC V 中,2π3A ∠=,AC ,CD 平分ACB ∠交AB 于点D ,CD =(1)求ADC ∠的值;(2)求BC 的长度;(3)求BCD △的面积.17.已知函数π()sin()0,0,02f x A x A ωϕωϕ⎛⎫=+>><< ⎪⎝⎭的最小正周期为π.(1)若2A =,(0)1f =,求ϕ的值;(2)从条件①、条件②、条件③这三个条件中选择两个作为已知,确定()f x 的解析式,并求函数()()2cos 2h x f x x =-的单调递增区间.条件①:()f x 的最大值为2;条件②:()f x 的图象关于点5π,012⎛⎫⎪⎝⎭中心对称;条件③:()f x 的图象经过点π12⎛ ⎝.注:如果选择多组条件分别解答,按第一个解答计分.18.为研究中国工业机器人产量和销量的变化规律,收集得到了20152023-年工业机器人的产量和销量数据,如下表所示.年份201520162017201820192020202120222023产量万台 3.37.213.114.818.723.736.644.343.0销量万台6.98.713.815.414.015.627.129.731.6记20152023-年工业机器人产量的中位数为a ,销量的中位数为b .定义产销率为“100%=⨯销量产销率产量”.(1)从20152023-年中随机取1年,求工业机器人的产销率大于100%的概率;(2)从20202318-年这6年中随机取2年,这2年中有X 年工业机器人的产量不小于a ,有Y 年工业机器人的销量不小于b .记Z X Y =+,求Z 的分布列和数学期望()E Z ;(3)从哪年开始的连续5年中随机取1年,工业机器人的产销率超过70%的概率最小.结论不要求证明19.已知椭圆2222:1x y E a b+=过点()2,1P -和()Q .(1)求椭圆E 的方程;(2)过点()0,2G 作直线l 交椭圆E 于不同的两点,A B ,直线PA 交y 轴于点M ,直线PB 交y 轴于点N .若2GM GN ⋅=,求直线l 的方程.20.已知函数()ln ()x a f x x-=.(1)若1a =,求函数()f x 的零点:(2)若1a =-,证明:函数()f x 是0,+∞上的减函数;(3)若曲线()y f x =在点()()1,1f 处的切线与直线0x y -=平行,求a 的值.21.已知()12:,,,4n n A a a a n ≥ 为有穷数列.若对任意的{}0,1,,1i n ∈- ,都有11i i a a +-≤(规定0n a a =),则称n A 具有性质P .设()(){},1,22,1,2,,n i j T i j a a j i n i j n =-≤≤-≤-= .(1)判断数列45:1,0.1, 1.2,0.5,:1,2,2.5,1.5,2A A --是否具有性质P ?若具有性质P ,写出对应的集合n T ;(2)若4A 具有性质P ,证明:4T ≠∅;(3)给定正整数n ,对所有具有性质P 的数列n A ,求n T 中元素个数的最小值.。

2017西城二模理科word版带答案

2017西城二模理科word版带答案

西城区高三模拟测试高三数学(理科)2017.5第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.在复平面内,复数z 对应的点是(1,2)Z -,则复数z 的共轭复数z = (A )12i + (B )12i - (C )2i +(D )2i -2.下列函数中,值域为[0,1]的是 (A )2y x = (B )sin y x = (C )211y x =+ (D)y 3.在极坐标系中,圆sin ρθ=的圆心的极.坐标..是 (A )(1,)2π(B )(1,0)(C )1(,)22π(D )1(,0)24.在平面直角坐标系中,不等式组320,330,0x y x y y -⎧⎪--⎨⎪⎩≤≥≥表示的平面区域的面积是(A )1(B )32(C )2(D )525.设双曲线22221(0,0)y x a b a b-=>>的离心率是3,则其渐近线的方程为(A)0x ±= (B)0y ±= (C )80x y ±=(D )80x y ±=6.设a ,b 是平面上的两个单位向量,35⋅=a b .若m ∈R ,则||m +a b 的最小值是 (A )34(B )43(C )45(D )547.函数()||f x x x =.若存在[1,)x ∈+∞,使得(2)0f x k k --<,则k 的取值范围是 (A )(2,)+∞ (B )(1,)+∞(C )1(,)2+∞(D )1(,)4+∞8.有三支股票A ,B ,C ,28位股民的持有情况如下:每位股民至少持有其中一支股票. 在不持有A 股票的人中,持有B 股票的人数是持有C 股票的人数的2倍.在持有A 股票的人中,只持有A 股票的人数比除了持有A 股票外,同时还持有其它股票的人数多1.在只持有一支股票的人中,有一半持有A 股票.则只持有B 股票的股民人数是 (A )7 (B )6(C )5(D )4第Ⅱ卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分. 9.执行如图所示的程序框图,输出的S 值为____.10.已知等差数列{}n a 的公差为2,且124, , a a a 成等比数列,则1a =____;数列{}n a 的前n 项和n S =____.11.在ABC △中,角A ,B ,C 的对边分别是a ,b ,c .若π3A =,a =,1b =,则c =____.12.函数22, 0,()log , 0.x x f x x x ⎧=⎨>⎩≤则1()4f =____;方程1()2f x -=的解是____.13.大厦一层有A ,B ,C ,D 四部电梯,3人在一层乘坐电梯上楼,其中2人恰好乘坐同一部电梯,则不同的乘坐方式有____种.(用数字作答)14.在空间直角坐标系O xyz -中,四面体A BCD -在,,xOy yOz zOx 坐标平面上的一组正投影图形如图所示(坐标轴用细虚线表示).该四面体的体积是____.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤. 15.(本小题满分13分)已知函数π()tan()4f x x =+.(Ⅰ)求()f x 的定义域;(Ⅱ)设(0,π)β∈,且π()2cos()4f ββ=-,求β的值.16.(本小题满分14分)如图,在几何体ABCDEF 中,底面ABCD 为矩形,//EF CD ,AD FC ⊥.点M 在棱FC 上,平面ADM 与棱FB 交于点N .(Ⅰ)求证://AD MN ;(Ⅱ)求证:平面ADMN ⊥平面CDEF ;(Ⅲ)若CD EA ⊥,EF ED =,2CD EF =,平面ADE 平面BCF l =,求二面角A l B --的大小.17.(本小题满分13分)某大学为调研学生在A ,B 两家餐厅用餐的满意度,从在A ,B 两家餐厅都用过餐的学生中随机抽取了100人,每人分别对这两家餐厅进行评分,满分均为60分.整理评分数据,将分数以10为组距分成6组:[0,10),[10,20),[20,30),[30,40),[40,50),[50,60],得到A 餐厅分数的频率分布直方图,和B 餐厅分数的频数分布表:B 餐厅分数频数分布表定义学生对餐厅评价的“满意度指数”如下:(Ⅰ)在抽样的100人中,求对A 餐厅评价“满意度指数”为0的人数;(Ⅱ)从该校在A ,B 两家餐厅都用过餐的学生中随机抽取1人进行调查,试估计其对A 餐厅评价的“满意度指数”比对B 餐厅评价的“满意度指数”高的概率;(Ⅲ)如果从A ,B 两家餐厅中选择一家用餐,你会选择哪一家?说明理由.18.(本小题满分14分)在平面直角坐标系xOy 中,抛物线C 的顶点是原点,以x 轴为对称轴,且经过点(1,2)P . (Ⅰ)求抛物线C 的方程;(Ⅱ)设点,A B 在抛物线C 上,直线,PA PB 分别与y 轴交于点,M N ,||||PM PN =. 求直线AB 的斜率.19.(本小题满分13分)已知函数21()()e x f x x ax a -=+-⋅,其中a ∈R . (Ⅰ)求函数()f x '的零点个数;(Ⅱ)证明:0a ≥是函数()f x 存在最小值的充分而不必要条件.20.(本小题满分13分)设集合*2{1,2,3,,2}(,2)n A n n n =∈N ≥.如果对于2n A 的每一个含有(4)m m ≥个元素的子集P ,P 中必有4个元素的和等于41n +,称正整数m 为集合2n A 的一个“相关数”.(Ⅰ)当3n =时,判断5和6是否为集合6A 的“相关数”,说明理由; (Ⅱ)若m 为集合2n A 的“相关数”,证明:30m n --≥; (Ⅲ)给定正整数n .求集合2n A 的“相关数”m 的最小值.西城区高三模拟测试高三数学(理科)参考答案及评分标准2017.5一、选择题:本大题共8小题,每小题5分,共40分.1.A 2.D 3.C 4.B 5.A6.C7.D 8.A二、填空题:本大题共6小题,每小题5分,共30分. 9.710.2,2n n +11.2 12.2-;113.3614.43注:第10,12题第一空2分,第二空3分.三、解答题:本大题共6小题,共80分. 其他正确解答过程,请参照评分标准给分. 15.(本小题满分13分) 解:(Ⅰ)由πππ42x k +≠+,得ππ4x k ≠+,k ∈Z . [ 3分] 所以 函数()f x 的定义域是π{|π,}4x x k k ≠+∈Z .[ 4分](Ⅱ)依题意,得ππtan()2cos()44ββ+=-. [ 5分]所以πsin()π42sin()π4cos()4βββ+=++,[ 7分] 整理得ππsin()[2cos()1]044ββ+⋅+-=,[ 8分]所以πsin()04β+=,或π1cos()42β+=. [10分]因为 (0,π)β∈,所以ππ5π(,)444β+∈,[11分]由πsin()04β+=,得ππ4β+=,3π4β=;[12分]由π1cos()42β+=,得ππ43β+=,π12β=.所以π12β=,或3π4β=. [13分]16.(本小题满分14分)解:(Ⅰ)因为ABCD 为矩形,所以//AD BC ,[ 1分]所以//AD 平面FBC .[ 3分]又因为平面ADMN 平面FBC MN =, 所以//AD MN .[ 4分](Ⅱ)因为ABCD 为矩形,所以AD CD ⊥.[ 5分]因为AD FC ⊥,[ 6分] 所以AD ⊥平面CDEF .[ 7分] 所以平面ADMN ⊥平面CDEF .[ 8分] (Ⅲ)因为EA CD ⊥,AD CD ⊥,所以CD ⊥平面ADE , 所以CD DE ⊥.由(Ⅱ)得AD ⊥平面CDEF , 所以AD DE ⊥.所以DA ,DC ,DE 两两互相垂直.[ 9分] 建立空间直角坐标系D xyz -.[10分]不妨设1EF ED ==,则2CD =,设(0)AD a a =>.由题意得,(,0,0)A a ,(,2,0)B a ,(0,2,0)C ,(0,0,0)D ,(0,0,1)E ,(0,1,1)F . 所以(,0,0)CB a −−→=,(0,1,1)CF −−→=-. 设平面FBC 的法向量为(,,)x y z =n ,则0,0,CB CF −−→−−→⎧⋅=⎪⎨⎪⋅=⎩n n 即0,0.ax y z =⎧⎨-+=⎩令1z =,则1y =. 所以(0,1,1)=n .[12分]又平面ADE 的法向量为(0,2,0)DC −−→=,所以||cos ,|||||DC DC DC −−→−−→−−→⋅〈〉==|n n n 因为二面角A l B --的平面角是锐角, 所以二面角A l B --的大小45 .[14分]17.(本小题满分13分)解:(Ⅰ)由对A 餐厅评分的频率分布直方图,得对A 餐厅“满意度指数”为0的频率为(0.0030.0050.012)100.2++⨯=,[ 2分]所以,对A 餐厅评价“满意度指数”为0的人数为1000.220⨯=. [ 3分] (Ⅱ)设“对A 餐厅评价‘满意度指数’比对B 餐厅评价‘满意度指数’高”为事件C .记“对A 餐厅评价‘满意度指数’为1”为事件1A ;“对A 餐厅评价‘满意度指数’为2”为事件2A ;“对B 餐厅评价‘满意度指数’为0”为事件0B ;“对B 餐厅评价‘满意度指数’为1”为事件1B .所以1(A )(0.020.02)100.4P =+⨯=,2(A )0.4P =,[ 5分]由用频率估计概率得:0235(B )0.1100P ++==,11540(B )0.55100P +==. [ 7分] 因为事件A i 与B j 相互独立,其中1,2i =,0,1j =. 所以102021(C)(A B A B A B )P P =++102021(A )(B )(A )(B )(A )(B )P P P P P P =++0.40.10.40.10.40.550.3=⨯+⨯+⨯=. [10分]所以该学生对A 餐厅评价的“满意度指数”比对B 餐厅评价的“满意度指数”高 的概率为0.3.(Ⅲ)如果从学生对A ,B 两家餐厅评价的“满意度指数”的期望角度看:A 餐厅“满意度指数”X 的分布列为:B 餐厅“满意度指数”Y 的分布列为:因为()00.210.420.4 1.2E X =⨯+⨯+⨯=;()00.110.5520.35 1.25E Y =⨯+⨯+⨯=,所以()()E X E Y <,会选择B 餐厅用餐. [13分]注:本题答案不唯一.只要考生言之合理即可.18.(本小题满分14分)解:(Ⅰ)依题意,设抛物线C 的方程为2(0)y ax a =≠.[ 1分]由抛物线C 且经过点(1,2)P , 得4a =,[ 3分]所以抛物线C 的方程为24y x =.[ 4分] (Ⅱ)因为||||PM PN =, 所以PMN PNM ∠=∠,所以 12∠=∠,所以 直线PA 与PB 的倾斜角互补, 所以 0PA PB k k +=.[ 6分]依题意,直线AP 的斜率存在,设直线AP 的方程为:2(1)(0)y k x k -=-≠, 将其代入抛物线C 的方程,整理得22222(22)440k x k k x k k --++-+=.[ 8分]设11(,)A x y ,则 212441k k x k -+⨯=,114(1)22y k x k=-+=-,[10分] 所以22(2)4(,2)k A k k--.[11分] 以k -替换点A 坐标中的k ,得22(2)4(,2)k B k k+--.[12分] 所以 222244()1(2)(2)ABk k k k k k k --==--+-. 所以直线AB 的斜率为1-.[14分]19.(本小题满分13分) 解:(Ⅰ)由21()()e x f x x ax a -=+-⋅,得121()(2)e ()e x x f x x a x ax a --'=+⋅-+-⋅21[(2)2]e x x a x a -=-+--⋅ 1()(2)e x x a x -=-+-⋅.[ 2分]令()0f x '=,得2x =,或x a =-.所以当2a =-时,函数()f x '有且只有一个零点:2x =;当2a ≠-时,函数()f x '有两个相异的零点:2x =,x a =-.[ 4分](Ⅱ)① 当2a =-时,()0f x '≤恒成立,此时函数()f x 在(,)-∞+∞上单调递减,所以,函数()f x 无极值.[ 5分]② 当2a >-时,()f x ',()f x 的变化情况如下表:所以,0a ≥时,()f x 的极小值为1()e a f a a +-=-⋅≤0.[ 7分]又2x >时,222240x ax a a a a +->+-=+>,所以,当2x >时,21()()e 0x f x x ax a -=+-⋅>恒成立.[ 8分] 所以,1()e a f a a +-=-⋅为()f x 的最小值.[ 9分] 故0a ≥是函数()fx 存在最小值的充分条件.[10分] ③ 当5a =-时,()f x ',()f x 的变化情况如下表:因为当5x >时,21()(55)e 0x f x x x -=-+⋅>, 又1(2)e 0f -=-<,所以,当5a =-时,函数()f x 也存在最小值.[12分] 所以,0a ≥不是函数()f x 存在最小值的必要条件.综上,0a ≥是函数()f x 存在最小值的充分而不必要条件.[13分]20.(本小题满分13分)解:(Ⅰ)当3n =时,6{1,2,3,4,5,6}A =,4113n +=.[ 1分]①对于6A 的含有5个元素的子集{2,3,4,5,6}, 因为234513+++>,所以5不是集合6A 的“相关数”.[ 2分] ②6A 的含有6个元素的子集只有{1,2,3,4,5,6}, 因为134513+++=,所以6是集合6A 的“相关数”.[ 3分](Ⅱ)考察集合2n A 的含有2n +个元素的子集{1,,1,,2}B n n n n =-+ .[ 4分]B 中任意4个元素之和一定不小于(1)(1)(2)42n n n n n -+++++=+.所以2n +一定不是集合2n A 的“相关数”.[ 6分]所以当2m n +≤时,m 一定不是集合2n A 的“相关数”.[ 7分] 因此若m 为集合2n A 的“相关数”,必有3m n +≥. 即若m 为集合2n A 的“相关数”,必有30m n --≥.[ 8分] (Ⅲ)由(Ⅱ)得 3m n +≥.先将集合2n A 的元素分成如下n 组:(,21)(1)i i n C i n i =+-≤≤.对2n A 的任意一个含有3n +个元素的子集P ,必有三组123,,i i i C C C 同属于集合P . [10分]再将集合2n A 的元素剔除n 和2n 后,分成如下1n -组:1(,2)(1)j j n D j n j -=-≤≤.对于2n A 的任意一个含有3n +个元素的子集P ,必有一组4j D 属于集合P .[11分] 这一组4j D 与上述三组123,,i i i C C C 中至少一组无相同元素, 不妨设4j D 与1i C 无相同元素.此时这4个元素之和为1144[(21)[(2)]41i n i j n j n ++-++-=+.[12分] 所以集合2n A 的“相关数”m 的最小值为3n +.[13分]。

2017北京师大附中高三(上)期中数学(理)

2017北京师大附中高三(上)期中数学(理)

2017北京师大附中高三(上)期中数学(理)本试卷共150分,考试时间120分钟.一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将答案填写在答题纸上.1. 已知集合,,则集合中元素的个数为()A. 1B. 2C. 3D. 42. 设命题,则为()A. B.C. D.3. 已知为等差数列,为其前n项和.若,则=()A. 6B. 12C. 15D. 184. 设函数,则“”是“函数为奇函数”的()A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件5. 设函数的图象为C,下面结论中正确的是()A. 函数的最小正周期是B. 图象C关于点对称C. 图象C可由函数的图象向右平移个单位得到D. 函数在区间上是增函数6. 若则a,b,c的大小关系是()A. B. C. D.7. 设D为不等式组表示的平面区域,点B(1,b)为坐标平面xOy内一点,若对于区域D内的任一点A(x,y),都有成立,则b的最大值等于()A. 1B. 2C. 0D. 38. 已知函数,。

若函数恰有6个不同的零点,则的取值范围是( )A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分.请将答案填写在答题纸上.9. 若等比数列满足,则前n项和=______________.10. 若,且,则的最小值是___________.11. 已知向量a,b不共线,若∥,则实数=___________.12. 设向量,向量,向量,若∥且,则与的夹角大小为_______.13. 在△ABC中,∠C=120°,,则_______________14. 对有限数列,定义集合,集合S中不同的元素个数记为(1)若,则=_________;(2)若有限数列是单调递增数列,则最小值为_____________三、解答题:本大题共6小题,共80分.写出必要的文字说明、证明过程或演算步骤.15. 设函数,其中向量,,,且的图象经过点.(I)求实数m的值;(II)求函数的最小值及此时x值的集合.16. 在△ABC中,角A,B,C所对的边分别为a,b,c,且.(1)求角C;(2)若,△ABC的面积为,D为AB的中点,求sin∠BCD.17. 已知数列的前n项和,.(1)求数列的通项公式;(2)若,求数列的前n项和.18. 已知函数,,且.(1)求b的值;(2)判断对应的曲线的交点个数,并说明理由.19. 设函数.(1)求曲线在点处的切线方程;(2)若在区间上恒成立,求a的最小值.20. 现有m个()实数,它们满足下列条件:①,②记这m个实数的和为,即.(1)若,证明:;(2)若m=5,满足题设条件的5个实数构成数列.设C为所有满足题设条件的数列构成的集合.集合,求A中所有正数之和;(3)对满足题设条件的m个实数构成的两个不同数列与,证明:.数学试题答案一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将答案填写在答题纸上.1.【答案】B【解析】由得,解得:,即,∵,∴,则集合中元素的个数为2,故选B.2.【答案】B【解析】试题分析:根据命题的否定和全称命题的否定是特称命题,可知命题:,则为.考点:命题的否定.3.【答案】A【解析】设等差数列的公差为,∵,,∴,,解得,,则,故选A.4.【答案】C【解析】试题分析:当时,函数,此时函数为奇函数;反之函数为奇函数,则,所以“”是“函数为奇函数”的充分必要条件.考点:1.充分必要条件的判断;2.函数的奇偶性.5.【答案】B【解析】试题分析:的最小正周期,∵,∴图象关于点对称,∴图象可由函数的图象向右平移个单位得到,函数的单调递增区间是,当时,,∴函数在区间上是先增后减.考点:三角函数图象、周期性、单调性、图象平移、对称性.6.【答案】D【解析】∵,,,则,,的大小关系是,故选D.7.【答案】A【解析】由作出平面区域D如图,联立,解得,联立,解得,联立,解得,由,得,即,即的最大值为1,故选A.点睛:本题考查了简单的线性规划,考查了数形结合的解题思想方法,考查了平面向量数量积的坐标运算,是中档题;作出不等式组所表示的区域,根据当目标函数为线性时,其最值一定在交点处取得列出不等式组,解出即可.8.【答案】D点睛:本题考查了分段函数的图象与性质、含绝对值函数的图象、对数函数的图象、函数图象的交点的与函数零点的关系,考查了推理能力与计算能力、数形结合的思想方法、推理能力与计算能力,此题最大的难点在于讨论与1的关系,得到的解析式.二、填空题:本大题共6小题,每小题5分,共30分.请将答案填写在答题纸上.9.【答案】【解析】∵等比数列满足,,∴,解得,,∴前项和,故答案为.10.【答案】64【解析】∵,∴,即,由,,当且仅当时等号成立,即的最小值是64,故答案为64.点睛:本题主要考查了基本不等式.基本不等式求最值应注意的问题(1)使用基本不等式求最值,其失误的真正原因是对其前提“一正、二定、三相等”的忽视.要利用基本不等式求最值,这三个条件缺一不可.(2)在运用基本不等式时,要特别注意“拆”“拼”“凑”等技巧,使其满足基本不等式中“正”“定”“等”的条件.11.【答案】【解析】∵向量,不共线,由,则存在非零实数,使,即,解得:,故答案.12.【答案】【解析】根据题意,向量,,若∥,则有,解可得,若,则有,解可得;则,;设与的的夹角为,,,则有,又∵,∴,即与的夹角大小为,故答案为.13. 在△ABC中,∠C=120°,,则_______________【答案】214.【答案】 (1). 6 (2).【解析】(1)当时,有限数列为,故,由的意义可知,,故答案为6;(2)由的定义可知,当是等差数列时,最小,∴集合,∴集合中的元素个数,故答案为.三、解答题:本大题共6小题,共80分.写出必要的文字说明、证明过程或演算步骤.15.【答案】(Ⅰ)1;(Ⅱ)的最小值为,x值的集合为.【解析】试题分析:(Ⅰ)利用向量的数量积化简函数的表达式,通过函数的图象经过点,求实数的值;(Ⅱ)通过(Ⅰ)利用两角和的正弦函数化简函数为一个角的一个三角函数的形式,然后求函数的最小值及此时值的集合.试题解析:(I),由已知,得.(II)由(I)得,∴当时,的最小值为,由,得x值的集合为.点睛:本题主要考查了三角函数的化简,以及函数的性质,属于基础题,强调基础的重要性,是高考中的常考知识点;对于三角函数解答题中,当涉及到周期,单调性,单调区间以及最值等都属于三角函数的性质,首先都应把它化为三角函数的基本形式即,然后利用三角函数的性质求解.16.【答案】(1);(2).【解析】试题分析:(1)首先根据正弦定理边化为角,得到,求得 ;(2)由条件可知三角形为等腰三角形,并且顶角为,这样根据面积可求得三角形的边长,在内可根据余弦定理求得 ,最后根据正弦定理求.试题解析:(1)由,得,由正弦定理可得,因为,所以,因为,所以.(2)因为,故为等腰三角形,且顶角,故,所以,在中,由余弦定理得,所以,在中,由正弦定理可得,即,所以.【点睛】解三角形问题,是高考考查的重点,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.其基本步骤是:第一步:定条件,即确定三角形中的已知和所求,在图形中标出来,然后确定转化的方向第二步:定工具,即根据条件和所求合理选择转化的工具,实施边角之间的互化,一般多根据正弦定理把边转化为角 ,或是 ;第三步:求结果.17.【答案】(1),.(2)【解析】试题分析:(1)利用当时,,验证时也适合,可得数列通项公式;(2)分为为奇数和为偶数两种情形,利用并项求和得数列的前项和.试题解析:(1)由,当时,.当时,,而,所以数列的通项公式,.(2)由(1)可得,当为偶数时,,当为奇数时,为偶数,.综上,点睛:本题主要考查了等差数列概念,以及数列的求和,属于高考中常考知识点,难度不大;常见的数列求和的方法有公式法即等差等比数列求和公式,并项求和主要用于正负相间的摆动数列,分组求和类似于,其中和分别为特殊数列,裂项相消法类似于,错位相减法类似于,其中为等差数列,为等比数列等.18.【答案】(1);(2)对应的曲线只有1个交点,理由见解析.【解析】试题分析:(1)由得:函数的对称轴为,故可得的值;(2)令,对函数进行二次求导,先判断先减后增,在处取得最小值0,故可得单调递增,且,由以上可得交点个数.试题解析:(1)由已知可得的对称轴是,因此(2)考虑,列表可知,仅有一个根x=0,先减后增,在处取得最小值0,即.因此单调递增,注意到,可得对应的曲线只有1个交点19.【答案】(Ⅰ).(Ⅱ).【解析】试题分析:(Ⅰ)设切线的斜率为,利用导数求解切线斜率,然后求解切线方程;(2)要使:在区间在恒成立,等价于:在恒成立,利用函数的导数,通过①当时,利用,说明不满足题意.②当时,利用导数以及单调性函数的最小值,求解即可.试题解析:(I)设切线的斜率为,因为,切点为.切线方程为,化简得:.(II)要使:在区间恒成立,等价于:在恒成立,等价于:在(0,+∞)恒成立因为①当时,,不满足题意②当时,令,则或(舍).所以时,在上单调递减;时,在上单调递增;当时当时,满足题意所以,得到的最小值为20.【答案】(1)证明见解析;(2)256;(3)证明见解析.【解析】试题分析:(1)由为等比数列可得或,当时,数列前项和在各项取正数时取最大值,经计算的最大值为不满足题意,而当时,同理计算的最小值为,满足题意;(2)结合(1)中结论,而,,共种情形,根据其规律得A中正数之和为;(3)不失一般性设使得,,,,…,计算得结论成立.试题解析:(1)证明:由题意知,,所以或.当时,数列前项和在各项取正数时取最大值,所以的最大值为.不合题意,舍去.当时,.所以,.(2)解:若,由(I)知,.由题意知,.所以满足题意的所有数列为1,2,4,8,16;-1,2,4,8,16;1,-2,4,8,16;1,2,-4,8,16;…共16个.在这16个数列中,除最后一项外,其他各项正、负各取8次,求和时正负相抵.从而,A中正数之和为16×16=256.(3)证明:设使得,,,,…,则,所以.。

北京师范大学第二附属中学2017届高三上学期期中考试数学理试卷 Word版含答案

北京师范大学第二附属中学2017届高三上学期期中考试数学理试卷 Word版含答案

一、选择题:1. 已知集合{}{}2|11,|2,M x x N x x x Z =-<<=<∈,则( )A .M N ⊆B .N M ⊆C .{}0M N =D .M N N =2.复数z 满足3z i i =-,则在复平面内,复数z 对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限3. 设ABC ∆的内角,,A B C 的对边分别为,,a b c ,若2,c 2a A ===,且bc <,则b =( )A .3B ..2 D 4.已知,m n 为不同的直线,,αβ为不同的平面,下列四命题中,正确的是( ) A .若//,//m n αα,则//n m B .若,m n αα⊂⊂,且//,//m n ββ,则//αβC .若,m αβα⊥⊂,则m β⊥D .若,,m m αββα⊥⊥⊄,则//m α 5.将函数sin 2y x =的图象先向左平移4π个单位长度,然后将所有点的横坐标变为原来的2倍(纵坐标不变),则所得到的图象对应函数解析式为( ) A .sin 214y x π⎛⎫=-+ ⎪⎝⎭B .22cos y x =C .22sin y x = D .cos y x = 6.某几何体的三视图如图所示,该几何体的体积是( )A .8B .83 C .4 D .437.如果关于x 的方程213ax x +=的正实数解有且仅有一个,那么实数a 的取值范围为( ) A .{}|0a a ≤ B .{}|02a a a ≤=或 C .{}|0a a ≥ D .{}|02a a a ≥=-或 8.设()f x 与()g x 是定义在同一区间[],a b 上的两个函数,若函数()()y f x g x '=-(()f x '为函数()f x 的导函数),在[],a b 上有且只有一个不同的零点,则称()f x 是()g x 在[],a b 上的“关联函数”,若()323422x x f x x =-+,是()2g x x m =+在[]0,3上的“关联函数”,则实数m 的取值范围是( )A .9,24⎛⎤-- ⎥⎝⎦ B .[]1,0- C .(],2-∞- D .9,4⎛⎫-+∞ ⎪⎝⎭二、填空题9.设复数z 满足()122i z i -=+,其中i 是虚数单位,则z 的值为___________.10.若3,2a b == ,且a 与b 的夹角为60°,则a b -=____________.11.命题:p “2,10x R x x ∀∈-+>”,则p ⌝为_____________. 12.已知3,,sin 4245x x πππ⎛⎫⎛⎫∈-=-⎪ ⎪⎝⎭⎝⎭,则cos 2x =___________.13.已知()y f x =是定义在R 上的奇函数,且2y f x π⎛⎫=+⎪⎝⎭为偶函数,对于函数()y f x =有下列几种描述:①()y f x =是周期函数;②x π=是它的一条对称轴;③(),0π-是它图象的一个对称中心;④当2x π=时,它一定取最大值.其中描述正确的是___________.14.若对任意(),,x A y B A R B R ∈∈⊆⊆有唯一确定的(),f x y 与之对应,则称(),f x y 为关于,x y 的二元函数,现定义满足下列性质的(),f x y 为关于实数,x y 的广义“距离”: (1)非负性;(),0f x y ≥,当且仅当x y =时取等号; (2)对称性:()(),,f x y f y x =;(3)三角形不等式:()()(),,,f x y f x z f z y ≤+对任意的实数z 均成立.给出三个二元函数:①(),f x y x y =-;②()()2,f x y x y =-;③(),f x y =所有可能成为关于,x y 的广义“距离”的序号为____________. 三、解答题15.已知函数()sin sin 44f x x x ππ⎛⎫⎛⎫=+-⎪ ⎪⎝⎭⎝⎭. (1)求()f x 的单调递减区间; (2)设α是锐角,且1sin 42πα⎛⎫-= ⎪⎝⎭,求()f α的值. 16.在ABC ∆中,,b,c a 分别是内角,,A B C 的对边,且cos cosC 2B ba c=-+. (1)求角B ;(2)若4b a c =+=,求ABC ∆的面积.17.如图,四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 为PD 的中点.(1)证明://PB 平面AEC ;(2)设二面角D AE C --为60°,1,AP AD ==E ACD -的体积. 18.已知函数32f x ax bx c =-+++图象上的点()1,2P -处的切线方程为31y x =-+. (1)若函数()f x 在2x =-时有极值,求()f x 的表达式;(2)若函数()f x 在区间[]2,0-上单调递增,求实数b 的取值范围. 19.已知函数()()()cos ,2xf x xg x e f x π⎛⎫=-= ⎪⎝⎭,其中e 为自然对数的底数. (1)求曲线()y g x =在点()()0,0g 处的切线方程;(2)若对任意,42x ππ⎡⎤∈⎢⎥⎣⎦时,方程()()g x xf x =的解的个数,并说明理由. 20.已知集合{}123,,,,n A a a a a = ,其中()1,1,2,a R i n n l A ∈≤≤>表示和()1i j a a i j n +≤<≤中所有不同值的个数.(1)设集合{}{}2,4,6,8,2,4,8,16P Q ==,分别求()l P 和()l Q ;(2)若集合{}2,4,8,,2nA = ,求证:()()12n n l A -=;(3)()l A 是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由?参考答案一、选择题二、填空题:x R ∃∈,使得210x x -+≤成立 12. 2425- 13. ①③ 14. ① 三、解答题 15. (1)()11sin sin sin cos sin 2cos 24444222f x x x x x x x πππππ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+-=++=+= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,由()222k x k k Z πππ≤≤+∈得()2k x k k Z πππ≤≤+∈,16.(1)由正弦定理2sin sin sin a b cR A B C===,得2s i n ,2s i n ,2s i n a R Ab R Bc R C ===,所以等式cos cos 2B bC a c=-+可化为 cos 2sin cos 22sin 2sin B R BC R A R C =-+ , 即cos sin ,2sin cos sin cos cos sin cos 2sin sin B BA B C B C B C A C=-+=-+ , 故()2sin cos cos sin sin cos sin A B C B C B B C =--=-+, 因为A B C π++=,所以()sin sin A B C =+,故1cos 2B =-, 所以0120B =;(2)由余弦定理,得222132cos120b a c ac ==+-⨯,即2213a c ac ++=, 又4a c +=,解得13a c =⎧⎨=⎩,或31a c =⎧⎨=⎩,所以11sin 1322ABC S ac B ∆==⨯⨯=. 17.(1)如图,连接BD 交AC 于点O ,连接EO , 因为ABCD 为矩形,所以O 为BD 的中点, 又E 为PD 的中点,所以EO //PB ,因为EO ⊂平面,AEC PB ⊄平面AEC ,所以//PB 平面AEC ;(2)因为PA ⊥平面ABCD , ABCD 为矩形,所以,,AB AD AP 两两垂直,如图,以A 为坐标原点,AB的方向为x 轴的正方向,AP 为单位长,建立空间直角坐标系A xyz -,则()11,,22D E AE ⎛⎫⎛⎫= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,设()(),0,00B m m >,则()(),C m AC m =,设()1,,n x y z = 为平面ACE 的法向量,则1100n AC n AE ⎧=⎪⎨=⎪⎩,即0102mx y z ⎧+=+=,可取1n =-⎝ ,又()21,0,0n = 为平面DAE 的法向量,由题设121cos ,2n n =12=,解得32m =, 因为E 为PD 的中点,所以三棱锥E ACD -的高为12, 三棱锥E ACD -的体积11313222V =⨯⨯=18.(1)()232f x x ax b '=-++,函数()f x 在1x =处的切线斜率为-3,所以()1323f a b '=-++=-,即20a b +=,① 又()112f a b c =-+++=-,得1a b c ++=-,②函数()f x 在2x =-时有极值,所以()21240f a b '-=--+=,③ 由①②③解得2,4,3a b c =-==-, 所以()32243f x x x x =--+-;(2)由(1)知2b a =-,所以()23f x x bx b '=--+,因为函数()f x 在区间[]2,0-上单调递增,所以导函数()23f x x bx b '=--+在区间[]2,0-上的值恒大于或等于零,则()()2122000f b b f b '-=-++≥⎧⎪⎨'=≥⎪⎩,得4b ≥,所以实数b 的取值范围为[)4,+∞. 19.(1)由题意得,()()()0sin ,cos ,0cos01xf x xg x e x g e ====;()()()cos sin ,01x g x e x x g ''=-=;故曲线()y g x =在点()()0,0g 处的切线方程为1y x =+; (2)对任意,02x π⎡⎤∈-⎢⎥⎣⎦,不等式()()g x xf x m ≥+恒成立可化为 ()()min m g x xf x ≤-⎡⎤⎣⎦,,02x π⎡⎤∈-⎢⎥⎣⎦,设()()(),,02h x g x xf x x π⎡⎤=-∈-⎢⎥⎣⎦, 则()()()()cos sin sin cos cos 1sin xx x h x e x x x x x e x x e x '=---=--+,因为,02x π⎡⎤∈-⎢⎥⎣⎦, 所以()()cos 0,1sin 0x xe x x e x -≥+≤;故()0h x '≥, 故()h x 在,02π⎡⎤-⎢⎥⎣⎦上单调递增, 故当2x π=-时,()min 22h x h ππ⎛⎫=-=- ⎪⎝⎭; 故2m π≤-;(3)设()()()H x g x xf x =-,,42x ππ⎡⎤∈⎢⎥⎣⎦; 则当,42x ππ⎡⎤∈⎢⎥⎣⎦时,()()()()cos sin sin cos cos 1sin x x x H x e x x x x x e x x e x '=---=--+,当2x π=,显然有02H π⎛⎫'<⎪⎝⎭; 当,42x ππ⎡⎫∈⎪⎢⎣⎭时,由sin 1tan 1,11cos 11x x x x e x x x x e e -+=≥=-<++,即有sin cos 1x x x e x x e ->+, 即有()0H x '<,所以当,42x ππ⎡⎤∈⎢⎥⎣⎦时,总有()0H x '<, 故()H x 在,42ππ⎡⎤⎢⎥⎣⎦上单调递减, 故函数()H x 在,42ππ⎡⎤⎢⎥⎣⎦上至多有一个零点;又40424H e πππ⎫⎛⎫=->⎪ ⎪⎝⎭⎝⎭,022H ππ⎛⎫=-< ⎪⎝⎭;且()H x 在,42ππ⎡⎤⎢⎥⎣⎦上是连续不断的, 故函数()H x 在,42ππ⎡⎤⎢⎥⎣⎦上有且只有一个零点. 20.(1)由246,2682810,4610.4812,6814+=+=+=+=+=+=,得()5l P =, 由246,281021618,4812.41620,81624+=+=+=+=+=+=得()6l Q =; (2)因为()1i j a a i j n +≤<≤共有()212n n n C -=项,所以()()12n n l A -≤, 对于集合{}2,4,8,,2nA = ,任取i j a a +和k l a a +,其中1,1i j n k l n ≤<≤≤<≤,当j l ≠时,不妨设j l <,则122j i j j l k l a a a a a a ++<=≤<+,即i j k l a a a a +≠+;当j l =时,若()1i j a a i j n +≤<≤的值两两不同, 因此,()()12n n l A -=;(3)不妨设123n a a a a <<<< ,则可得1213121n n n n a a a a a a a a a a -+<+<<+<+<<+ ,从而()1i j a a i j n +≤<≤中至少有23n -个不同的数,即()23l A n ≥-,取{}1,2,3,,n A = ,则{}3,4,5,,21i j a a n +∈- ,即i j a a +的不同值共有23n -个, 因此,()l A 的最小值为23n -.。

北京师大实验中学高三(上)期中数学试卷含答案

北京师大实验中学高三(上)期中数学试卷含答案

=
푓(푥) 푥
+
푎,转化为ℎ(푥)在
[1, + ∞)单调递增即可.
本题主要考查不等式恒成立问题,根据条件将不等式进行转化,多次构造函数,求函数
的导数,利用函数单调性和导数之间的关系是解决本题的关键.综合性较强,难度较
大.
【解答】 解: ∵ 对于任意的푥1,푥2 ∈ [1, + ∞),且푥1 < 푥2,都有푥2 ⋅ 푓(푥1)−푥1 ⋅ 푓(푥2) < 푎(푥1−푥2)
10. 等比数列{푎푛}的前 n 项和为푆푛,已知푆1,2푆2,3푆3成等差数列,则{푎푛}的公比为 ______.
11. 设훥퐴퐵퐶的内角퐴,퐵,퐶所对边的长分别为푎,푏,푐.若푏 + 푐 = 2푎,3sin퐴 = 5sin퐵,则角 퐶 = _____.
{ 12. 已知函数푓(푥) = 푥42푥−+푥42푥,푥,푥<≥00若푓(2−푎2) > 푓(푎),则实数 a 的取值范围为

0 第 6 页,共 18 页0
0 ,一定得到
0
= 1.再由充分必要条件的概念得答案.
本题考查函数的概念,考查充分必要条件的判断,是基础题.
4.【答案】C
【解析】解:푦 = log2(2푥 + 4) = log22(푥 + 2) = log22 + log2(푥 + 2) = 1 + log2 (푥 + 2), 故只需将函数푦 = log2(푥 + 2)
푆5 > 푆6 > 푆4,可得푎 > 0 푎 < 0 푎 + 푎 > 0 푑 < 0



,再利用等差数列的通项公式、

2017北师大二附中高三(上)期中数 学(理)

2017北师大二附中高三(上)期中数    学(理)

2017北师大二附中高三(上)期中数学(理)一、选择题:1.(3分)已知集合M={x|﹣1<x<1},N={x|x2<2,x∈Z},则()A.M⊆N B.N⊆M C.M∩N={0} D.M∪N=N2.(3分)复数z满足z•i=3﹣i,则在复平面内,复数z对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.(3分)设△ABC的内角A,B,C的对边分别为a,b,c.若a=2,c=2,cosA=.且b<c,则b=()A.3 B.2 C.2 D.4.(3分)已知m,n为不同的直线,α,β为不同的平面,下列四个命题中,正确的是()A.若m∥α,n∥α,则m∥nB.若m⊂α,n⊂α,且m∥β,n∥β,则α∥βC.若α⊥β,m⊂α,则m⊥βD.若α⊥β,m⊥β,m⊄α,则m∥α5.(3分)将函数y=sin2x的图象先向左平移个单位长度,然后将所有点的横坐标变为原来的2倍(纵坐标不变),则所得到的图象对应函数解析式为()A.B.y=2cos2x C.y=2sin2x D.y=cosx6.(3分)某几何体的三视图如图所示,该几何体的体积是()A.8 B.C.4 D.7.(3分)如果关于x的方程正实数解有且仅有一个,那么实数a的取值范围为()A.{a|a≤0} B.{a|a≤0或a=2} C.{a|a≥0} D.{a|a≥0或a=﹣2}8.(3分)设f(x)与g(x)是定义在同一区间[a,b]上的两个函数,若函数y=f′(x)﹣g(x)(f′(x)为函数f(x)的导函数)在[a,b]上有且只有两个不同的零点,则称f(x)是g(x)在[a,b]上的“关联函数”.若f(x)=+4x是g(x)=2x+m在[0,3]上的“关联函数”,则实数m的取值范围是()A.B.[﹣1,0] C.(﹣∞,﹣2] D.二、填空题9.(3分)设复数z满足(1﹣i)z=2+2i,其中i是虚数单位,则|z|的值为.10.(3分)若||=3,||=2,且与的夹角为60°,则|﹣|=11.(3分)命题p:“∀x∈R,x2﹣x+1>0”,则¬p为.12.(3分)已知,则cos2x= .13.(3分)已知y=f(x)是定义在R上的奇函数,且为偶函数,对于函数y=f(x)有下列几种描述:①y=f(x)是周期函数②x=π是它的一条对称轴;③(﹣π,0)是它图象的一个对称中心;④当时,它一定取最大值;其中描述正确的是.14.(3分)若对任意x∈A,y∈B,(A⊆R,B⊆R)有唯一确定的f(x,y)与之对应,则称f(x,y)为关于x、y 的二元函数.现定义满足下列性质的二元函数f(x,y)为关于实数x、y的广义“距离”;(1)非负性:f(x,y)≥0,当且仅当x=y时取等号;(2)对称性:f(x,y)=f(y,x);(3)三角形不等式:f(x,y)≤f(x,z)+f(z,y)对任意的实数z均成立.今给出三个二元函数,请选出所有能够成为关于x、y的广义“距离”的序号:①f(x,y)=|x﹣y|;②f(x,y)=(x﹣y)2;③.能够成为关于的x、y的广义“距离”的函数的序号是.三、解答题15.已知函数.(Ⅰ)求f(x)的单调递减区间;(Ⅱ)设α是锐角,且,求f(α)的值.16.在△ABC中,a、b、c分别是角A、B、C的对边,且=﹣.(Ⅰ)求角B的大小;(Ⅱ)若b=,a+c=4,求△ABC的面积.17.如图,四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.(Ⅰ)证明:PB∥平面AEC;(Ⅱ)设二面角D﹣AE﹣C为60°,AP=1,AD=,求三棱锥E﹣ACD的体积.18.已知函数f(x)=﹣x3+ax2+bx+c图象上的点P(1,﹣2)处的切线方程为y=﹣3x+1.(1)若函数f(x)在x=﹣2时有极值,求f(x)的表达式(2)若函数f(x)在区间[﹣2,0]上单调递增,求实数b的取值范围.19.已知函数f(x)=cos,g(x)=e x•f(x),其中e为自然对数的底数.(1)求曲线y=g(x)在点(0,g(0))处的切线方程;(2)若对任意时,方程g(x)=xf(x)的解的个数,并说明理由.20.已知集合A=a1,a2,a3,…,a n,其中a i∈R(1≤i≤n,n>2),l(A)表示和a i+a j(1≤i<j≤n)中所有不同值的个数.(Ⅰ)设集合P=2,4,6,8,Q=2,4,8,16,分别求l(P)和l(Q);(Ⅱ)若集合A=2,4,8,…,2n,求证:;(Ⅲ)l(A)是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由?数学试题答案一、选择题:1.【解答】N={x|x2<2,x∈Z}={﹣1,0,1},故M∩N={0},故选:C.2.【解答】由z•i=3﹣i,得,∴复数z对应的点的坐标为(﹣1,﹣3),位于第三象限.故选:C.3.【解答】a=2,c=2,cosA=.且b<c,由余弦定理可得,a2=b2+c2﹣2bccosA,即有4=b2+12﹣4×b,解得b=2或4,由b<c,可得b=2.故选:C.4.【解答】A错,平行于同一平面的两直线可平行、相交和异面;B错,必须平面内有两条相交直线分别与平面平行,此时两平面才平行;C错,两垂直平面内的任一直线与另一平面可平行、相交或垂直;D对,由α⊥β,在α内作交线的垂线c,则c⊥β,因m⊥β,m⊄α,所以m∥α.故选D.5.【解答】函数y=sin2x的图象向左平移个单位长度,得y=sin2(x+)=cos2x将该函数所有点的横坐标变为原来的2倍(纵坐标不变),得y=cosx的图象所以函数的解析式为y=cosx.故选:D.6.【解答】由三视图可知,几何体是对角线长为2的正方形,侧棱垂直于底面的四棱锥,侧棱长为2,则该几何体的体积是=故选D.7.【解答】由函数解析式可得:x≠0,如果关于x的方程有且仅有一个正实数解,即方程ax3﹣3x2+1=0有且仅有一个正实数解,构造函数f(x)=ax3﹣3x2+1,则函数f(x)的图象与x正半轴有且仅有一个交点.又∵f'(x)=3x(ax﹣2)①当a=0时,代入原方程知此时仅有一个正数解满足要求;②当a>0时,则得f(x)在(﹣∞,0)和(,+∞)上单调递增,在(0,)上单调递减,f(0)=1,知若要满足条件只有x=时,f(x)取到极小值0,x=入原方程得到正数解a=2,满足要求;③当a<0时,同理f(x)在(﹣∞,)和(0,+∞)上单调递减,在(,0)上单调递增f(0)=1>0,所以函数f(x)的图象与x轴的正半轴有且仅有一个交点,满足题意综上:a≤0或a=2.故答案为:{a|a≤0或a=2}8.【解答】f′(x)=x2﹣3x+4,∵f(x)与g(x)在[0,3]上是“关联函数”,故函数y=h(x)=f′(x)﹣g(x)=x2﹣5x+4﹣m在[0,3]上有两个不同的零点,故有,即,解得﹣<m≤﹣2,故选:A.二、填空题9.【解答】∵(1﹣i)z=2+2i,∴z====2i,∴|z|=2故答案为:210.【解答】∵||=3,||=2,且与的夹角为60,∴||====,故答案为:.11.【解答】因为全称命题的否定是特称命题,所以命题p:“∀x∈R,x2﹣x+1>0”,则¬p为:∃x∈R,x2﹣x+1≤0.故答案为:∃x∈R,x2﹣x+1≤0.12.【解答】∵sin(﹣x)=(cosx﹣sinx)=﹣,解得:cosx﹣sinx=﹣,∴两边平方可得:1﹣sin2x=,可得:sin2x=,∵x∈(,),2x∈(,π),∴cos2x=﹣=.故答案为:.13.【解答】∵为偶函数∴f(﹣x+)=f(x+),对称轴为而y=f(x)是定义在R上的奇函数∴f(﹣x+)=﹣f(x﹣)=f(x+)即f(x+)=﹣f(x﹣),f(x+π)=﹣f(x),f(x+2π)=f(x)∴y=f(x)是周期函数,故①正确x=(k∈Z)是它的对称轴,故②不正确(﹣π,0)是它图象的一个对称中心,故③正确当时,它取最大值或最小值,故④不正确故答案为:①③14.【解答】对于①,f(x,y)=|x﹣y|≥0满足(1),f(x,y)=|x﹣y|=f(y,x)=|y﹣x|满足(2);f(x,y)=|x﹣y|=|(x﹣z)+(z﹣y)|≤|x﹣z|+|z﹣y|=f(x,z)+f(z,y)满足(3)故①能够成为关于的x、y的广义“距离”的函数对于②不满足(3)对于③不满足(2)故答案为①三、解答题15.【解答】(Ⅰ)= cos2x﹣sin2x=cos2x.由 2kπ≤2x≤2kπ+π,k∈z,可得 kπ≤x≤kπ+,故求f(x)的单调递减区间为[kπ,kπ+],k∈z.(Ⅱ)∵α是锐角,且,∴=,α=.∴f(α)=cos2x= cos==﹣.16.【解答】(1)由正弦定理得:a=2RsinA,b=2RsinB,c=2RsinC,将上式代入已知,即2sinAcosB+sinCcosB+cosCsinB=0,即2sinAcosB+sin(B+C)=0,∵A+B+C=π,∴sin(B+C)=sinA,∴2sinAcosB+sinA=0,即sinA(2cosB+1)=0,∵sinA≠0,∴,∵B为三角形的内角,∴;(II)将代入余弦定理b2=a2+c2﹣2accosB得:b2=(a+c)2﹣2ac﹣2accosB,即,∴ac=3,∴.17.【解答】(Ⅰ)证明:连接BD交AC于O点,连接EO,∵O为BD中点,E为PD中点,∴EO∥PB,(2分)EO⊂平面AEC,PB⊄平面AEC,所以PB∥平面AEC;(6分)(Ⅱ)解:延长AE至M连结DM,使得AM⊥DM,∵四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,∴CD⊥平面AMD,∵二面角D﹣AE﹣C为60°,∴∠CMD=60°,∵AP=1,AD=,∠ADP=30°,∴PD=2,E为PD的中点.AE=1,∴DM=,CD==.三棱锥E﹣ACD的体积为:==.18.【解答】f′(x)=﹣3x2+2ax+b,(2分)因为函数f(x)在x=1处的切线斜率为﹣3,所以f′(1)=﹣3+2a+b=﹣3,即2a+b=0,(3分)又f(1)=﹣1+a+b+c=﹣2得a+b+c=﹣1.(4分)(1)函数f(x)在x=﹣2时有极值,所以f'(﹣2)=﹣12﹣4a+b=0,(5分)解得a=﹣2,b=4,c=﹣3,(7分)所以f(x)=﹣x3﹣2x2+4x﹣3.(8分)(2)因为函数f(x)在区间[﹣2,0]上单调递增,所以导函数f′(x)=﹣3x2﹣bx+b在区间[﹣2,0]上的值恒大于或等于零,(10分)则得b≥4,所以实数b的取值范围为[4,+∞)(14分)19.【解答】(1)由题意得,f(x)=sinx,g(x)=e x sinx,∴g(0)=e0sin0=0;g'(x)=e x(cosx+sinx),∴g'(0)=1;故曲线y=g(x)在点(0,g(0))处的切线方程为y=x;(2)设H(x)=g(x)﹣xf(x),;则当时,H'(x)=e x(cosx+sinx)﹣sinx﹣xcosx=(e x﹣x)cosx﹣(e x﹣1)sinx,当,显然有;当时,由,即有,即有H'(x)<0,所以当时,总有H'(x)<0,故H(x)在上单调递减,故函数H(x)在上至多有一个零点;又,;且H(x)在上是连续不断的,故函数H(x)在上有且只有一个零点.20.【解答】(Ⅰ)根据题中的定义可知:由2+4=6,2+6=8,2+8=10,4+6=10,4+8=12,6+8=14,得l(P)=5.由2+4=6,2+8=10,2+16=18,4+8=12,4+16=20,8+16=24,得l(Q)=6.(5分)(Ⅱ)证明:因为a i+a j(1≤i<j≤n)最多有个值,所以.又集合A=2,4,8,,2n,任取a i+a j,a k+a l(1≤i<j≤n,1≤k<l≤n),当j≠l时,不妨设j<l,则a i+a j<2a j=2j+1≤a l<a k+a l,即a i+a j≠a k+a l.当j=l,i≠k时,a i+a j≠a k+a l.因此,当且仅当i=k,j=l时,a i+a j=a k+a l.即所有a i+a j(1≤i<j≤n)的值两两不同,所以.(9分)(Ⅲ)l(A)存在最小值,且最小值为2n﹣3.不妨设a1<a2<a3<…<a n,可得a1+a2<a1+a3<…<a1+a n<a2+a n<…<a n﹣1+a n,所以a i+a j(1≤i<j≤n)中至少有2n﹣3个不同的数,即l(A)≥2n﹣3.事实上,设a1,a2,a3,,a n成等差数列,考虑a i+a j(1≤i<j≤n),根据等差数列的性质,当i+j≤n时,a i+a j=a1+a i+j﹣1;当i+j>n时,a i+a j=a i+j﹣n+a n;因此每个和a i+a j(1≤i<j≤n)等于a1+a k(2≤k≤n)中的一个,或者等于a l+a n(2≤l≤n﹣1)中的一个.所以对这样的A,l(A)=2n﹣3,所以l(A)的最小值为2n﹣3.(13分)。

北京市西城区北师大实验2017届高三上学期12月月考数学(文)试题 Word版含解析

北京市西城区北师大实验2017届高三上学期12月月考数学(文)试题 Word版含解析

北京师大附中2016—2017学年度第一学期月考试卷高三数学(文)一、选择题:1. 已知全集,集合,则().A. B. C. D.【答案】B【解析】,,,故选点睛:求集合的交、并、补时,一般先化简集合,再由交、并、补的定义求解.在进行集合的运算时要尽可能地借助Venn图和数轴使抽象问题直观化.一般地,集合元素离散时用Venn 图表示;集合元素连续时用数轴表示,用数轴表示时要注意端点值的取舍.2. 设,,,则().A. B. C. D.【答案】D【解析】,故选D.3. 设命题,,则为().A., B. , C. , D. ,【答案】C【解析】∵命题∴为:故选:C4. “数列既是等差数列又是等比数列”是“数列是常数列”的().A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】A【解析】数列既是等差数列又是等比数列,则可知是常数列,所以充分性成立;若是常数列,则不是等比数列,所以必要性不成立,所以“数列既是等差数列又是等比数列”是“数列是常数列”的充分不必要条件,故选A。

5. 若实数、满足,则的最大值为().A. B. C. D.【答案】D【解析】所以过时,,故选D。

6. 下列函数中,其定义域和值域分别与函数的定义域和值域相同的是().A. B. C. D.【答案】D考点:对数函数幂函数的定义域和值域等知识的综合运用.7. 执行如图所示的程序框图,输出的的值为().A. B. C. D.【答案】B【解析】,,;,;,;,;,;此时满足判定条件,故输出的值,故选。

8. 定义在上的偶函数满足,且在区间上单调递增,设,,,则、、大小关系是().A. B. C. D.【答案】D【解析】由,知是周期为2的周期函数,因为是偶函数,所以在单调递减,,,,因为,所以,即,故选D。

点睛:本题考察抽象函数的性质,由知是周期为2的周期函数,又因为是偶函数,所以在单调递减,由此我们可以得到的草图,再将题目中的利用函数性质转化到内,利用单调性判断大小。

2017届北京市西城区北师大附属实验高三上学期期中考试数学(理)试题(word版,缺答案)

2017届北京市西城区北师大附属实验高三上学期期中考试数学(理)试题(word版,缺答案)

北京师范大学附属实验中学2016-2017学年度第一学期高三年级数学(理)期中试卷第Ⅰ卷(选择题共40分)一、选择题:本大题共8小题,每小题5分,共40分.1.集合2{|4}Mx x ≤,1|01Nx x 则M N().A .(1,2)B .1,2C .1,2D .[1,2]2.在等差数列{}n a 中,21a ,45a ,则{}n a 的前5项和5S ().A .7B .15C .20D .253.已知向量(1,)am ,(3,2)b且()a b b ⊥,则m ().A .8B .6C .6D .84.下列函数中,在其定义域内既是奇函数又是减函数的是().A .1yx B .2yxC .1yxD .||yx x 5.设{}n a 是公比为q 的等比数列,则“1q ”是“{}n a 为递增数列”的().A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件6.已知0x 是函数11()2xf x x的一个零点,10(,)x x ,20(,0)x x ,则().A .1()0f x ,2()0f xB .1()0f x ,2()0f xC .1()0f x ,2()f x D .1()0f x ,2()f x 7.已知函数π()sin()0,||2f x x ≤,π4x为()f x 的零点,π4x 为()y f x 图象的对称轴,且()f x 在π5π,1836单调,则的最大值为().A .11B .9C .7D .58.某学校运动会的立定跳远和30秒跳绳两个单项比赛分成预赛和决赛两个阶段.下表为10名学生的预赛成绩,其中有三个数据模糊.学生序号12345678910立定跳远(单位:米)1.96 1.92 1.821.80 1.78 1.76 1.74 1.72 1.68 1.6030秒跳绳(单位:次)7563a6063721a70b65在这10名学生中,进入立定跳远决赛的有8人,同时进入立定跳远决赛和30秒跳绳决赛的有6人,则().A .2号学生进入30秒跳绳决赛B .3号学生进入30秒跳绳决赛C .7号学生进入30秒跳绳决赛D .9号学生进入30秒跳绳决赛第Ⅱ卷(非选择题共110分)二、填空题:本大题共6小题,每小题5分,共30分.9.已知复数z 满足(1i)1z ,则z__________.10.已知向量a ,b 满足||1a ,||2b ,a 与b 的夹角为60,则||a b __________.11.如图,设A 、B 两点在河的两岸,一测量者在A 在同侧河岸边选定一点C ,测出AC 距离为50m ,45ACB∠,105CAB∠,则A 、B 两点的距离为__________m .CBA12.设等比数列{}n a 满足1310a a ,245a a ,则12n a a a 的最大值为__________.13.设函数21,2()1log ,2xa xf x x x ≥的最小值为1,则实数a 的取值范围是__________.14.对于函数()yf x ,若在其定义域内存在0x ,使得00()1x f x 成立,则称函数()f x 具有性质T .(1)下列函数中具有性质T 的有__________.①()222f x x ②()sin ([0,2π])f x x x ③1()f x xx ,((0,))x④()ln(1)f x x (2)若函数()ln f x a x 具有性质T ,则实数a 的取值范围是__________.三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.(本小题满分13分)已知函数2π()sin3sin sin (0)2f x x x x的最小正周期为π.(Ⅰ)求的值.(Ⅱ)求函数()f x 的区间2π0,3上的取值范围.16.(本小题满分13分)在等差数列{}n a 中,13a ,其前n 项和n S ,等比数列{}n b 的各项均为正数,11b ,公比为q ,且2212b S ,22S qb .(Ⅰ)求n a 与n b .(Ⅱ)设数列{}n c 满足1nnc S ,求{}n c 的前n 项和n T .17.(本小题满分13分)ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,已知2cos (cos cos )C a B b A c .(Ⅰ)求角C .(Ⅱ)若7c,ABC △的面积为332,求ABC △的周长.18.(本小题满分13分)已知函数()ln f x x x ,2()eexx g x .(Ⅰ)求函数()f x 的区间[1,3]上的最小值.(Ⅱ)证明:对任意m ,(0,)n ,都有()()f m g n ≥成立.19.(本小题满分14分)已知函数322()()f x xaxbx a xR ,a ,b 为常数.(Ⅰ)若函数()f x 在1x 处有极值10,求实数a ,b 的值.(Ⅱ)若函数()f x 是奇函数.(1)方程()2f x 在[2,4]x 上恰有3个不相等的实数解,求实数b 的取值范围.(2)不等式()20f x b ≥对[1,4]x恒成立,求实数b 的取值范围.20.(本小题满分14分)已知数集1212{,,,}(1,2)n n Aa aa a aa n ≥具有性质P :对任意的(2)k k n ≤≤,i ,(1)j i j n ≤≤≤,使得k i j a a a 成立.(Ⅰ)分别判断数集{1,3,4}与{1,2,3,6}是否具有性质P ,并说明理由.(Ⅱ)求证:1212(2)n n a a a a n ≤≥.(Ⅲ)若72na ,求数集A 中所有元素的和的最小值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北京师范大学附属实验中学
2016-2017学年度第一学期高三年级数学(理)期中试卷
第Ⅰ卷 (选择题 共40分)
一、选择题:本大题共8小题,每小题5分,共40分. 1.集合2{|4}M x x =≤,1|01N x x ⎧⎫=>⎨⎬-⎩⎭则M N =( ).
A .(1,2)
B .[)1,2
C .(]1,2
D .[1,2] 2.在等差数列{}n a 中,21a =,45a =,则{}n a 的前5项和5S =( ).
A .7
B .15
C .20
D .25
3.已知向量(1,)a m =,(3,2)b =-且()a b b +⊥,则m =( ).
A .8
B .6
C .6-
D .8-
4.下列函数中,在其定义域内既是奇函数又是减函数的是( ).
A .1y x =+
B .2y x =-
C .1y x =
D .||y x x =-
5.设{}n a 是公比为q 的等比数列,则“1q >”是“{}n a 为递增数列”的( ).
A .充分不必要条件
B .必要不充分条件
C .充分必要条件
D .既不充分也不必要条件
6.已知0x 是函数11()2x f x x ⎛⎫=+ ⎪⎝⎭的一个零点,10(,)x x ∈-∞,20(,0)x x ∈,则( ). A .1()0f x <,2()0f x <
B .1()0f x >,2()0f x >
C .1()0f x >,2()0f x <
D .1()0f x <,2()0f x >
7.已知函数π()sin()0,||2f x x ωϕωϕ⎛⎫=+> ⎪⎝
⎭≤,π4x =-为()f x 的零点,π4x =为()y f x =图象的对称轴,且()f x 在π5π,1836⎛⎫ ⎪⎝⎭
单调,则ω的最大值为( ). A .11 B .9 C .7 D .5
8.某学校运动会的立定跳远和30秒跳绳两个单项比赛分成预赛和决赛两个阶段.下表为10名学生的预赛成绩,其中有三个数据模糊.
在这 ).
A .2号学生进入30秒跳绳决赛
B .3号学生进入30秒跳绳决赛
C .7号学生进入30秒跳绳决赛
D .9号学生进入30秒跳绳决赛
第Ⅱ卷 (非选择题 共110分)
二、填空题:本大题共6小题,每小题5分,共30分.
9.已知复数z 满足(1i)1z -⋅=,则z =__________.
10.已知向量a ,b 满足||1a =,||2b =,a 与b 的夹角为60︒,则||a b -=__________.
11.如图,设A 、B 两点在河的两岸,一测量者在A 在同侧河岸边选定一点C ,测出AC 距离为50m ,45ACB =︒∠,105CAB =︒∠,则A 、B 两点的距离为__________m .
12.设等比数列{}n a 满足1310a a +=,245a a +=,则12
n a a a 的最大值为__________.
13.设函数21,2()1log ,2
x a x f x x x ⎧-+<⎪⎪=⎨⎪⎪⎩≥的最小值为1-,则实数a 的取值范围是__________.
14.对于函数()y f x =,若在其定义域内存在0x ,使得00()1x f x =成立,则称函数()f x 具有性质T . (1)下列函数中具有性质T 的有__________.
①()2f x x =-+ ②()sin ([0,2π])f x x x =∈ ③1()f x x x
=+,((0,))x ∈+∞ ④()ln(1)f x x =+ (2)若函数()ln f x a x =具有性质T ,则实数a 的取值范围是__________.
三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题满分13分)
已知函数2π()sin sin (0)2f x x x x ωωωω⎛⎫=++> ⎪⎝
⎭的最小正周期为π. (Ⅰ)求ω的值.
(Ⅱ)求函数()f x 的区间2π0,3⎡⎤⎢⎥⎣⎦
上的取值范围.
16.(本小题满分13分)
在等差数列{}n a 中,13a =,其前n 项和n S ,等比数列{}n b 的各项均为正数,11b =,公比为q ,且2212b S +=,22
S q b =. (Ⅰ)求n a 与n b .
(Ⅱ)设数列{}n c 满足1
n n
c S =,求{}n c 的前n 项和n T .
17.(本小题满分13分)
ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,已知2cos (cos cos )C a B b A c +=. (Ⅰ)求角C .
(Ⅱ)若c ABC △,求ABC △的周长.
18.(本小题满分13分)
已知函数()ln f x x x =,2()e e x x
g x =-.
(Ⅰ)求函数()f x 的区间[1,3]上的最小值.
(Ⅱ)证明:对任意m ,(0,)n ∈+∞,都有()()f m g n ≥成立.
19.(本小题满分14分)
已知函数322()()f x x ax bx a x =--+∈R ,a ,b 为常数. (Ⅰ)若函数()f x 在1x =处有极值10,求实数a ,b 的值. (Ⅱ)若函数()f x 是奇函数.
(1)方程()2f x =在[2,4]x ∈-上恰有3个不相等的实数解,求实数b 的取值范围. (2)不等式()20f x b +≥对[1,4]x ∀∈恒成立,求实数b 的取值范围.
20.(本小题满分14分)
已知数集1212{,,,}(1,2)n n A a a a a a a n ==<<≥具有性质P :对任意的(2)k k n ≤≤,i ∃,(1)j i j n ≤≤≤,使得k i j a a a =+成立.
(Ⅰ)分别判断数集{1,3,4}与{1,2,3,6}是否具有性质P ,并说明理由. (Ⅱ)求证:1212(2)n n a a a a n -++≤≥.
(Ⅲ)若72n a =,求数集A 中所有元素的和的最小值.。

相关文档
最新文档