导数练习题附答案

合集下载

导数的计算练习题及答案

导数的计算练习题及答案

导数的计算练习题及答案1. 计算函数f(x) = 3x^2 - 4x + 2的导数f'(x)。

解答:根据函数f(x) = 3x^2 - 4x + 2,使用导数的定义来计算导数f'(x)。

f'(x) = lim(delta x -> 0) (f(x + delta x) - f(x)) / delta x代入函数f(x)的表达式:f'(x) = lim(delta x -> 0) [(3(x + delta x)^2 - 4(x + delta x) + 2) -(3x^2 - 4x + 2)] / delta x化简并展开:f'(x) = lim(delta x -> 0) [3(x^2 + 2x * delta x + (delta x)^2) - 4x - 4 * delta x + 2 - 3x^2 + 4x - 2] / delta xf'(x) = lim(delta x -> 0) [3x^2 + 6x * delta x + 3(delta x)^2 - 4x - 4* delta x + 2 - 3x^2 + 4x - 2] / delta xf'(x) = lim(delta x -> 0) [6x * delta x + 3(delta x)^2 - 4 * delta x] / delta xf'(x) = lim(delta x -> 0) [6x + 3 * delta x - 4]由于求导数时delta x趋近于0,所以delta x也可以看作一个无穷小量,其平方项可以忽略不计,即delta x^2 = 0。

化简结果:f'(x) = 6x - 4所以函数f(x) = 3x^2 - 4x + 2的导数f'(x)为6x - 4。

2. 计算函数g(x) = 2sin(x) + 3cos(x)的导数g'(x)。

导数应用精选50题(含有答案)

导数应用精选50题(含有答案)

)
99
A. a b c
B. c > b > a
C. c > a > b
D. a > c > b
10. f (x)是函数f (x)的导函数, 将y f (x)和y f (x) 的图象画在同一直角坐标系中,不
可能正确的是
()
11.已知函数 y xf (x) 的图象如图 3 所示(其中 f (x) 是函数 f (x) 的导函数).下面四个图 象中, y f (x) 的图象大致是( )
30.(本大题满分 14 分) 设 x=3 是函数 f(x)=(x2+a+b)e3-x(x∈R)的一个极值点. (1)求 a 与 b 的关系式(用 a 表示 b),并求 f(x)的单调区间;(2)a>0,g(x)=( a+ 25 ) ex.若
4 存在 x1、x2∈[0,4]使得| f(x1)- g(x2)|<1 成立,求 a 的取值范围.
(3)若函数 y=f(x)+g(x)有两个不同的极值点 x1,x2(xl <x2),且 x2 -xl >1n2,求实数 a 的取值范围.
28.(本题满分 14 分)
5
已知函数 f x a ln x 1 a x 1 x2, a R
2
(1)当 0 a 1时,求函数 f x 的单调区间;
(2)已知 f x 0 对定义域内的任意 x 恒成立,求实数 a 的范围.
(1)求 a, b 的值;(2)求函数 f (x) 的极小值.
26.(本小题满分 13 分)已知定义在正实数集上的函数 f (x) 1 x2 2ex , g(x) 3e2 ln x b (其中 e 为常数, e 2.71828 ),若这两个函数

导数复习题(含答案)

导数复习题(含答案)
所以函数 在 上是增函数,
因为 ,所以 ,即 ,
所以 化为 ,
当 时,不等式 等价于 ,即 ,解得 ;
当 时,不等式 等价于 ,即 ,解得 ;
综上,不等式 的解集为 .
点睛:本题考查了与函数有关的不等式的求解问题,其中解答中涉及到利用条件构造新函数和利用导数研究函数的单调性,以及根据单调性和奇偶性的关系对不等式进行转化,解答中一定要注意函数值为零是自变量的取值,这是题目的一个易错点,试题综合性强,属于中档试题.
A. B. C. D.
【答案】A
【解析】由题意得 ,令
,选A.
点睛:对于求不等式成立时的参数范围问题,在可能的情况下把参数分离出来,使不等式一端是含有参数的不等式,另一端是一个区间上具体的函数,这样就把问题转化为一端是函数,另一端是参数的不等式,便于问题的解决.但要注意分离参数法不是万能的,如果分离参数后,得出的函数解析式较为复杂,性质很难研究,就不要使用分离参数法.
故答案为B。
11.已知函数 有两个零点,则 的取值范围是()
A. B. C. D.
【答案】D
【解析】函数 的定义域为 ,因为 ,当 时, ,则函数 在 上单调递增,不满足条件;当 时,令 ,得 ,所以 在 上单调递减,在 上单调递增,所以 为极小值点,要使 有两个零点,即要 ,即 ,则 的取值范围是 ,故选D.
6.函数 的图象是()
A. B.
C. D.
【答案】A
【解析】由函数 ,则 ,所以函数 为奇函数,
图象关于原点对称,
又 时, ,
所以当 时, 单调递增,当 时, 单调递减,
综上,函数的图象大致为选项A,故选A.
7.已知函数 是函数 的导函数, ,对任意实数都有 ,设 则不等式 的解集为()

导数数学试题及答案

导数数学试题及答案

导数数学试题及答案一、选择题1. 函数 \( f(x) = 3x^2 + 2x - 5 \) 的导数是:A. \( 6x + 4 \)B. \( 6x^2 + 2 \)C. \( 3x + 2 \)D. \( 6x - 1 \)2. 如果 \( f(x) \) 的导数为 \( f'(x) = 4x^3 - 6x^2 + 8x - 10 \),那么 \( f'(1) \) 的值是:A. -2B. 0C. 2D. 4二、填空题3. 求函数 \( g(x) = x^3 - 4x + 1 \) 的导数,并计算 \( g'(2) \) 。

\( g'(x) = \) ________ , \( g'(2) = \) ________ 。

4. 若 \( h(t) = t^4 + 3t^2 + 2 \),求 \( h'(t) \) 。

\( h'(t) = \) ________ 。

三、解答题5. 已知 \( f(x) = \ln(x) + 2x \),求 \( f'(x) \) 并找出\( f'(x) \) 的零点。

6. 给定函数 \( y = \frac{1}{x} \),求其导数,并讨论其在 \( x= 1 \) 处的切线斜率。

四、应用题7. 一个物体从静止开始,其速度随时间变化的函数为 \( v(t) =3t^2 - 2t \),求其加速度函数 \( a(t) \) 并计算 \( t = 2 \) 秒时的加速度。

8. 一个物体在 \( x \) 轴上的位移函数为 \( s(x) = x^3 - 6x^2 + 11x + 10 \),求其速度函数 \( v(x) \) 并找出 \( x = 2 \) 时的速度。

答案:一、选择题1. A. \( 6x + 4 \)2. C. 2二、填空题3. \( g'(x) = 3x^2 - 4 \) , \( g'(2) = 8 \)4. \( h'(t) = 12t^3 + 6t \)三、解答题5. \( f'(x) = \frac{1}{x} + 2 \),令 \( f'(x) = 0 \) 解得\( x = 1 \)。

求导练习题带答案

求导练习题带答案

求导练习题带答案求导是微积分中的一项基本技能,它可以帮助我们理解函数的变化率以及找到函数的极值点。

以下是一些求导的练习题及其答案,适合初学者练习。

练习题1:求函数 f(x) = x^3 的导数。

解:根据幂函数的求导法则,对于函数 f(x) = x^n,其导数为 f'(x) = n * x^(n-1)。

因此,对于 f(x) = x^3,我们有 f'(x) = 3 *x^(3-1) = 3x^2。

练习题2:求函数 g(x) = sin(x) 的导数。

解:根据三角函数的求导法则,sin(x) 的导数是 cos(x)。

所以,g'(x) = cos(x)。

练习题3:求函数 h(x) = 2x^2 + 3x - 1 的导数。

解:根据多项式的求导法则,我们可以分别对每一项求导,然后将结果相加。

对于 h(x) = 2x^2 + 3x - 1,我们有 h'(x) = 2 * 2x^(2-1) + 3 * 1x^(1-1) - 0 = 4x + 3。

练习题4:求函数 k(x) = (x^2 - 1)^3 的导数。

解:这里我们使用链式法则和幂函数的求导法则。

首先,设 u = x^2- 1,那么 k(x) = u^3。

u 的导数是 u' = 2x,而 u^3 的导数是3u^2。

应用链式法则,我们得到 k'(x) = 3u^2 * u' = 3(x^2 - 1)^2 * 2x = 6x(x^2 - 1)。

练习题5:求函数 m(x) = e^x 的导数。

解:根据指数函数的求导法则,e^x 的导数是它自身。

所以,m'(x) = e^x。

练习题6:求函数 n(x) = ln(x) 的导数。

解:自然对数函数 ln(x) 的导数是 1/x。

因此,n'(x) = 1/x。

练习题7:求函数 p(x) = (3x - 2)^5 的导数。

解:使用链式法则和幂函数的求导法则。

高二导数练习题及答案文库

高二导数练习题及答案文库

高二导数练习题及答案文库导数是高中数学中的重要知识点之一,掌握导数的概念和运算方法对学生的数学学习至关重要。

为了帮助高二学生更好地巩固导数知识,提高解题能力,本文整理了一些高二导数练习题及其详细答案,供学生参考和练习。

一、基础练习题1. 求函数f(x) = 3x² - 2x + 1的导数f'(x)。

解:根据导数的定义,可得:f'(x) = lim(Δx→0)⁡[f(x + Δx) - f(x)] / Δx代入函数f(x)的表达式,展开并化简:f'(x) = lim(Δx→0)⁡[(3(x + Δx)² - 2(x + Δx) + 1) - (3x² - 2x + 1)] / Δx= lim(Δx→0)⁡[3x² + 6xΔx + 3(Δx)² - 2x - 2Δx + 1 - 3x² + 2x - 1] /Δx= lim(Δx→0)⁡(6xΔx + 3(Δx)² - 2Δx) / Δx= lim(Δx→0)⁡(6x + 3Δx - 2) = 6x - 2所以,函数f(x) = 3x² - 2x + 1的导数f'(x)为6x - 2。

2. 已知函数g(x) = 4x³ + 2x² - x的导数g'(x),求g'(1)的值。

解:根据导数的定义,g'(x) = lim(Δx→0)⁡[g(x + Δx) - g(x)] / Δx代入函数g(x)的表达式,展开并化简:g(x + Δx) = 4(x + Δx)³ + 2(x + Δx)² - (x + Δx)= 4x³ + 12x²Δx + 12xΔx² + 4(Δx)³ + 2x² + 4xΔx + 2(Δx)² - x - Δx= 4x³ + 2x² - x + 12x²Δx + 12xΔx² + 4(Δx)³ + 4xΔx + 2(Δx)² - Δx代入导数的定义:g'(x) = lim(Δx→0)⁡[(4x³ + 2x² - x + 12x²Δx + 12xΔx² + 4(Δx)³ + 4xΔx + 2(Δx)² - Δx) - (4x³ + 2x² - x)] / Δx= lim(Δx→0)⁡(12x²Δx + 12xΔx² + 4(Δx)³ + 4xΔx + 2(Δx)² - Δx) / Δx= lim(Δx→0)⁡(12x² + 12xΔx + 4(Δx)² + 4x + 2Δx - 1)= 12x² + 4x - 1将x = 1代入上述导数表达式,可得:g'(1) = 12(1)² + 4(1) - 1 = 15所以,g'(1)的值为15。

(完整版)导数习题+答案

(完整版)导数习题+答案

一.解答题(共9小题)1.已知a>0,函数f(x)=lnx﹣ax2,x>0.(Ⅰ)求f(x)的单调区间;(Ⅱ)若存在均属于区间[1,3]的α,β,且β﹣α≥1,使f(α)=f(β),证明.2.已知函数f(x)=xlnx﹣2x+a,其中a∈R.(1)求f(x)的单调区间;(2)若方程f(x)=0没有实根,求a的取值范围;(3)证明:ln1+2ln2+3ln3+…+nlnn>(n﹣1)2,其中n≥2.3.已知函数f(x)=axlnx(a≠0).(Ⅰ)求函数f(x)的单调区间和最值;(Ⅱ)若m>0,n>0,a>0,证明:f(m)+f(n)+a(m+n)ln2≥f(m+n)4.已知函数f(x)=2e x﹣x(1)求f(x)在区间[﹣1,m](m>﹣1)上的最小值;(2)求证:对时,恒有.5.设a为实数,函数f(x)=e x﹣2x+2a,x∈R.(1)求f(x)的单调区间及极值;(2)求证:当a>ln2﹣1且x>0时,e x>x2﹣2ax+1.6.已知函数f(x)=ln(x+2)﹣a(x+1)(a>0).(1)求函数f(x)的单调区间;(2)若x>﹣2,证明:1﹣≤ln(x+2)≤x+1.7.已知函数f(x)=ln(x+1)﹣x.(Ⅰ)求函数f(x)的单调递减区间;(Ⅱ)若x>﹣1,证明:.8.已知函数(1)当a=1时,利用函数单调性的定义证明函数f(x)在(0,1]内是单调减函数;(2)当x∈(0,+∞)时f(x)≥1恒成立,求实数a的取值范围.9.已知函数f(x)=(1)当a<0,x∈[1,+∞)时,判断并证明函数f(x)的单调性(2)若对于任意x∈[1,+∞),不等式f(x)>0恒成立,求实数a的取值范围.参考答案与试题解析一.解答题(共9小题)1.已知a>0,函数f(x)=lnx﹣ax2,x>0.(Ⅰ)求f(x)的单调区间;(Ⅱ)若存在均属于区间[1,3]的α,β,且β﹣α≥1,使f(α)=f(β),证明.考点:利用导数求闭区间上函数的最值;利用导数研究函数的单调性。

导数练习题含答案完整版

导数练习题含答案完整版

导数练习题含答案HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】导数练习题班级姓名一、选择题1.当自变量从x0变到x1时函数值的增量与相应自变量的增量之比是函数( )A.在区间[x0,x1]上的平均变化率B.在x0处的变化率C.在x1处的变化量D.在区间[x0,x1]上的导数2.已知函数y=f(x)=x2+1,则在x=2,Δx=0.1时,Δy的值为( )A.0.40 B.0.41 C.0.43D.0.443.函数f(x)=2x2-1在区间(1,1+Δx)上的平均变化率ΔyΔx等于( )A.4 B.4+2ΔxC.4+2(Δx)2D.4x4.如果质点M按照规律s=3t2运动,则在t=3时的瞬时速度为( )A. 6 B.18C.54D.815.已知f(x)=-x2+10,则f(x)在x=32处的瞬时变化率是( )A.3 B.-3C. 2D.-26.设f′(x0)=0,则曲线y=f(x)在点(x0,f(x0))处的切线( )A.不存在B.与x轴平行或重合C.与x轴垂直D.与x轴相交但不垂直7.曲线y=-1x在点(1,-1)处的切线方程为( )A.y=x-2 B.y=xC.y=x+ 2D.y=-x-28.已知曲线y=2x2上一点A(2,8),则A处的切线斜率为( )A.4 B.16 C.8D.29.下列点中,在曲线y=x2上,且在该点处的切线倾斜角为π4的是( )A.(0,0) B.(2,4)C.(14,116)D.(12,14)10.若曲线y=x2+ax+b在点(0,b)处的切线方程是x-y+1=0,则( )A.a=1,b= 1B.a=-1,b=1C.a=1,b=- 1D.a=-1,b=-111.已知f(x)=x2,则f′(3)=( )A.0 B.2xC. 6D.912.已知函数f(x)=1x,则f′(-3)=( )A. 4 B.19C .-14D .-1913.函数y =x 2x +3的导数是( )A.x 2+6x x +3?2B.x 2+6x x +3C.-2xx +3?2D.3x 2+6x x +3?2 14.若函数f (x )=12f ′(-1)x 2-2x +3,则f ′(-1)的值为( )A .0B .-1C .1D .215.命题甲:对任意x ∈(a ,b ),有f ′(x )>0;命题乙:f (x )在(a ,b )内是单调递增的.则甲是乙的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件16.函数f (x )=(x -3)e x 的单调递增区间是( )A .(-∞,2)B .(0,3)C .(1,4)D .(2,17.函数y =ax 3-x 在R 上是减函数,则( )A .a ≥13B .a =1C .a =2D .a ≤18.函数y =4x 2+1x的单调递增区间是( ) A .(0,+∞) B .(-∞,1)C .(12,+∞)D .(1,19.“函数y =f (x )在一点的导数值为0”是“函数y =f (x )在这点取极值”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 20.设x 0为可导函数f (x )的极值点,则下列说法正确的是( )A .必有f ′(x 0)=B .f ′(x 0)不存在C .f ′(x 0)=0或f ′(x 0)不存在D .f ′(x 0)存在但可能不为022.函数f (x )=x 3+ax 2+3x -9,已知f (x )在x =-3时取得极值,则a =( ) A .2 B .3C .4D .523.函数f (x )的定义域为开区间(a ,b ),导函数f ′(x )在(a ,b )内的图象如图所示,则函数f (x )在开区间(a ,b )内的极小值点有( )A .1个B .2个C .3个D .4个24.函数f (x )=-13x 3+12x 2+2x 取极小值时,x 的值是( )A .2B .2,- 1C .-1D .-325.函数f (x )=-x 2+4x +7,在x ∈[3,5]上的最大值和最小值分别是( ) A .f (2),f (3) B .f (3),f (5)C .f (2),f (5)D .f (5),f (3)26.f (x )=x 3-3x 2+2在区间[-1,1]上的最大值是( )A .-2B .0C .2D .427.函数f (x )=x 3-3x 2-9x +k 在区间[-4,4]上的最大值为10,则其最小值为( )A .-10B.-71C .-15D .-22 28.(2010年高考山东卷)已知某生产厂家的年利润y (单元:万元)与年产量x (单位:万件)的函数关系式为y =-13x 3+81x-234,则使该生产厂家获取最大年利润的年产量为( )A .13万件B .11万件C .9万件D .7万件29.一点沿直线运动,如果由始点起经过t 秒运动的距离为s =14t 4-53t 3+2t 2,那么速度为零的时刻是( )A .1秒末B .0秒C .4秒末D .0,1,4秒末二、填空题1.设函数y =f (x )=ax 2+2x ,若f ′(1)=4,则a =________.2.若曲线y =2x 2-4x +a 与直线y =1相切,则a =________.3.已知函数y =ax 2+b 在点(1,3)处的切线斜率为2,则ba=________.4.令f (x )=x 2·e x ,则f ′(x )等于________.5.函数y =x 2+4x 在x =x 0处的切线斜率为2,则x 0=________. 6.若y =10x ,则y ′|x =1=________.7.一物体的运动方程是s (t )=1t,当t =3时的瞬时速度为________.8.设f (x )=ax 2-b sin x ,且f ′(0)=1,f ′(π3)=12,则a =________,b =________.9.y =x 3-6x +a 的极大值为________.10.函数y =x e x 的最小值为________.11.做一个容积为256 dm 3的方底无盖水箱,它的高为______dm 时最省料.12.有一长为16 m 的篱笆,要围成一个矩形场地,则矩形场地的最大面积是________m 2.三、解答题1.求下列函数的导数:(1)y=3x2+x cos x; (2)y=x1+x;(3)y=lg x-e x.2.已知抛物线y=x2+4与直线y=x +10,求:(1)它们的交点; (2)抛物线在交点处的切线方程.3.求下列函数的单调区间:(1)y=x-ln x;(2)y=12x .4.已知函数f(x)=x3+ax2+bx+c,当x=-1时,取得极大值7;当x=3时,取得极小值,求这个极小值及a、b、c的值.5.已知函数f(x)=13x3-4x+4.(1)求函数的极值;(2)求函数在区间[-3,4]上的最大值和最小值.导数练习题答案班级姓名一、选择题1.当自变量从x0变到x1时函数值的增量与相应自变量的增量之比是函数( ) A.在区间[x0,x1]上的平均变化率B.在x0处的变化率C.在x1处的变化量D.在区间[x0,x1]上的导数答案:A2.已知函数y=f(x)=x2+1,则在x=2,Δx=0.1时,Δy的值为( )A.0.40B.0.41C.0.43D.0.44解析:选 B.Δy=f(2.1)-f(2)=2.12-22=0.41.3.函数f(x)=2x2-1在区间(1,1+Δx)上的平均变化率ΔyΔx等于( )A. 4B.4+2ΔxC.4+2(Δx)2D.4x解析:选B.因为Δy=[2(1+Δx)2-1]-(2×12-1)=4Δx+2(Δx)2,所以ΔyΔx=4+2Δx,故选B.4.如果质点M按照规律s=3t2运动,则在t=3时的瞬时速度为( )A. 6B.18C.54D.81解析:选B.ΔsΔt=3?3+Δt2-3×32Δt,s′=li mΔt→0ΔsΔt=li mΔt→0(18+3Δt)=18,故选B.5.已知f(x)=-x2+10,则f(x)在x=32处的瞬时变化率是( )A. 3B.-3C. 2D.-2解析:选B.6.设f′(x0)=0,则曲线y=f(x)在点(x0,f(x0))处的切线( )A.不存在B.与x轴平行或重合C.与x轴垂直D.与x轴相交但不垂直解析:选 B.函数在某点处的导数为零,说明相应曲线在该点处的切线的斜率为零.7.曲线y=-1x在点(1,-1)处的切线方程为( )A.y=x- 2B.y=xC.y=x+ 2D.y=-x-2解析:选 A.f′(1)=li mΔx→0-11+Δx+11Δx=li mΔx→011+Δx=1,则在(1,-1)处的切线方程为y+1=x-1,即y=x-2.8.已知曲线y=2x2上一点A(2,8),则A 处的切线斜率为( )A. 4B.16C.8D.2解析:选C.9.下列点中,在曲线y=x2上,且在该点处的切线倾斜角为π4的是( )A.(0,0)B.(2,4)C.(14,116)D.(12,14)故选D.10.若曲线y=x2+ax+b在点(0,b)处的切线方程是x-y+1=0,则( )A .a =1,b = 1B .a =-1,b =1C .a=1,b=-1D .a =-1,b =-1 解析:选A.11.已知f (x )=x 2,则f ′(3)=( )A .0B .2xC .6D .9解析:选 C.∵f ′(x )=2x ,∴f ′(3)=6.12.已知函数f (x )=1x,则f ′(-3)=( )A .4B.19C .-14D .-19解析:选 D.∵f ′(x )=-1x 2,∴f ′(-3)=-19.13.函数y =x 2x +3的导数是( )A.x 2+6x x +3?2B.x 2+6x x +3C.-2x x +3?2D.3x 2+6x x +3?2解析:选A14.若函数f (x )=12f ′(-1)x 2-2x +3,则f ′(-1)的值为( ) A .0B .-1C .1D .2解析:选 B.∵f (x )=12f ′(-1)x 2-2x +3, ∴f ′(x )=f ′(-1)x -2.∴f ′(-1)=f ′(-1)×(-1)-2.∴f ′(-1)=-1.15.命题甲:对任意x ∈(a ,b ),有f ′(x )>0;命题乙:f (x )在(a ,b )内是单调递增的.则甲是乙的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A.f (x )=x 3在(-1,1)内是单调递增的,但f ′(x )=3x 2≥0(-1<x <1),故甲是乙的充分不必要条件,选A.16.函数f (x )=(x -3)e x 的单调递增区间是( )A .(-∞,2)B .(0,3)C .(1,4)D .(2,+∞)解析:选 D.f ′(x )=(x -3)′e x+(x -3)(e x)′=(x -2)e x,令f ′(x )>0,解得x >2,故选D.17.函数y =ax 3-x 在R 上是减函数,则( )A .a ≥13B .a =1C .a =2D .a ≤0解析:选D.因为y ′=3ax 2-1,函数y =ax 3-x 在(-∞,+∞)上是减函数,所以y ′=3ax 2-1≤0恒成立,即3ax 2≤1恒成立.当x =0时,3ax 2≤1恒成立,此时a ∈R ;当x ≠0时,若a ≤13x2恒成立,则a ≤0.综上可得a ≤0. 18.函数y =4x 2+1x的单调递增区间是( )A .(0,+∞)B .(-∞,C .(12,+∞)D .(1,+解析:选 C.∵y′=8x-1x2=8x3-1 x2>0,∴x>12.即函数的单调递增区间为(12,+∞).19.“函数y=f(x)在一点的导数值为0”是“函数y=f(x)在这点取极值”的( ) A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选B.对于f(x)=x3,f′(x)=3x2,f′(0)=0,不能推出f(x)在x=0处取极值,反之成立.故选B.20.设x0为可导函数f(x)的极值点,则下列说法正确的是( )A.必有f′(x0)=0B.f′(x0)不存在C.f′(x0)=0或f′(x0)不存在D.f′(x0)存在但可能不为0答案:A22.函数f(x)=x3+ax2+3x-9,已知f(x)在x=-3时取得极值,则a=( )A.2 B.3C.4 D.5解析:选D.f′(x)=3x2+2ax+3,∵f(x)在x=-3处取得极值,∴f′(-3)=0,即27-6a+3=0,∴a=5.23.函数f(x)的定义域为开区间(a,b),导函数f′(x)在(a,b)内的图象如图所示,则函数f(x)在开区间(a,b)内的极小值点有( )A.1个B.2个C.3个D.4个解析:选A.函数f(x)的定义域为开区间(a,b),导函数f′(x)在(a,b)内的图象如题图所示,函数f(x)在开区间(a,b)内有极小值点即函数由减函数变为增函数的点,其导数值为由负到正的点,只有1个.24.函数f(x)=-13x3+12x2+2x取极小值时,x的值是( )A.2 B.2,-1C.-1 D.-3解析:选 C.f′(x)=-x2+x+2=-(x-2)(x+1).∵在x=-1的附近左侧f′(x)<0,右侧f′(x)>0,如图所示:∴x=-1时取极小值.25.函数f(x)=-x2+4x+7,在x∈[3,5]上的最大值和最小值分别是( )A.f(2),f(3)B.f(3),f(5)C.f(2),f(5) D.f(5),f(3)解析:选B.∵f′(x)=-2x+4,∴当x∈[3,5]时,f′(x)<0,故f(x)在[3,5]上单调递减,故f(x)的最大值和最小值分别是f(3),f(5).26.f(x)=x3-3x2+2在区间[-1,1]上的最大值是( )A.-2 B.0C.2 D.4解析:选C.f′(x)=3x2-6x=3x(x-2),令f′(x)=0可得x=0或x=2(舍去),当-1≤x<0时,f′(x)>0,当0<x≤1时,f′(x)<0.所以当x=0时,f(x)取得最大值为2. 27.函数f(x)=x3-3x2-9x+k在区间[-4,4]上的最大值为10,则其最小值为( )A.-10 B.-71C.-15 D.-22解析:选B.f′(x)=3x2-6x-9=3(x -3)(x+1).由f′(x)=0得x=3,-1.又f(-4)=k-76,f(3)=k-27,f(-1)=k+5,f(4)=k-20.由f(x)max=k+5=10,得k=5,∴f(x)min=k-76=-71.28.(2010年高考山东卷)已知某生产厂家的年利润y(单元:万元)与年产量x(单位:万件)的函数关系式为y=-13x3+81x-234,则使该生产厂家获取最大年利润的年产量为( )A.13万件B .11万件C.9万件D .7万件解析:选C29.一点沿直线运动,如果由始点起经过t秒运动的距离为s=14t4-53t3+2t2,那么速度为零的时刻是( )A.1秒末B .0秒C.4秒末D .0,1,4秒末解析:选D.∵s′=t3-5t2+4t,令s′=0,得t1=0,t2=1,t3=4,此时的函数值最大,故选D.二、填空题1.设函数y=f(x)=ax2+2x,若f′(1)=4,则a=________.答案:12.若曲线y=2x2-4x+a与直线y=1相切,则a=________.答案:33.已知函数y=ax2+b在点(1,3)处的切线斜率为2,则ba=________.答案:24.令f(x)=x2·e x,则f′(x)等于________.解析:f′(x)=(x2)′·e x+x2·(e x)′=2x·e x+x2·e x=e x(2x+x2).答案:e x(2x+x2)5.函数y=x2+4x在x=x0处的切线斜率为2,则x0=________.解析:2=li mΔx→0x+Δx2+4?x0+Δx-x20-4x0Δx=2x0+4,∴x0=-1.答案:-16.若y=10x,则y′|x=1=________.解析:∵y′=10x ln10,∴y′|x=1=10ln10.答案:10ln107.一物体的运动方程是s(t)=1t,当t=3时的瞬时速度为________.解析:∵s′(t)=-1t2,∴s′(3)=-132=-19.答案:-198.设f(x)=ax2-b sin x,且f′(0)=1,f′(π3)=12,则a=________,b=________.解析:∵f′(x)=2ax-b cos x,f′(0)=-b=1得b=-1,f ′(π3)=23πa +12=12,得a =0.答案:0 -19.y =x 3-6x +a 的极大值为________.解析:y ′=3x 2-6=0,得x =± 2.当x <-2或x >2时,y ′>0;当-2<x <2时,y ′<0.∴函数在x =-2时,取得极大值a +4 2.答案:a +4210.函数y =x e x 的最小值为________.解析:令y ′=(x +1)e x =0,得x =-1.当x <-1时,y ′<0;当x >-1时,y ′>0.∴y min =f (-1)=-1e.答案:-1e11.做一个容积为256 dm 3的方底无盖水箱,它的高为______dm 时最省料.解析:设底面边长为x ,则高为h =256x 2,其表面积为S =x 2+4×256x2×x =x 2+256×4x,S ′=2x -256×4x 2,令S ′=0,则x =8,则高h =25664=4 (dm).答案:412.有一长为16 m 的篱笆,要围成一个矩形场地,则矩形场地的最大面积是________m 2.解析:设矩形的长为x m ,则宽为16-2x2=(8-x ) m(0<x <8), ∴S (x )=x (8-x )=-x 2+8x∴S ′(x )=-2x +8,令S ′(x )=0,则x =4,又在(0,8)上只有一个极值点,且x∈(0,4)时,S(x)单调递增,x∈(4,8)时,S(x)单调递减,故S(x)max=S(4)=16.答案:16三、解答题1.求下列函数的导数:(1)y=3x2+x cos x;(2)y=x1+x;(3)y=lg x-e x.解:(1)y′=6x+cos x-x sin x.(2)y′=1+x-x1+x2=11+x2.(3)y′=(lg x)′-(e x)′=1x ln10-e x.2.已知抛物线y=x2+4与直线y=x+10,求:(1)它们的交点;(2)抛物线在交点处的切线方程.解:(1)由⎩⎨⎧y=x2+4,y=x+10,得x2+4=10+x,即x2-x-6=0,∴x=-2或x=3.代入直线的方程得y=8或13.∴抛物线与直线的交点坐标为(-2,8)或(3,13).(2)∵y=x2+4,∴y′=limΔx→0x+Δx2+4-x2+4?Δx=limΔx→0Δx2+2x·ΔxΔx=limΔx→0(Δx+2x)=2x.∴y′|x=-2=-4,y′|x=3=6,即在点(-2,8)处的切线斜率为-4,在点(3,13)处的切线斜率为6.∴在点(-2,8)处的切线方程为4x+y=0;在点(3,13)处的切线方程为6x-y-5=0.3.求下列函数的单调区间:(1)y=x-ln x;(2)y=1 2x .解:(1)函数的定义域为(0,+∞).其导数为y′=1-1 x .令1-1x>0,解得x>1;再令1-1x<0,解得0<x<1.因此,函数的单调增区间为(1,+∞),函数的单调减区间为(0,1).4.已知函数f(x)=x3+ax2+bx+c,当x =-1时,取得极大值7;当x=3时,取得极小值,求这个极小值及a、b、c的值.解:f′(x)=3x2+2ax+b,依题意可知-1,3是方程3x2+2ax+b=0的两个根,则有⎩⎪⎨⎪⎧-1+3=-23a,-1×3=b3,解得⎩⎨⎧a=-3,b=-9,∴f(x)=x3-3x2-9x+c.由f(-1)=7,得-1-3+9+c=7,∴c=2.∴极小值为f(3)=33-3×32-9×3+2=-25.5.已知函数f(x)=13x3-4x+4.(1)求函数的极值;(2)求函数在区间[-3,4]上的最大值和最小值.解:(1)f′(x)=x2-4,解方程x2-4=0,得x1=-2,x2=2.当x变化时,f′(x),f(x)的变化情况如下表:从上表可看出,当x=-2时,函数有极大值,且极大值为283;而当x=2时,函数有极小值,且极小值为-4 3 .(2)f(-3)=13×(-3)3-4×(-3)+4=7,f(4)=13×43-4×4+4=283,与极值比较,得函数在区间[-3,4]上的最大值是283,最小值是-43.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、选择题(每题只有一个选项是正确的,每题5分,共60分,在每题给出的四个选项中,只有一项为哪一项符合题目要求的。

)1.某函数的导数为y′=12(x-1),那么这个函数可能是 ()A.y=ln1-x B.y=ln11-xC.y=ln(1-x) D.y=ln11-x2.(2021•江西)设函数f(x)=g(x)+x2,曲线y=g(x)在点(1,g(1))处的切线方程为y=2x+1,那么曲线y=f(x)在点(1,f(1))处切线的斜率为 ()A.4 B.-14 C.2 D.-123.(2021•辽宁)曲线y=xx-2在点(1,-1)处的切线方程为 ()A.y=x-2 B.y=-3x+2C.y=2x-3 D.y=-2x+14.曲线y=ex在点(2,e2)处的切线与坐标轴所围成三角形的面积为 ()A.94e2 B.2e2 C.e2 D.e225.函数y=f(x),y=g(x)的导函数的图象如图,那么y=f(x),y=g(x)的图象可能是()6.设y=8x2-lnx,那么此函数在区间(0,14)和(12,1)内分别 ()A.单调递增,单调递减B.单调递增,单调递增C.单调递减,单调递增D.单调递减,单调递减7.以下关于函数f(x)=(2x-x2)ex的判断正确的选项是 ()①f(x)>0的解集是{x|0<x<2};②f(-2)是极小值,f(2)是极大值;③f(x)没有最小值,也没有最大值.A.①③ B.①②③C.② D.①②8.f(x)=-x3-x,x∈[m,n],且f(m)•f(n)<0,那么方程f(x)=0在区间[m,n]上() A.至少有三个实根 B.至少有两个实根C.有且只有一个实根 D.无实根9.函数f(x)=x3+ax2+(a+6)x+1有极大值和极小值,那么实数a的取值范围是() A.-1<a<2 B.-3<a<6 C.a<-3或a>6 D.a<-1或a>210.要做一个圆锥形漏斗,其母线长为20cm,要使其体积最大,其高应为 ()A.2033cm B.100cm C.20cm D.203cm11.(2021•河南省实验中学)假设函数f(x)=(2-m)xx2+m的图象如下图,那么m的范围为 ()A.(-∞,-1) B.(-1,2) C.(1,2) D.(0,2)12.定义在R上的函数f(x)满足f(4)=1.f′(x)为f(x)的导函数,函数y=f′(x)的图象如下图.假设两正数a,b满足f(2a+b)<1,那么b+2a+2的取值范围是 ()A.(13,12) B.(-∞,12)∪(3,+∞)C.(12,3) D.(-∞,-3) 二、填空题(本大题共4小题,每题5分,共20分,请将答案填在题中的横线上。

) 13.(2021•武汉模拟)函数y=xln(-x)-1的单调减区间是________.14.函数f(x)=x3-12x+8在区间[-3,3]上的最大值与最小值分别为M,m,那么M-m =________.15.(2021•南京一调)函数f(x)=ax-x4,x∈[12,1],A、B是其图象上不同的两点.假设直线AB的斜率k总满足12≤k≤4,那么实数a的值是________.16.(2021•淮北模拟)函数f(x)的导数f′(x)=a(x+1)•(x-a),假设f(x)在x=a处取到极大值,那么a的取值范围是________.三、解答题(本大题共6小题,共70分,解容许写出文字说明、演算步骤或证明过程。

) 17.(本小题总分值10分)设a为大于0的常数,函数f(x)=x-ln(x+a).(1)当a=34,求函数f(x)的极大值和极小值;(2)假设使函数f(x)为增函数,求a的取值范围.18.(本小题总分值12分)函数y=f(x)=lnxx.(1)求函数y=f(x)的图象在x=1e处的切线方程;(2)求y=f(x)的最大值;(3)设实数a>0,求函数F(x)=af(x)在[a,2a]上的最小值.19.(本小题总分值12分)设a>0,函数f(x)=x-ax2+1+a.(1)假设f(x)在区间(0,1]上是增函数,求a的取值范围;(2)求f(x)在区间(0,1]上的最大值.20.(本小题总分值12分)函数f(x)=1+ln(x+1)x.(x>0)(1)函数f(x)在区间(0,+∞)上是增函数还是减函数?证明你的结论;(2)假设当x>0时,f(x)>kx+1恒成立,求正整数k的最大值.21.(2021•天津)(本小题总分值12分)函数f(x)=(x2+ax-2a2+3a)ex(x∈R),其中a∈R.(1)当a=0时,求曲线y=f(x)在点(1,f(1))处的切线的斜率;(2)当a≠23时,求函数f(x)的单调区间与极值.命题意图:本小题主要考查导数的几何意义、导数的运算、利用导数研究函数的单调性与极值等根底知识,考查运算能力及分类讨论的思想方法.22.(2021•保定市高三摸底考试)(本小题总分值12分)函数f(x)=lnxx+ax-1(a∈R)(1)求函数f(x)的图象在点(1,f(1))处的切线方程;(2)假设f(x)≤0在区间(0,e2]上恒成立,求实数a的取值范围.答案:一、1答案:A解析:对选项求导.(ln1-x)′=11-x(1-x)′=11-x•12(1-x)-12•(-1)=12(x-1).2答案:A解析:f′(x)=g′(x)+2x.∵y=g(x)在点(1,g(1))处的切线方程为y=2x+1,∴g′(1)=2,∴f′(1)=g′(1)+2×1=2+2=4,∴y=f(x)在点(1,f(1))处切线斜率为4.3答案:D解析:y′=(xx-2)′=-2(x-2)2,∴k=y′|x=1=-2.l:y+1=-2(x-1),那么y=-2x+1.4答案:D解析:∵y′=ex,∴y=ex在点(2,e2)的导数为e2.∴y=ex在点(2,e2)的切线方程为y=e2x-e2.y=e2x-e2与x轴、y轴的交点分别为(1,0)和(0,-e2),∴S=12×1×e2=e22.5答案:D解析:由题意知函数f(x),g(x)都为增函数,当x<x0时,由图象知f′(x)>g′(x),即f(x)的增长速度大于g(x)的增长速度;当x>x0时,f′(x)<g′(x),g(x)的增长速度大于f(x)的增长速度,数形结合,6答案:C解析:y′=16x-1x.当x∈(0,14)时,y′<0,y=8x2-lnx为减函数;当x∈(12,1)时,y′>0,y=8x2-lnx为增函数.7答案:D解析:由f(x)>0⇒(2x-x2)ex>0⇒2x-x2>0⇒0<x<2,故①正确;f′(x)=ex(2-x2),由f′(x)=0得x=±2,由f′(x)<0得x>2或x<-2,由f′(x)>0得-2<x<2,∴f(x)的单调减区间为(-∞,-2),(2,+∞).单调增区间为(-2,2).∴f(x)的极大值为f(2),极小值为f(-2),故②正确.∵x<-2时,f(x)<0恒成立.∴f(x)无最小值,但有最大值f(2).∴③不正确.8答案:C9答案:C解析:由于f(x)=x3+ax2+(a+6)x+1,有f′(x)=3x2+2ax+(a+6).假设f(x)有极大值和极小值,那么Δ=4a2-12(a+6)>0,从而有a>6或a<-310答案:A解析:设高为h,那么半径为202-h2,体积V=13πr2h=13π(202-h2)•h=-13πh3+2023πh(0<h<20),V′=-πh2+2023π.令V′=0,得h=2033或h=-2033(舍去),即当h=2033时,V为最大值.11答案:C解析:f′(x)=(x2-m)(m-2)(x2+m)2=(x-m)(x+m)(m-2)(x2+m)2由图知m-2<0,且m>0,故0<m<2,又m>1,∴m>1,因此1<m<212答案:C解析:由y=f′(x)的图象知,当x<0时,f′(x)<0,函数f(x)是减函数;当x>0时,f′(x)>0,函数f(x)是增函数;两正数a,b满足f(2a+b)<1,f(4)=1,点(a,b)的区域为图中的阴影局部(不包括边界),b+2a+2的意义为阴影局部的点与点A(-2,-2)连线的斜率,直线AB、AC的斜率分别为12、3,那么b+2a+2的取值范围是(12,3)二、13答案:(-1e,0)14答案:32解析:令f′(x)=3x2-12=0,得x=-2或x=2,列表得:x -3 (-3,-2) -2 (-2,2) 2 (2,3) 3f′(x)+ 0 - 0 + f(x) 17极值24极值-8-1可知M=24,m=-8,∴M-m=32.15答案:92解析:f′(x)=a-4x3,x∈[12,1],由题意得12≤a-4x3≤4,即4x3+12≤a≤4x3+4在x∈[12,1]上恒成立,求得92≤a≤92,那么实数a的值是92.16答案:(-1,0)解析:结合二次函数图象知,当a>0或a<-1时,在x=a处取得极小值,当-1<a<0时,在x=a处取得极大值,故a∈(-1,0).三、17解析:(1)当a=34时,f′(x)=12x-1x+34,令f′(x)=0,那么x-2x+34=0,∴x=94或14,当x∈[0,14]时,f′(x)>0,当x∈(14,94),f′(x)<0,当x∈(94,+∞)时,f′(x)>0,∴f(x)极大值=f(14)=12,f(x)极小值=f(94)=32-ln3.(2)f′(x)=12x-1x+a,假设f(x)为增函数,那么当x∈[0,+∞)时,f′(x)≥0恒成立,∴12x≥1x+a,即x+a≥2x,即a≥2x-x=-(x-1)2+1恒成立,∴a≥1.18解析:(1)∵f(x)定义域为(0,+∞),∴f′(x)=1-lnxx2∵f(1e)=-e,又∵k=f′(1e)=2e2,∴函数y=f(x)的在x=1e处的切线方程为:y+e=2e2(x-1e),即y=2e2x-3e.(2)令f′(x)=0得x=e.∵当x∈(0,e)时,f′(x)>0,f(x)在(0,e)上为增函数,当x∈(e,+∞)时,f′(x)<0,那么在(e,+∞)上为减函数,∴fmax(x)=f(e)=1e.(3)∵a>0,由(2)知:F(x)在(0,e)上单调递增,在(e,+∞)上单调递减.∴F(x)在[a,2a]上的最小值f(x)min=min{F(a),F(2a)},∵F(a)-F(2a)=12lna2,∴当0<a≤2时,F(a)-F(2a)≤0,fmin(x)=F(a)=lna.当a>2时,F(a)-F(2a)>0,f(x)min=f(2a)=12ln2a.19解析:(1)对函数f(x)求导数,得f′(x)=1-axx2+1.要使f(x)在区间(0,1]上是增函数,又要f′(x)=1-axx2+1≥0在(0,1]上恒成立,即a≤x2+1x=1+1x2在(0,1]上恒成立.因为1+1x2在(0,1]上单调递减,所以1+1x2在(0,1]上的最小值是2.注意到a>0,所以a的取值范围是(0,2].(2)①当0<a≤2时,由(1)知,f(x)在(0,1]上是增函数,此时f(x)在区间(0,1]上的最大值是f(1)=1+(1-2)a.②当a>2时,令f′(x)=1-axx2+1=0,解得x=1a2-1∈(0,1).因为当0<x<1a2-1时,f′(x)>0;当1a2-1<x<1时,f′(x)<0,所以f(x)在(0,1a2-1)上单调递增,在(1a2-1,1)上单调递减.此时f(x)在区间(0,1]上的最大值是f(1a2-1)=a-a2-1.综上所述,当0<a≤2时,f(x)在区间(0,1]上的最大值是1+(1-2)a;当a>2时,f(x)在区间(0,1]上的最大值是a-a2-1.20解析:(1)f′(x)=1x2[xx+1-1-ln(x+1)]=-1x2[1x+1+ln(x+1)].由x>0,x2>0,1x+1>0,ln(x+1)>0,得f′(x)<0.因此函数f(x)在区间(0,+∞)上是减函数.(2)解法一:当x>0时,f(x)>kx+1恒成立,令x=1有k<2[1+ln2].又k为正整数.那么k的最大值不大于3.下面证明当k=3时,f(x)>kx+1(x>0)恒成立.即证明x>0时(x+1)ln(x+1)+1-2x>0恒成立.令g(x)=(x+1)ln(x+1)+1-2x,那么g′(x)=ln(x+1)-1.当x>e-1时,g′(x)>0;当0<x<e-1时,g′(x)<0.∴当x=e-1时,g(x)取得最小值g(e-1)=3-e>0.∴当x>0时,(x+1)ln(x+1)+1-2x>0恒成立.因此正整数k的最大值为3.解法二:当x>0时,f(x)>kx+1恒成立.即h(x)=(x+1)[1+ln(x+1)]x>k对x>0恒成立.即h(x)(x>0)的最小值大于k.由h′(x)=x-1-ln(x+1)x2,记Φ(x)=x-1-ln(x+1).(x>0)那么Φ′(x)=xx+1>0,∴Φ(x)在(0,+∞)上连续递增.又Φ(2)=1-ln3<0,Φ(3)=2-2ln2>0,∴Φ(x)=0存在惟一实根a,且满足:a∈(2,3),a=1+ln(a+1),由x>a时,Φ(x)>0,h′(x)>0;0<x<a时,Φ(x)<0,h′(x)<0知:h(x)(x>0)的最小值为h(a)=(a+1)[1+ln(a+1)]a=a+1∈(3,4).因此正整数k的最大值为3.21解析:(1)当a=0时,f(x)=x2ex,f′(x)=(x2+2x)ex,故f′(1)=3e.所以曲线y=f(x)在点(1,f(1))处的切线的斜率为3e.(2)f′(x)=[x2+(a+2)x-2a2+4a]ex.令f′(x)=0,解得x=-2a,或x=a-2.由a≠23知,-2a≠a-2.以下分两种情况讨论.①假设a>23,那么-2a<a-2,当x变化时,f′(x)、f(x)的变化情况如下表:x (-∞-2a),-2a (-2a,a-2) a-2 (a-2,+∞)f′(x)+ 0 - 0 +f(x)极大值极小值所以f(x)在(-∞,-2a),(a-2,+∞)内是增函数,在(-2a,a-2)内是减函数.函数f(x)在x=-2a处取得极大值f(-2a),且f(-2a)=3ae-2a.函数f(x)在x=a-2处取得极小值f(a-2),且f(a-2)=(4-3a)ea-2.②假设a<23,那么-2a>a-2.当x变化时,f′(x)、f(x)的变化情况如下表:x (-∞,a-2) a-2 (a-2,-2a) -2a (-2a,+∞)f′(x)+ 0 - 0 +f(x)极大值极小值所以f(x)在(-∞,a-2),(-2a,+∞)内是增函数,在(a-2,-2a)内是减函数.函数f(x)在x=a-2处取得极大值f(a-2),且f(a-2)=(4-3a)ea-2.函数f(x)在x=-2a处取得极小值f(-2a),且f(-2a)=3ae-2a.22解析:(1)因为函数f(x)的定义域为(0,+∞),导函数f′(x)=1-(lnx+a)x2,∴k=f′(1)=1-a,又f(1)=a-1,即切点坐标为(1,a-1),所以,函数f(x)的图象在点(1,f(1))处的切线方程为:y-(a-1)=(1-a)(x-1),即y=(1-a)x+2(a-1).(2)结合(1),令f′(x)=0得x=e1-a,由对数函数的单调性知:当x∈(0,e1-a)时,f′(x)>0,f(x)是增函数;当x∈(e1-a,+∞)时,f′(x)<0,f(x)是减函数.(ⅰ)当e1-a<e2时,a>-1时,f(x)max=f(e1-a)=ea-1-1,令ea-1-1≤0,解得a≤1,即-1<a≤1,(ⅱ)当e1-a≥e2即a≤-1时,f(x)在(0,e2]上是增函数,∴f(x)在(0,e2]上的最大值为f(e2)=2+ae2-1,令2+ae2-1≤0,解得a≤e2-2,即a≤-1,综上可知,实数a的取值范围是a≤1.。

相关文档
最新文档