数控加工中的补偿介绍
数控加工的补偿方法

数控加工的补偿方法在20世纪六七十年代的数控加工中没有补偿的概念,所以编程人员不得不围绕刀具的理论路线和实际路线的相对关系来进行编程,这样容易产生错误。
补偿的概念出现以后,大大地提高了编程的工作效率。
在数控加工中有刀具半径补偿、刀具长度补偿和夹具补偿。
这三种补偿方法基本上能解决在加工中因刀具形状而产生的轨迹问题。
1、刀具半径补偿在数控机床进行轮廓加工时,由于刀具有一定的半径(如铣刀半径),因此在加工时,刀具中心的运动轨迹必须偏离实际零件轮廓一个刀具半径值,否则实际需要的尺寸将与加工出的零件尺寸相差一个刀具半径值或一个刀具直径值。
此外,在零件加工时,有时还需要考虑加工余量和刀具磨损等因素的影响。
有了刀具半径补偿后,在编程时就可以不过多考虑刀具直径的大小了。
刀具半径补偿一般只用于铣刀类刀具,当铣刀在内轮廓加工时,刀具中心向零件内偏离一个刀具半径值;在外轮廓加工时,刀具中心向零件外偏离一个刀具半径值。
当数控机床具备刀具半径补偿功能时,数控编程只需按工件轮廓进行,然后再加上刀具半径补偿值,此值可以在机床上设定。
程序中通常使用G41/G42指令来执行,其中G41为刀具半径左补偿,G42为刀具半径右补偿。
根据ISO标准,沿刀具前进方向看去,当刀具中心轨迹位于零件轮廓右边时,称为刀具半径右补偿;反之,称为刀具半径左补偿。
在使用G41、G42进行半径补偿时,应采取如下步骤:设置刀具半径补偿值;让刀具移动来使补偿有效(此时不能切削工件);正确地取消半径补偿(此时也不能切削工件)。
当然要注意的是,在切削完成且刀具补偿结束时,一定要用G40使补偿无效。
G40的使用同样遇到和使补偿有效相同的问题,一定要等刀具完全切削完毕并安全地退出工件后,才能执行G40命令来取消补偿。
2、刀具长度补偿根据加工情况,有时不仅需要对刀具半径进行补偿,还要对刀具长度进行补偿。
程序员在编程的时候,首先要指定零件的编程中心,才能建立工件编程的坐标系,而此坐标系只是一个工件坐标系,零点一般在工件上。
CNC机床加工中的加工变形与补偿

CNC机床加工中的加工变形与补偿在现代制造业中,CNC(计算机数控)机床被广泛应用于各种零部件的加工过程中。
然而,即使在高度自动化的CNC加工过程中,加工变形仍然是一个不可忽视的问题。
本文将讨论CNC机床加工中的加工变形及其补偿方法。
一、加工变形的原因在CNC机床加工中,加工变形是由多种因素引起的。
以下是几个常见的加工变形原因:1. 材料的物理性质:不同材料在切削过程中会发生不同程度的变形。
一些材料,例如铝合金,可能会产生较大的弹性变形,而一些硬质材料则可能会导致塑性变形。
2. 加工过程中的切削力:切削力是引起加工变形的主要原因之一。
在切削过程中,切削力会导致工件及刀具的变形,从而影响到加工的精度和表面质量。
3. 热变形:在高速切削或连续切削的过程中,切削过程会产生大量的热量,导致工件和刀具的温度升高。
由于不同材料的热膨胀系数不同,热变形也会在加工过程中发挥作用。
二、加工变形的影响加工变形会对CNC机床加工过程中的精度和质量产生重要影响。
以下是一些常见的加工变形对加工过程的影响:1. 尺寸偏差:由于加工变形,工件可能与设计尺寸存在偏差,导致加工件尺寸不准确。
这对于需要高精度的工件尤为重要。
2. 表面质量:加工变形也会直接影响工件的表面质量。
例如,加工过程中的剪切力可能导致切削产生的表面不光滑,从而降低工件的表面质量。
3. 加工过程稳定性:加工变形也可能导致加工过程的不稳定性。
例如,在高速切削过程中,加工变形可能导致切削震动,从而降低加工效率和质量。
三、加工变形的补偿方法为了减少和补偿CNC机床加工中的加工变形,以下是一些常用的方法:1. 合理的工艺参数选择。
选择合适的切削刀具、进给速度和切削速度等工艺参数,能够在一定程度上减少加工变形。
2. 加工过程动态监控。
通过在加工过程中监测切削力、温度等参数,可以及时了解加工变形情况,并采取相应的调整措施。
3. 刀具补偿技术。
根据加工变形情况,通过对切削力进行实时监测,可以对刀具位置进行补偿,以保持加工精度。
理解数控机床技术中的刀补偿和补偿参数设置

理解数控机床技术中的刀补偿和补偿参数设置数控机床技术是现代制造业中不可或缺的重要工具,它的使用使得加工工艺更加精确、高效。
在数控机床技术中,刀补偿和补偿参数设置是非常关键的环节。
本文将对数控机床技术中的刀补偿和补偿参数设置进行深入解析。
刀补偿是指在数控机床加工过程中,由于工具与工件之间的相对运动和机床的锥度、导轨的精度等原因,刀具的实际切削位置与编程指令的位置可能会有偏差。
为了保证加工结果的准确性,我们需要通过刀补偿来控制刀具的实际切削位置。
刀补偿通常分为几何补偿和半径补偿两种类型。
几何补偿是指根据刀具的几何形状,通过调整工件坐标系与机床坐标系之间的关系,使得刀具的实际切削位置与编程指令的位置相一致。
几何补偿可以分为长、宽、高三个方向的补偿。
通过适当地调整几何补偿的数值,可以实现刀具的侧向移动、刀具半径的变化以及刀具在加工过程中的顶部位置的调整等功能。
半径补偿是指在加工过程中,通过改变程序中圆弧指令的半径值,使得切削轮廓的半径与所需加工尺寸相吻合。
半径补偿一般用于加工圆弧和倾斜面等需求精度较高的部分。
它可以通过改变刀具半径值或者调整工件坐标系与机床坐标系之间的关系来进行补偿。
刀补偿参数设置是确定补偿效果的关键。
在数控机床中,刀补偿参数通常有偏心距、刀具半径、轨迹偏移等。
偏心距是指刀具切削点相对于轨迹的垂直距离,刀具半径是指实际使用中刀具的半径值,轨迹偏移是指在切削点相对于编程指令的距离。
通过合理设置这些参数的数值,可以实现刀具补偿。
在进行补偿参数设置时,首先要根据所加工零件的要求和加工特点来确定需要进行刀补偿的部分,然后根据实际情况来设置刀补偿参数的数值。
一般来说,刀补偿参数的数值越大,补偿效果越明显。
但是,过大的补偿参数可能会导致刀具过度磨损或加工精度不高。
因此,在确定刀补偿参数时,需要根据实际加工情况进行合理的调整。
此外,还需要根据刀具磨损程度和加工要求进行定期检查和调整刀补偿参数。
在实际加工过程中,由于刀具的磨损和变形,刀补偿参数的设置可能需要进行适当的修正。
数控加工中常用的三种补偿方法

数控加工中常用的三种补偿方法1.坐标补偿:坐标补偿是指在机床上根据加工实际情况对加工轨迹做出调整,使得加工尺寸达到设计要求的一种方法。
常见的坐标补偿有以下几种形式:(1)G40/G41/G42坐标补偿:G40是取消刀具补偿,G41是左侧刀具补偿,G42是右侧刀具补偿。
通过设定G40、G41、G42来实现在切削路径上实际加工尺寸的自动调整。
(2)G43/G44/G49坐标补偿:G43是工件长度补偿,G44是工件半径补偿(常用于车削),G49是取消工件长度或半径补偿。
(3)G51坐标变换补偿:G51用于进行坐标变换,可以通过设定坐标系原点的偏移来实现坐标补偿功能。
2.刀具半径补偿:刀具半径补偿是指根据实际刀具半径与设计刀具半径之间的差异,通过在程序中设定刀具补偿值,使得实际加工尺寸达到设计要求的一种补偿方法。
(1)G41/G42刀具半径补偿:G41是左侧刀具半径补偿,G42是右侧刀具半径补偿。
通过设定G41或G42及刀具补偿值来实现切削路径尺寸的自动调整。
(2)G43/G44刀具长度补偿:G43是刀具长度补偿,G44是刀具半径补偿。
在加工中,通过设定刀具长度或刀具半径补偿值,使得实际加工尺寸达到设计要求。
3.工件半径补偿:工件半径补偿是指根据实际工件半径与设计工件半径之间的差异,通过在程序中设定工件半径补偿值,使得实际加工尺寸达到设计要求的一种补偿方法。
(1)G41/G42/G43工件半径补偿:G41是加工左侧边缘补偿,G42是加工右侧边缘补偿。
通过设定G41或G42及工件半径补偿值来实现工件边缘尺寸的自动调整。
G43是工件长度补偿,通过设定工件长度补偿值来调整工件的实际长度。
(2)G49工件长度或半径补偿取消:G49用于取消工件长度或半径补偿功能,即恢复到原始设计尺寸。
以上是数控加工中常用的三种补偿方法的介绍,通过合理使用这些方法,可以使得加工尺寸更加精确,提高加工效率和质量。
简述刀具补偿在数控加工中的作用

简述刀具补偿在数控加工中的作用
刀具补偿是一种在数控加工中常用的技术,旨在纠正加工过程中刀具的偏斜和长度不足等问题,保证加工质量和效率。
本文将简要介绍刀具补偿的基本原理和作用。
刀具补偿的基本原理是通过测量刀具的偏斜和长度不足,来调整数控加工中的刀具参数,使刀具沿着正确的轨迹运动,达到高质量的加工效果。
刀具补偿的主要工具是刀具补偿器,它可以通过改变刀具的偏斜和长度来补偿刀具的误差。
刀具补偿的作用包括:
1. 提高加工精度:刀具补偿可以帮助数控加工中心实现高精度加工,减少加工误差,提高产品的质量和一致性。
2. 降低加工成本:通过刀具补偿,可以实现刀具的精确定位,降低刀具的磨损和损坏,延长刀具的使用寿命,降低加工成本。
3. 改善加工过程的稳定性:刀具补偿可以帮助数控加工中心实现稳定的加工过程,降低加工过程中的噪声和震动,保证加工过程的一致性和稳定性。
刀具补偿在数控加工中的应用非常广泛,是实现高质量、高效率加工的重要技术之一。
随着数控加工技术的不断发展和进步,刀具补偿技术也在不断更新和改进,以适应不同的加工环境和需求。
数控车床刀具补偿及换刀程序编写

绝对编程:
G90 G28 X140.0 Z130.0 ; A--B--R
T0202 ;
换刀
G29 X60.0 Z180.0 ;
R--B--C
参考点
增量编程
G28 U40 W100 T0000 T0202 目标点 G29 U-80 W50
可以使按工件轮廓编程不受影响.
❖ 一、刀具补偿的概念
❖ 刀具补偿:是补偿实际加工时所用的刀具
与编程时使用的理想刀具或对刀时使用的 基准刀具之间的偏差值,保证加工零件符 合图纸要求的一种处理方法。
二、刀具补偿的种类
刀具补偿
刀具的几何补偿
(TXXXX实现)
几何位置补偿 磨损补偿
刀尖圆弧半径补偿
(G41、G42实现)
从图示可知,
➢ 若刀尖方位码设为0或9时,机床将以刀尖圆弧中心
为刀位点进行刀补计算处理;
➢ 当刀尖方位码设为1~8时,机床将以假想刀尖为刀
位点,根据相应的代码方位进行刀补计算处理。
5、刀具半径补偿指令 ❖格式:
G41 G00 X __ Z __ G42 G01
G40 G00 X__ Z __
❖说明:
3、刀径补偿的取消
❖刀具中心从与编 程轨迹偏离过度到 与编程轨迹重合的 过程.
刀径补偿的引入和取 消必须是不切削的空 行程上.
例2:考虑刀尖半径补偿
D
C (24,-24)
O1111 N1 G92 X40.0 Z10.0 N2 T0101 N3 M03 S400 N4 G00 X40.0 Z5.0 N5 G00 X0.0 N6 G42 G01 Z0 F60 (加刀补) O N7 G03 X24.0 Z-24 R15 N8 G02 X26.0 Z-31.0 R5 N9 G40 G00 X30 (取消刀补) N10 G00 X45 Z5 N11 M30
数控机床的刀具补偿与补偿方法

数控机床的刀具补偿与补偿方法数控机床是一种通过计算机编程来控制刀具自动运动的高精度机床。
而在数控机床的加工过程中,刀具磨损是不可避免的。
为了确保加工的精度和质量,需要对刀具的磨损进行补偿。
本文将介绍数控机床的刀具补偿及其方法。
刀具补偿是指在数控机床的程序中,通过计算机控制的方式,根据刀具磨损的情况进行刀补操作,使得机床能够保持加工精度。
刀具补偿主要分为几种类型:半径补偿、长度补偿、倾斜补偿、刀尖位置补偿等。
首先,半径补偿是常见的刀具补偿方式之一。
在数控机床中,刀具刃尖的磨损会导致加工半径发生变化,从而影响到加工结果。
为了纠正加工误差,可以通过半径补偿进行校正。
一般来说,半径补偿是通过在程序中输入一个补偿值,将刀具的半径进行相应的增加或减少,以保持加工精度。
其次,长度补偿也是常用的一种刀具补偿方法。
在数控机床中,切削刀具的长度磨损会导致切削深度的变化。
为了保持加工的一致性和精度,可以通过长度补偿来进行校正。
长度补偿的原理是通过在程序中输入一个补偿值,使刀具的位置发生相应的变化,从而达到加工深度的控制。
倾斜补偿是指在加工过程中,刀具出现倾斜现象,导致加工精度下降。
为了解决这个问题,可以通过倾斜补偿来进行校正。
倾斜补偿的原理是通过在程序中调整坐标偏移量,使得刀具在加工过程中能够保持正确的倾斜角度,从而保持加工精度。
最后,刀尖位置补偿是一种通过调整刀具运动轨迹来控制加工精度的方法。
在数控机床的切削过程中,刀尖的位置可能会发生偏移。
通过刀尖位置补偿,可以通过调整刀具的路径来保持刀尖的正确位置,从而实现精确的加工。
综上所述,数控机床的刀具补偿方法主要包括半径补偿、长度补偿、倾斜补偿和刀尖位置补偿等。
这些方法通过在数控机床的程序中输入相应的补偿值或调整坐标偏移量,能够对刀具磨损进行有效的补偿,从而保证加工的精度和质量。
刀具补偿是数控机床加工过程中不可或缺的一部分,它使得机床能够适应刀具磨损的变化,同时提高了加工的效率与精度。
刀具补偿功能概述

刀具补偿功能概述刀具补偿是数控加工中一项关键的技术,它可以有效地提高加工精度和效率。
本文将对刀具补偿功能进行概述,介绍其原理、应用和优势。
一、刀具补偿的原理刀具补偿是通过在数控系统中对工具轨迹进行校正来实现的。
由于刀具的尺寸、形状和磨损等因素,工件的加工结果可能会与预期有所偏差。
刀具补偿基于工具几何和轨迹偏差的关系,通过调整数控程序中的刀具路径,使实际切削轨迹与期望轨迹保持一致,从而实现精准加工。
二、刀具补偿的应用领域刀具补偿广泛应用于各种数控加工领域,如铣削、车削、钻削等。
在这些加工过程中,刀具补偿能够提高零件的尺寸精度、表面质量和加工效率。
1. 铣削中的刀具补偿:在铣削过程中,刀具补偿可以根据刀具直径和偏移量来自动调整切削轨迹,确保切削结果符合要求。
同时,通过刀具补偿,还可以实现铣削过程中不同刀具的自动更换,提高生产效率。
2. 车削中的刀具补偿:车削过程中,刀具补偿可以针对工件的尺寸偏差进行调整,使加工后的工件尺寸与期望尺寸保持一致。
刀具补偿可以通过修正刀具位置或调整进给速度来实现,大大提高了车削加工的精度和稳定性。
3. 钻削中的刀具补偿:在钻削过程中,刀具补偿可以根据刀具尺寸和磨损情况来调整刀具的位置和轨迹。
通过刀具补偿,可以有效控制钻孔的直径误差和圆度误差,提高钻削加工的质量。
三、刀具补偿的优势刀具补偿具有许多优势,使其在数控加工中得到广泛应用。
1. 提高加工精度:刀具补偿可以消除工具尺寸和磨损等因素对加工精度的影响,实现更加精确的加工结果。
2. 提高加工效率:通过刀具补偿,可以使切削轨迹与工件的实际形状相匹配,减少加工过程中的空刀时间,提高生产效率。
3. 增强加工稳定性:刀具补偿可以对工具的位置和轨迹进行校正,减少切削力的变化,有助于提高加工过程的稳定性。
四、结论刀具补偿功能在数控加工中起到至关重要的作用,它通过调整刀具路径,确保加工结果与期望一致,提高加工精度和效率。
刀具补偿在铣削、车削、钻削等加工过程中广泛应用,并具有诸多优势,如提高加工精度、效率和稳定性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数控加工中的补偿介绍
在数控加工中有3种补偿:
☆刀具长度的补偿;
☆刀具半径补偿;
☆夹具补偿。
这三种补偿基本上能解决在加工中因刀具形状而产生的轨迹问题。
下面是三种补偿在一般加工编程中的应用。
一、刀具长度补偿
1.刀具长度的概念
刀具长度是一个很重要的概念。
我们在对一个零件编程的时候,首先要指定零件的编程中心,然后才能建立工件编程坐标系,而此坐标系只是一个工件坐标系,零点一般在工件上。
长度补偿只是和Z坐标有关,它不象X、Y平面内的编程零点,因为刀具是由主轴锥孔定位而不改变,对于Z坐标的零点就不一样了。
每一把刀的长度都是不同的,例如,我们要钻一个深为50mm的孔,然后攻丝深为45mm,分别用一把长为250mm的钻头和一把长为350mm的丝锥。
先用钻头钻孔深50mm,此时机床已经设定工件零点,当换上丝锥攻丝时,如果两把刀都从设定零点开始加工,丝锥因为比钻头长而攻丝过长,损坏刀具和工件。
此时如果设定刀具补偿,把丝锥和钻头的长度进行补偿,此时机床零点设定之后,即使丝锥和钻头长度不同,因补偿的存在,在调用丝锥工作时,零点Z坐标已经自动向Z+(或Z)补偿了丝锥的长度,保证了加工零点的正确。
2.刀具长度补偿的工作使用
刀具长度补偿是通过执行含有G43(G44)和H指令来实现的,同时我们给出一个Z坐标值,这样刀具在补偿之后移动到离工件表面距离为Z的地方。
另外一个指令G49是取消G43(G44)指令的,其实我们不必使用这个指令,因为每把刀具都有自己的长度补偿,当换刀时,利用G43(G44)H指令赋予了自己的刀长补偿而自动取消了前一把刀具的长度补偿。
3.刀具长度补偿的两种方式
(1)用刀具的实际长度作为刀长的补偿(推荐使用这种方式)。
使用刀长作为补偿就是使用对刀仪测量刀具的长度,然后把这个数值输入到刀具长度补偿寄存器中,作为刀长补偿。
使用刀具长度作为刀长补偿的理由如下:
首先,使用刀具长度作为刀长补偿,可以避免在不同的工件加工中不断地修改刀长偏置。
这样一把刀具用在不同的工件上也不用修改刀长偏置。
在这种情况下,可以按照一定的刀具编号规则,给每一把刀具作档案,用一个小标牌写上每
把刀具的相关参数,包括刀具的长度、半径等资料,事实上许多大型的机械加工型企业对数控加工设备的刀具管理都采用这种办法。
这对于那些专门设有刀具管理部门的公司来说,就用不着和操作工面对面地告诉刀具的参数了,同时即使因刀库容量原因把刀具取下来等下次重新装上时,只需根据标牌上的刀长数值作为刀具长度补偿而不需再进行测量。
其次,使用刀具长度作为刀长补偿,可以让机床一边进行加工运行,一边在对刀仪上进行其他刀具的长度测量,而不必因为在机床上对刀而占用机床运行时间,这样可以充分发挥加工中心的效率。
这样主轴移动到编程Z坐标点时,就是主轴坐标加上(或减去)刀具长度补偿后的Z坐标数值。
(2)利用刀尖在Z方向上与编程零点的距离值(有正负之分)作为补偿值。
这种方法适用于机床只有一个人操作而没有足够的时间来利用对刀仪测量刀具的长度时使用。
这样做当用一把刀加工另外的工件时就要重新进行刀长补偿的设置。
使用这种方法进行刀长补偿时,补偿值就是主轴从机床Z坐标零点移动到工件编程零点时的刀尖移动距离,因此此补偿值总是负值而且很大。
二、刀具半径补偿
1.刀具半径补偿的概念
正像使用了刀具长度补偿在编程时基本上不用考虑刀具的长度一样,因为有了刀具半径补偿,我们在编程时可以不要考虑太多刀具的直径大小了。
刀长补偿对所有的刀具都适用,而刀具半径补偿则一般只用于铣刀类刀具。
当铣刀加工工件的外或内轮廓时,就用得上刀具半径补偿,当用端面铣刀加工工件的端面时则只需刀具长度补偿。
因为刀具半径补偿是一个比较难以理解和使用的一个指令,所以在编程中很多人不愿使用它。
但是我们一旦理解和掌握了它,使用起来对我们的编程和加工将带来很大的方便。
当编程者准备编一个用铣刀加工一个工件的外形的程序时,首先要根据工件的外形尺寸和刀具的半径进行细致的计算坐标值来明确刀具中心所走的路线。
此时所用的刀具半径只是这把铣刀的半径值,当辛辛苦苦编完程序后发现这把铣刀不太适合要换用其他直径的刀具,编程员就要不辞辛劳地重新计算刀具中心所走的路线的坐标值。
这对于一个简单的工件问题不太大,对于外形复杂的模具来说重新计算简直是太困难了。
一个工件的外形加工分粗加工和精加工,这样粗加工程序编好后也就是完成了粗加工。
因为经过粗加工,工件外形尺寸发生了变化,接下来又要计算精加工的刀具中心坐标值,工作量就更大了。
此时,如果用了刀具半径补偿,这些麻烦都迎刃而解了。
我们可以忽略刀具半径,而根据工件尺寸进行编程,然后把刀具半径作为半径补偿放在半径补偿寄存器里。
临时更换铣刀也好、进行粗精加工也好,我们只需更改刀具半径补偿值,就可以控制工件外形尺寸的大小了,对程序基本不用作一点修改。
2.刀具半径补偿的使用
刀具半径补偿的使用是通过指令G41、G42来执行的。
补偿有两个方向,即沿刀具切削进给方向垂直方向的左面和右面进行补偿,符合左右手定则;G41是左补偿,符合左手定则;G42是右补偿,符合右手定则,如图3所示。
图3刀具半径补偿使用的左右手定则在使用G41、G42进行半径补偿时,应特别注意使补偿有效的刀具移动方向与坐标。
刀具半径补偿的起刀位置很重要,如果使用不当刀具所加工的路径容易出错,如图4所示。
图4刀具半径补偿的起刀位置如果使G42补偿有效的过程为刀具从位置1到2,则铣刀将切出一个斜面如图4中所示的A-B斜面。
正确的走刀应该是在刀具没有切削工件之前让半径补偿有效,然后进行正常的切削。
如图4所示,先让铣刀在从位置1移动到位置3的过程中使补偿有效,然后从位置3切削到位置2继续以下的切削,则不会出现A-B斜面。
因此,在使用G41、G42进行半径补偿时应采取以下步骤:☆设置刀具半径补偿值;☆让刀具移动来使补偿有效(此时不能切削工件);☆正确地取消半径补偿(此时也不能切削工件)。
记住,在切削完成而刀具补偿结束时,一定要用G40使补偿无效。
G40的使用同样遇到和使补偿有效相同的问题,一定要等刀具完全切削完毕并安全地推出工件以后才能执行G40命令来取消补偿。
三、夹具偏置补偿
正像刀具长度补偿和半径补偿一样让编程者可以不用考虑刀具的长短和大小,夹具偏置可以让编程者不考虑工件夹具的位置而使用夹具偏置。
当一台加工中心在加工小的工件时,工装上一次可以装夹几个工件,编程者不用考虑每一个工件在编程时的坐标零点,而只需按照各自的编程零点进行编程,然后使用夹具偏置来移动机床在每一个工件上的编程零点。
夹具偏置是使用夹具偏置指令G54~G59来执行的。
还有一种方法就是使用G92指令设定坐标系。
当一个工件加工完成之后,加工下一个工件时使用G92来重新设定新的工件坐标系。
上面是在数控加工中常用的三种补偿,它给我们的编程和加工带来很大的方便,能大大地提高工作效率。