2021高职高考数学复习第三章函数:考题直通
2021年3月新高考数学复习资料§3.1函数的概念试题及参考答案

专题三函数的概念、性质与基本初等函数【考情探究】课标解读考情分析备考指导主题内容一、函数的概念1.了解函数三要素及分段函数,会求简单函数的定义域、值域.2.会根据不同需要选择恰当方法表示函数.1.常以基本函数或由基本函数组合的函数为臷体,考查函数的定义域、值域,函数的表示方法及性质,图象.2.常与导数、不等式、方程知识交汇命题,考查数形结合、分类讨论、转化与化归,函数与方程思想方法.3.根据实际问题,建立函数模型或用已知模型解决实际问题,考查建模及应用能力.1.高考对本专题的考查依然是基础与能力并存,函数性质、零点问题是本专题的重点考查内容.2.以函数性质为主,常以指数函数、对数函数为载体,考查求函数值、比较大小,函数图象识辨及实际应用问题.二、函数的基本性质了解函数奇偶性、周期性的含义,理解函数单调性、最值及几何意义.三、二次函数与幂函数了解二次函数、幂函数的概念,理解二次函数图象并简单应用.四、指数与指数函数了解指数函数模型背景,实数指数幂的含义,理解有理指数幂的含义,指数函数的概念,单调性.掌握幂的运算,指数函数的图象.五、对数与对数函数理解对数的概念及运算性质,对数函数的概念及性质,掌握对数函数的图象经过的特殊点,会用换底公式.六、函数的图象理解描点法作图和图象变换.利用函数图象讨论函数性质.七、函数与方程了解函数零点与方程根的联系.八、函数模型及函数的综合应用了解函数模型的广泛应用,基本函数等不同函数类型的增长意义.【真题探秘】§3.1 函数的概念 基础知识专题固本夯基【基础训练】考点一 函数的有关概念1.设函数f(x)=lg(1-x),则函数f(f(x))的定义域为( ) A.(-9,+∞) B.(-9,1) C.[-9,+∞) D.[-9,1) 【参考答案】B2.下列函数为同一函数的是( )A.y =x 2-2x 和y =t 2-2t B.y =x 0和y =1C.y =√(x +1)2和y =x+1D.y =lg x 2和y =2lg x【参考答案】A 3.函数f(x)=12-|x|+√x 2-1+(x-4)0的定义域为 .【参考答案】{x|x<-2或-2<x ≤-1或1≤x<2或2<x<4或x>4}4.已知函数f(2x-1)的定义域为(-1,2),则f(x)的定义域为 , f(2-3x)的定义域为 . 【参考答案】(-3,3);(-13,53)考点二 函数的表示方法5.下列图象可以表示以M ={x|0≤x ≤1}为定义域,以N ={y|0≤y ≤1}为值域的函数是( )【参考答案】C6.已知f(2x+1)=x 2-2x,则f(x)= , f(3)= . 【参考答案】14x 2-32x+54;-17.若函数f(x)={-x +8,x ≤2,log a x +5,x >2(a>0且a ≠1)的值域为[6,+∞),则实数a 的取值范围是 .【参考答案】(1,2]8.设函数f(x)={x 2+2x +2,x ≤0,-x 2,x >0.若f(f(a))=2,则a = .【参考答案】√2综合篇知能转换【综合集训】考法一 函数定义域的求法1.函数y =√1-log 2x 的定义域是( )A.(-∞,2]B.(0,2]C.(-∞,1]D.[1,2] 【参考答案】B2.函数f(x)=ln(x 2-x)的定义域为( ) A.(0,1) B.[0,1]C.(-∞,0)∪(1,+∞)D.(-∞,0]∪[1,+∞) 【参考答案】C3.已知函数y =f(x)的定义域是[0,2],那么g(x)=f(x 2)1+lg(x+1)的定义域是.【参考答案】(-1,-910)∪(-910,√2] 考法二 函数解析式的求法4.(2018广东珠海期中,4)已知f(x 5)=lg x,则f(2)=( ) A.15lg 2 B.12lg 5 C.13lg 2 D.12lg 3 【参考答案】A5.若二次函数g(x)满足g(1)=1,g(-1)=5,且图象过原点,则g(x)的解析式为( ) A.g(x)=2x 2-3x B.g(x)=3x 2-2x C.g(x)=3x 2+2x D.g(x)=-3x 2-2x 【参考答案】B6.已知函数f(x)满足f(x)+2f(-x)=e x,则函数f(x)的解析式为 . 【参考答案】f(x)=23e -x-13e x7.已知函数f(x)=axx -1,若f(x)+f (1x)=3,则f(x)+f(2-x)= .【参考答案】68.(2018河南南阳第一中学第二次考试,16)已知f(1-cos x)=sin 2x,则f(x 2)的解析式为 . 【参考答案】f(x 2)=-x 4+2x 2,x ∈[-√2,√2]考法三 分段函数问题的解题策略9.(2019山西太原三中模拟,10)设函数f(x)={x 2-1(x ≥2),log 2x(0<x <2),若f(m)=3,则实数m 的值为( )A.-2B.8C.1D.2 【参考答案】D10.已知实数a ≠0,函数f(x)={2x +a,x <1,-x -2a,x ≥1,若f(1-a)=f(1+a),则a 的值为( )A.-34B.34C.-35D.35【参考答案】A11.(2018安徽合肥一模,3)已知函数f(x)={x +1x -2,x >2,x 2+2,x ≤2,则f(f(1))=( ) A.-12B.2C.4D.11 【参考答案】C12.已知函数f(x)={2x +1,x <1,x 2+ax,x ≥1,若f(f(0))=4a,则实数a 等于( )A.12B.45C.2D.9 【参考答案】C13.(2018河南濮阳二模,5)若f(x)={2x -3,x >0,g(x),x <0是奇函数,则f(g(-2))的值为( )A.52B.-52C.1D.-1 【参考答案】C14.(2018福建福州模拟,6)设函数f(x)={0,x ≤0,2x -2-x ,x >0,则满足f(x 2-2)>f(x)的x 的取值范围是( )A.(-∞,-1)∪(2,+∞)B.(-∞,-√2)∪(√2,+∞)C.(-∞,-√2)∪(2,+∞)D.(-∞,-1)∪(√2,+∞) 【参考答案】C【5年高考】考点一 函数的有关概念1.(2019江苏,4,5分)函数y =√7+6x -x 2的定义域是 . 【参考答案】[-1,7]2.(2018江苏,5,5分)函数f(x)=√log 2x -1的定义域为 . 【参考答案】[2,+∞)考点二 函数的表示方法3.(2015课标Ⅱ,5,5分)设函数f(x)={1+log 2(2-x), x <1,2x -1, x ≥1.则f(-2)+f(log 212)=( )A.3B.6C.9D.12 【参考答案】C4.(2015山东,10,5分)设函数f(x)={3x -1,x <1,2x,x ≥1.则满足f(f(a))=2f(a)的a 的取值范围是( ) A.[23,1] B.[0,1] C.[23,+∞) D.[1,+∞) 【参考答案】C5.(2017课标Ⅲ,15,5分)设函数f(x)={x +1,x ≤0,2x ,x >0,则满足f(x)+f (x -12)>1的x 的取值范围是 . 【参考答案】(-14,+∞)6.(2018江苏,9,5分)函数f(x)满足f(x+4)=f(x)(x ∈R ),且在区间(-2,2]上, f(x)={cos πx2,0<x ≤2,|x+12|,-2<x ≤0, 则f(f(15))的值为 . 【参考答案】√22教师专用题组考点一 函数的有关概念1.(2014山东,3,5分)函数f(x)=1(log 2x)-1的定义域为( )A.(0,12)B.(2,+∞)C.(0,12)∪(2,+∞) D.(0,12]∪[2,+∞) 【参考答案】C2.(2014江西,3,5分)已知函数f(x)=5|x|,g(x)=ax 2-x(a ∈R ).若f[g(1)]=1,则a =( ) A.1 B.2 C.3 D.-1 【参考答案】A3.(2013大纲全国,4,5分)已知函数f(x)的定义域为(-1,0),则函数f(2x+1)的定义域为( ) A.(-1,1) B.(-1,-12) C.(-1,0) D.(12,1) 【参考答案】B考点二 函数的表示方法4.(2014福建,7,5分)已知函数f(x)={x 2+1,x >0,cosx,x ≤0,则下列结论正确的是( )A.f(x)是偶函数B.f(x)是增函数C.f(x)是周期函数D.f(x)的值域为[-1,+∞) 【参考答案】D5.(2015浙江,10,6分)已知函数f(x)={x +2x-3, x ≥1,lg(x 2+1), x <1,则f(f(-3))= , f(x)的最小值是 .【参考答案】0;2√2-36.(2014浙江,15,4分)设函数f(x)={x 2+x, x <0,-x 2, x ≥0.若f(f(a))≤2,则实数a 的取值范围是 .【参考答案】(-∞,√2]7.(2014四川,12,5分)设f(x)是定义在R 上的周期为2的函数,当x ∈[-1,1)时, f(x)={-4x 2+2,-1≤x <0,x,0≤x <1,则f (32)= . 【参考答案】1【三年模拟】一、单项选择题(每题5分,共45分)1.(2019届山东单县五中10月月考,4)函数y =√-x 2-x+2lnx的定义域为( )A.(-2,1)B.[-2,1]C.(0,1)D.(0,1] 【参考答案】C2.(2020届四川双流中学9月月考,3)设函数f(x)={4x -1,x ≤0,log 2x,x >0,则f(f(1))=( )A.0B.1C.2D.3 【参考答案】A3.(2019届湖北“荆、荆、襄、宜四地七校考试联盟”联考,7)已知函数f(x)={(12)x-7,x <0,log 2(x +1),x ≥0,若f(a)<1,则实数a 的取值范围是( )A.(-∞,-3)∪[0,1)B.(-3,0)∪(0,1)C.(-3,1)D.(-∞,-3)∪(1,+∞) 【参考答案】C4.(2019届山东枣庄八中10月月考,2)已知函数f(x)的图象如图所示,设集合A ={x|f(x)>0},B ={x|x 2<4},则A ∩B =( )A.(-2,-1)∪(0,2)B.(-1,1)C.(-2,-1)∪(1,2)D.(-∞,3) 【参考答案】C5.(2020届河南南阳一中第一次月考,6)已知函数f(x)满足f (1x )+1xf(-x)=2x(x ≠0),则f(-2)=( ) A.-72 B.-92 C.72 D.92【参考答案】C6.(2019山东菏泽模拟,5)已知函数f(x)=log 2x 的值域是[1,2],则函数φ(x)=f(2x)+f(x 2)的定义域为( ) A.[√2,2] B.[2,4] C.[4,8] D.[1,2] 【参考答案】A7.(2019山东师范大学附中二模,3)已知函数f(x)={(1-2a)x +3a(x <1),lnx(x ≥1)的值域为R ,则实数a 的取值范围是( )A.(-∞,-1)B.[12,1] C.[-1,12) D.(0,12) 【参考答案】C8.(2020届重庆万州第二高级中学第一次月考,10)若函数y =f(x)的值域是[1,3],则函数F(x)=1-f(x+3)的值域是( ) A.[-8,-3] B.[-5,-1] C.[-2,0] D.[1,3] 【参考答案】C9.(2019安徽安庆模拟,4)若函数y =f(x)的图象的一部分如图(1)所示,则图(2)中的图象所对应的函数解析式可以是( )A.y =f (2x -12) B.y =f(2x-1) C.y =f (12x -12) D.y =f (12x -1) 【参考答案】B二、多项选择题(每题5分,共15分)10.(改编题)设集合M ={x|0≤x ≤2},N ={y|0≤y ≤2},那么下面的4个图形中,能表示从集合M 到集合N 的函数关系的有( )【参考答案】BC11.(改编题)下列各组函数中,不表示同一函数的是( ) A.f(x)=e ln x,g(x)=x B.f(x)=x 2-4x+2,g(x)=x-2 C.f(x)=sin2x2cosx,g(x)=sin xD.f(x)=|x|,g(x)=√x 2 【参考答案】ABC12.(改编题)已知f(x)={log 3x,x >0,a x +b,x ≤0且f(0)=2, f(-1)=3,则( )A.a =12,b =1 B.f(f(-3))=2 C.a =1,b =12D.f(f(-3))=12【参考答案】AB三、填空题(每题5分,共25分)13.(2019广东深圳期末,14)一次函数f(x)是减函数,且满足f[f(x)]=4x-1,则f(x)= . 【参考答案】-2x+114.(2020届山西平遥中学月考,13)已知函数f(x)={log 2(1-x),x <1,3x -10,x ≥1,若f(x)=-1,则x = .【参考答案】12或215.(2019届四川高三第一次诊断性测试,15)已知函数f(x)={2-x -2,x ≤0,f(x -2)+1,x >0,则f(2 019)= .【参考答案】1 01016.(2018河北石家庄月考,15)已知函数f(x)=2x+1与函数y =g(x)的图象关于直线x =2成轴对称图形,则函数y =g(x)的解析式为 . 【参考答案】g(x)=9-2x17.(改编题)已知函数f(x)={(lnx)2+alnx+b(x>0),e x+12(x≤0).若f(e2)=f(1), f(e)=43f(0),则a,b的值为,;函数f(x)的值域为.【参考答案】-2;3;(12,32]∪[2,+∞)。
中职数学第三章函数-函数章末复习

第23课时 章末复习与小结(一)【目标导航】1.通过整理全章知识的过程,掌握本章的基本知识,基本的数学思想及方法;2.掌握本章的基本的数学题型,解题思路,熟练解题技巧。
【要点整理】 (一)函数的概念1、概念: 在某一个变化过程中有两个变量x 和y ,设变量x 的取值范围为数集D ,如果对于D 内的 值,按照某个对应法则f ,y 都有 值与它 ,那么,把x 叫做 ,把y 叫做x 的 .2.表示: 将上述函数记作 .变量x 叫做自变量,数集D 叫做函数的 .3.函数值的概念: 函数值.记作 .4.函数的定义域: 。
5.定义域的求法:(1) ;(2) ;(3) ;(4) ;(5) ;(6) ;6.函数的值域:函数值的集合(){}|,y y f x x D =∈叫做函数的值域.7.基本初等函数的值域的求法: 。
8. 同一函数的理解:(1)函数的三要素:1) ;2) ;3) 。
2)什么是同一函数: 。
(二)函数的表示 1. 函数的三种表示:(1) ;(2) ;(3) 。
2. “描点法”画图的基本步骤:(1) ;(2) ;(3) 。
3.三种表示法的优缺点比较:(1)常见解析式的设法:一次函数: ;正比例函数 ;反比例函数: ;二次函数: 。
(2)待定系数法求解析式的一般步骤:1)设; 。
2)列; 。
3)解; 。
4)写; 。
(3)简单的抽象函数的解析式的求法:① ② 。
(三)函数的性质 1.单调性:(1)单调增函数的定义: 在区间(),a b 内,随着 的增加,函数值 ,图像呈 趋势.即对于 的()12,,x x a b ∈,当 时,都有 成立.这时把函数()f x 叫做区间(),a b 内的 ,区间(),a b 叫做函数()f x 的 .此时,区间(,)a b 叫做函数()f x 的 。
(2)单调减函数的定义:在区间(),a b 内,随着 的增加,函数值 ,图像呈 趋势.即对于 的()12,,x x a b ∈,当 时,都有 成立.这时把函数()f x 叫做区间(),a b 内的 ,区间(),a b 叫做函数()f x 的 . (2)单调性的概念:①单调性: 。
2021年高考数学一轮复习 第三章 第3讲 导数的应用 文(含解析)

2021年高考数学一轮复习 第三章 第3讲 导数的应用 文(含解析)一、选择题1.若函数y =f (x )可导,则“f ′(x )=0有实根”是“f (x )有极值”的 ( ). A .必要不充分条件 B .充分不必要条件 C .充要条件 D .既不充分也不必要条件答案 A2.已知函数f (x )=x 3+ax 2+(a +6)x +1有极大值和极小值,则实数a 的取值范围是( ).A .(-1,2)B .(-∞,-3)∪(6,+∞)C .(-3,6)D .(-∞,-1)∪(2,+∞)解析 f ′(x )=3x 2+2ax +(a +6),因为函数有极大值和极小值,所以f ′(x )=0有两个不相等的实数根,所以Δ=4a 2-4×3(a +6)>0,解得a <-3或a >6. 答案 B3.设f (x )是一个三次函数,f ′(x )为其导函数,如图所示的是y =x ·f ′(x )的图象的一部分,则f (x )的极大值与极小值分别是( ).A .f (1)与f (-1)B .f (-1)与f (1)C .f (-2)与f (2)D .f (2)与f (-2)解析 由图象知f ′(2)=f ′(-2)=0.∵x >2时,y =x ·f ′(x )>0,∴f ′(x )>0,∴y =f (x )在(2,+∞)上单调递增;同理f (x )在(-∞,-2)上单调递增,在(-2,2)上单调递减,∴y =f (x )的极大值为f (-2),极小值为f (2),故选C. 答案 C4.设a ∈R ,函数f (x )=e x+a ·e -x的导函数是f ′(x ),且f ′(x )是奇函数.若曲线y =f (x )的一条切线的斜率是32,则切点的横坐标为( )A .ln2B .-ln2 C.ln22 D.-ln22解析 f ′(x )=e x -a e -x,这个函数是奇函数,因为函数f (x )在0处有定义,所以f ′(0)=0,故只能是a =1.此时f ′(x )=e x -e -x,设切点的横坐标是x 0,则e x 0-e -x 0=32,即2(e x 0)2-3e x 0-2=0,即(e x 0-2)(2e x 0+1)=0,只能是e x 0=2,解得x 0=ln2.正确选项为A. 答案 A5.设函数f (x )=ax 2+bx +c (a ,b ,c ∈R).若x =-1为函数f (x )e x的一个极值点,则下列图象不可能为y =f (x )的图象是( ).解析 若x =-1为函数f (x )e x的一个极值点,则易得a =c .因选项A 、B 的函数为f (x )=a (x +1)2,则[f (x )e x ]′=f ′(x )e x +f (x )(e x )′=a (x +1)(x +3)e x,∴x =-1为函数f (x )e x的一个极值点,满足条件;选项C 中,对称轴x =-b2a >0,且开口向下,∴a<0,b >0,∴f (-1)=2a -b <0,也满足条件;选项D 中, 对称轴x =-b2a <-1,且开口向上,∴a >0,b >2a ,∴f (-1)=2a -b <0,与 图矛盾,故答案选D. 答案 D6.已知函数f (x )=x 3+2bx 2+cx +1有两个极值点x 1,x 2,且x 1∈[-2,-1],x 2∈[1,2],则f (-1)的取值范围是( ).A.⎣⎢⎡⎦⎥⎤-32,3 B.⎣⎢⎡⎦⎥⎤32,6 C .[3,12]D.⎣⎢⎡⎦⎥⎤-32,12 解析 因为f (x )有两个极值点x 1,x 2,所以f ′(x )=3x 2+4bx +c =0有两个根x 1,x 2,且x 1∈[-2,-1],x 2∈[1,2],所以⎩⎪⎨⎪⎧f ′-2≥0,f ′-1≤0,f ′1≤0,f ′2≥0,即⎩⎪⎨⎪⎧12-8b +c ≥0,3-4b +c ≤0,3+4b +c ≤0,12+8b +c ≥0,画出可行域如图所示.因为f (-1)=2b -c ,由图知经过点A (0,-3)时,f (-1)取得最小值3,经过点C (0,-12)时,f (-1)取得最大值12,所以f (-1)的取值范围为[3,12].答案 C 二、填空题7.函数f (x )=x 2-2ln x 的最小值为________.解析 由f ′(x )=2x -2x=0,得x 2=1.又x >0,所以x =1.因为0<x <1时,f ′(x )<0,x >1时f ′(x )>0,所以当x =1时,f (x )取极小值(极小值唯一)也即最小值f (1)=1. 答案 18.若f (x )=x 3+3ax 2+3(a +2)x +1有极大值和极小值,则a 的取值范围________. 解析 f ′(x )=3x 2+6ax +3(a +2), 由已知条件Δ>0,即36a 2-36(a +2)>0, 解得a <-1,或a >2.答案 (-∞,-1)∪(2,+∞)9.已知函数f (x )=mx 3+nx 2的图象在点(-1,2)处的切线恰好与直线3x +y =0平行,若f (x )在区间[t ,t +1]上单调递减,则实数t 的取值范围是________. 解析 由题意知,点(-1,2)在函数f (x )的图象上, 故-m +n =2.①又f ′(x )=3mx 2+2nx ,则f ′(-1)=-3, 故3m -2n =-3.②联立①②解得:m =1,n =3,即f (x )=x 3+3x 2, 令f ′(x )=3x 2+6x ≤0,解得-2≤x ≤0, 则[t ,t +1]⊆[-2,0],故t ≥-2且t +1≤0, 所以t ∈[-2,-1]. 答案 [-2,-1] 10.已知函数f (x )=1-xax+ln x ,若函数f (x )在[1,+∞)上为增函数,则正实数a 的取值范围为________. 解析 ∵f (x )=1-xax+ln x ,∴f ′(x )=ax -1ax 2(a >0), ∵函数f (x )在[1,+∞)上为增函数,∴f ′(x )=ax -1ax 2≥0对x ∈[1,+∞)恒成立,∴ax -1≥0对x ∈[1,+∞)恒成立,即a ≥1x对x ∈[1,+∞)恒成立,∴a ≥1.答案 [1,+∞) 三、解答题11.已知函数f (x )=ax 3+bx 2+cx 在点x 0处取得极大值5,其导函数y =f ′(x )的图象经过(1,0),(2,0)点,如图所示.(1)求x 0的值; (2)求a ,b ,c 的值.解析 (1)由f ′(x )随x 变化的情况x (-∞,1)1 (1,2)2 (2,+∞)f ′(x )+-+0(2)f ′(x )=3ax 2+2bx +c ,a >0由已知条件x =1,x =2为方程3ax 2+2bx +c =0,的两根,因此⎩⎪⎨⎪⎧a +b +c =5,-2b 3a=3,c 3a =2,解得a =2,b =-9,c =12.12.某商场销售某种商品的经验表明,该商品每日的销售量y (单位:千克)与销售价格x (单位:元/千克)满足关系式y =ax -3+10(x -6)2,其中3<x <6,a 为常数.已知销售价格为5元/千克时,每日可售出该商品11千克. (1)求a 的值;(2)若该商品的成本为3元/千克,试确定销售价格x 的值,使商场每日销售该商品所获得的利润最大.解 (1)因为x =5时,y =11,所以a2+10=11,a =2.(2)由(1)可知,该商品每日的销售量y =2x -3+10(x -6)2.所以商场每日销售该商品所获得的利润f (x )=(x -3)⎣⎢⎡⎦⎥⎤2x -3+10x -62=2+10(x -3)(x -6)2,3<x <6.从而,f ′(x )=10[(x -6)2+2(x -3)(x -6)] =30(x -4)(x -6).于是,当x 变化时,f ′(x ),f (x )的变化情况如下表:x (3,4) 4 (4,6) f ′(x ) + 0 - f (x )单调递增极大值42单调递减由上表可得,x =4时,函数f (x )取得最大值,且最大值等于42.答:当销售价格为4元/千克时,商场每日销售该商品所获得的利润最大.13.设函数f (x )=a3x 3+bx 2+cx +d (a >0),且方程f ′(x )-9x =0的两根分别为1,4.(1)当a =3且曲线y =f (x )过原点时,求f (x )的解析式; (2)若f (x )在(-∞,+∞)内无极值点,求a 的取值范围. 解 由f (x )=a3x 3+bx 2+cx +d 得f ′(x )=ax 2+2bx +c .因为f ′(x )-9x =ax 2+2bx +c -9x =0的两个根分别为1,4,所以⎩⎪⎨⎪⎧a +2b +c -9=0,16a +8b +c -36=0,(*)(1)当a =3时,由(*)式得⎩⎪⎨⎪⎧2b +c -6=0,8b +c +12=0,解得b =-3,c =12.又因为曲线y =f (x )过原点, 所以d =0.故f (x )=x 3-3x 2+12x .(2)由于a >0,所以f (x )=a3x 3+bx 2+cx +d 在(-∞,+∞)内无极值点等价于f ′(x )=ax 2+2bx +c ≥0在(-∞,+∞)内恒成立.由(*)式得2b =9-5a ,c =4a .又Δ=(2b )2-4ac =9(a -1)(a -9),由⎩⎪⎨⎪⎧a >0,Δ=9a -1a -9≤0得a ∈[1,9].即a 的取值范围是[1,9]. 14.已知函数f (x )满足f (x )=f ′(1)e x -1-f (0)x +12x 2.(1)求f (x )的解析式及单调区间;(2)若f (x )≥12x 2+ax +b ,求(a +1)b 的最大值.解 (1)由已知得f ′(x )=f ′(1)ex -1-f (0)+x .所以f ′(1)=f ′(1)-f (0)+1,即f (0)=1. 又f (0)=f ′(1)e -1,所以f ′(1)=e.从而f (x )=e x -x +12x 2.由于f ′(x )=e x-1+x ,故当x ∈(-∞,0)时,f ′(x )<0; 当x ∈(0,+∞)时,f ′(x )>0.从而,f (x )在(-∞,0)上单调递减,在(0,+∞)上单调递增. (2)由已知条件得e x -(a +1)x ≥b .① (i)若a +1<0,则对任意常数b ,当x <0,且x <1-b a +1时,可得e x-(a +1)x <b ,因此①式不成立.(ii)若a +1=0,则(a +1)b =0.(iii)若a +1>0,设g (x )=e x-(a +1)x , 则g ′(x )=e x-(a +1).当x ∈(-∞,ln(a +1))时,g ′(x )<0; 当x ∈(ln(a +1),+∞)时,g ′(x )>0.从而g (x )在(-∞,ln(a +1))上单调递减,在(ln(a +1),+∞)上单调递增. 故g (x )有最小值g (ln(a +1))=a +1-(a +1)ln(a +1). 所以f (x )≥12x 2+ax +b 等价于b ≤a +1-(a +1)·ln(a +1).②因此(a +1)b ≤(a +1)2-(a +1)2ln(a +1). 设h (a )=(a +1)2-(a +1)2ln(a +1),则h ′(a )=(a +1)[1-2ln(a +1)].所以h (a )在(-1,e 12-1)上单调递增,在(e 12-1,+∞)上单调递减,故h (a )在a =e 12-1处取得最大值.从而h (a )≤e 2,即(a +1)b ≤e2.当a =e 12-1,b =e122时,②式成立.故f (x )≥12x 2+ax +b .综上得,(a +1)b 的最大值为e2.> 25684 6454 摔29533 735D 獝>22028 560C 嘌E21134 528E 劎29087 719F 熟26854 68E6 棦22112 5660 噠336378365 荥e26131 6613 易l。
3_第三章 函数【浙江省高职(单考单招)数学第一轮复习课件PPT】

(5)y=logax(a>0且a≠1)的值域是 R .
基础自测
题组一 思考辨析
1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)若A=R,B={x|x>0},f:x→y=|x|,其对应是从A到B的函数.( × ) (2)若两个函数的定义域与值域相同,则这两个函数相等.( × ) (3)已知f(x)=5(x∈R),则f(x2)=25.( × ) (4)函数f (x)的图象与直线x=1最多有一个交点.( √ )
一个数x,在集合B中都有 唯一确定 的数 f(x)和它对应
名称
称 f:A→B 为从集合A到集合B的一个函数
函数记法
函数y=f (x),x∈A
函数的表示法 表示函数的常用方法有 解析法 、 图象法 和 列表法 .
2.函数的三要素
(1)定义域 在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的 定义域 .
5.函数的单调性
(1)单调函数的定义
增函数
减函数
一般地,设函数 f (x)的定义域为I,如果对于定义域I内某个区间D上
的任意两个自变量的值x1,x2
定义
当x1<x2时,都有 f (x1)<f (x2) , 那么就说函数 f (x)在区间D上是
当x1<x2时,都有 f (x1)>f (x2) ,那么
(2)已知f(x)是二次函数且f(0)=2,f(x+1)-f(x)=x-1,则f(x)=_12_x_2_-__32_x+__2__.
解析 设f(x)=ax2+bx+c(a≠0), 由f (0)=2,得c=2, f (x+1)-f (x)=a(x+1)2+b(x+1)+2-ax2-bx-2=x-1,即2ax+a+b=x-1,
2021年高考数学(理)复习学与练:3.3 函数与导数的综合应用(精讲)((学生版))

『高考复习|学与练』『汇总归纳·备战高考』专题3.3 函数与导数的综合应用【考情分析】1.利用导数研究函数的单调性、极(最)值,并会解决与之有关的方程(不等式)问题;2.会利用导数解决某些简单的实际问题。
【考点梳理】高频考点一 不等式恒成立例1.【2019·浙江卷】已知实数0a ≠,设函数()=ln 0.f x a x x >(1)当34a =-时,求函数()f x 的单调区间;(2)对任意21[,)ex ∈+∞均有()f x ≤ 求a 的取值范围.注:e=2.71828…为自然对数的底数.【方法技巧】利用分离参数法来确定不等式f (x ,λ)≥0(x ∈D ,λ为实参数)恒成立问题中参数取值范围的基本步骤:(1)将参数与变量分离,化为f 1(λ)≥f 2(x )或f 1(λ)≤f 2(x )的形式.(2)求f 2(x )在x ∈D 时的最大值或最小值.(3)解不等式f 1(λ)≥f 2(x )max 或f 1(λ)≤f 2(x )min ,得到λ的取值范围.【变式探究】(2020·陕西省西安市育才中学模拟)已知函数f (x )=ln x -ax ,a ∈R .(1)求函数f (x )的单调区间;(2)若不等式f (x )+a <0在x ∈(1,+∞)上恒成立,求a 的取值范围.高频考点二 能成立问题例2. (2020·四川省南充市一中模拟)已知函数f (x )=3ln x -x 2+x ,g (x )=3x +a .12(1)若f (x )与g (x )的图象相切,求a 的值;(2)若∃x 0>0,使f (x 0)>g ′(x 0)成立,求参数a 的取值范围.【方法技巧】 (1)“恒成立”“存在性”问题一定要正确理解其实质,深刻挖掘内含条件,进行等价转化.(2)构造函数是求范围问题中的一种常用方法,解题过程中尽量采用分离参数的方法,转化为求函数的最值问题.【变式探究】(2020·重庆市武隆中学模拟)已知函数f (x )=ax -e x (a ∈R ),g (x )=.ln x x (1)求函数f (x )的单调区间;(2)∃x 0∈(0,+∞),使不等式f (x )≤g (x )-e x 成立,求a 的取值范围.高频考点三 判断零点的个数例3. 【2020·浙江卷】已知,函数,其中e=2.71828…是自然对数的底数.12a <≤()e x f x x a =--(Ⅰ)证明:函数在上有唯一零点;()y f x =(0,)+∞(Ⅱ)记x 0为函数在上的零点,证明:()y f x =(0,)+∞(ⅰ);0x ≤≤(ⅱ).00(e )(e 1)(1)x x f a a≥--【方法技巧】根据参数确定函数零点的个数,解题的基本思想是“数形结合”,即通过研究函数的性质(单调性、极值、函数值的极限位置等),作出函数的大致图象,然后通过函数图象得出其与x 轴交点的个数,或者两个相关函数图象交点的个数,基本步骤是“先数后形”.【变式探究】(2019·全国卷Ⅰ)已知函数f (x )=sin x -ln(1+x ),f ′(x )为f (x )的导数.证明:(1)f ′(x )在区间存在唯一极大值点;(-1,π2)(2)f (x )有且仅有2个零点.高频考点四 由函数零点个数求参数例4. (2018·全国卷Ⅱ)已知函数f (x )=e x -ax 2.(1)若a =1,证明:当x ≥0时,f (x )≥1;(2)若f (x )在(0,+∞)只有一个零点,求a .【方法技巧】与函数零点有关的参数范围问题,往往利用导数研究函数的单调区间和极值点,并结合特殊点,从而判断函数的大致图象,讨论其图象与x 轴的位置关系,进而确定参数的取值范围;或通过对方程等价变形转化为两个函数图象的交点问题. 【变式探究】(2020·广西柳州市二中模拟)设函数f (x )=-x 2+ax +ln x (a ∈R ).(1)当a =-1时,求函数f (x )的单调区间;(2)若函数f (x )在[,3]上有两个零点,求实数a 的取值范围.13高频考点五 函数零点性质研究例5. (2020·广东省广州市番禺中学模拟)已知函数f (x )=x 2+(1-a )x -a ln x ,a ∈R.12(1)若f (x )存在极值点为1,求a 的值;(2)若f (x )存在两个不同的零点x 1,x 2,求证:x 1+x 2>2.【方法技巧】(1)研究函数零点问题,要通过数的计算(函数性质、特殊点的函数值等)和形的辅助,得出函数零点的可能情况;(2)函数可变零点(函数中含有参数)性质的研究,要抓住函数在不同零点处函数值均为零,建立不同零点之间的关系,把多元问题转化为一元问题,再使用一元函数的方法进行研究.【变式探究】(2020·湖南省临湘市二中模拟)已知函数f (x )=ln x -x .(1)判断函数f (x )的单调性;(2)若函数g (x )=f (x )+x +-m 有两个零点x 1,x 2,且x 1<x 2,求证:x 1+x 2>1.12x。
2021年高考数学一轮复习第三章导数及其应用3.导数的应用课时1导数与函数的单调性文

2021年高考数学一轮复习第三章导数及其应用3.2导数的应用课时1导数与函数的单调性文题型一 不含参数的函数的单调性 例1 求函数f (x )=ln xx的单调区间.解 函数f (x )的定义域为(0,+∞). 因为f (x )=ln x x ,所以f ′(x )=1-ln x x2. 当f ′(x )>0,即0<x <e 时,函数f (x )单调递增; 当f ′(x )<0,即x >e 时,函数f (x )单调递减. 故函数f (x )的单调递增区间为(0,e), 单调递减区间为(e ,+∞).思维升华 确定函数单调区间的步骤: (1)确定函数f (x )的定义域; (2)求f ′(x );(3)解不等式f ′(x )>0,解集在定义域内的部分为单调递增区间;(4)解不等式f ′(x )<0,解集在定义域内的部分为单调递减区间.已知定义在区间(-π,π)上的函数f (x )=x sin x +cos x ,则f (x )的单调递增区间是________________.答案 ⎝ ⎛⎦⎥⎤-π,-π2和⎣⎢⎡⎦⎥⎤0,π2解析 f ′(x )=sin x +x cos x -sin x =x cos x .令f ′(x )=x cos x ≥0,则其在区间(-π,π)上的解集为⎝ ⎛⎦⎥⎤-π,-π2和⎣⎢⎡⎦⎥⎤0,π2,即f (x )的单调递增区间为⎝ ⎛⎦⎥⎤-π,-π2和⎣⎢⎡⎦⎥⎤0,π2.题型二 含参数的函数的单调性 例2 已知函数f (x )=ln x +ax +a +1x-1.(1)当a =1时,求曲线y =f (x )在点(2,f (2))处的切线方程; (2)当-12≤a ≤0时,讨论f (x )的单调性.解 (1)当a =1时,f (x )=ln x +x +2x-1,此时f ′(x )=1x +1-2x 2,f ′(2)=12+1-24=1.又因为f (2)=ln 2+2+22-1=ln 2+2,所以切线方程为y -(ln 2+2)=x -2, 整理得x -y +ln 2=0.(2)f ′(x )=1x +a -1+a x 2=ax 2+x -a -1x2=ax +a +1x -1x 2.当a =0时,f ′(x )=x -1x 2. 此时,在(0,1)上,f ′(x )<0,f (x )单调递减; 在(1,+∞)上,f ′(x )>0,f (x )单调递增.当-12≤a <0时,f ′(x )=a ⎝ ⎛⎭⎪⎫x +a +1a x -1x 2.当-1+a a =1,即a =-12时,f ′(x )=-x -122x 2≤0在(0,+∞)上恒成立,所以f (x )在(0,+∞)上单调递减.当-12<a <0时,-1+a a >1,此时在(0,1)或⎝ ⎛⎭⎪⎫-1+a a ,+∞上,f ′(x )<0,f (x )单调递减;在⎝ ⎛⎭⎪⎫1,-1+a a 上,f ′(x )>0,f (x )单调递增. 综上,当a =0时,f (x )在(0,1)上单调递减,在(1,+∞)上单调递增;当-12<a <0时,f (x )在(0,1)或⎝ ⎛⎭⎪⎫-1+a a ,+∞上单调递减,在⎝ ⎛⎭⎪⎫1,-1+a a 上单调递增; 当a =-12时,f (x )在(0,+∞)上单调递减.思维升华 (1)研究含参数的函数的单调性,要依据参数对不等式解集的影响进行分类讨论. (2)划分函数的单调区间时,要在函数定义域内讨论,还要确定导数为0的点和函数的间断点. (3)个别导数为0的点不影响所在区间的单调性,如f (x )=x 3,f ′(x )=3x 2≥0(f ′(x )=0在x =0时取到),f (x )在R 上是增函数.讨论函数f (x )=(a -1)ln x +ax 2+1的单调性. 解 f (x )的定义域为(0,+∞),f ′(x )=a -1x +2ax =2ax 2+a -1x.①当a ≥1时,f ′(x )>0,故f (x )在(0,+∞)上单调递增; ②当a ≤0时,f ′(x )<0,故f (x )在(0,+∞)上单调递减; ③当0<a <1时,令f ′(x )=0,解得x =1-a2a,则当x ∈(0, 1-a2a)时,f ′(x )<0;当x ∈(1-a2a ,+∞)时,f ′(x )>0,故f (x )在(0, 1-a2a)上单调递减,在( 1-a2a,+∞)上单调递增.题型三 利用函数单调性求参数例3 设函数f (x )=13x 3-a 2x 2+bx +c ,曲线y =f (x )在点(0,f (0))处的切线方程为y =1.(1)求b ,c 的值;(2)若a >0,求函数f (x )的单调区间;(3)设函数g (x )=f (x )+2x ,且g (x )在区间(-2,-1)内存在单调递减区间,求实数a 的取值范围.解 (1)f ′(x )=x 2-ax +b ,由题意得⎩⎪⎨⎪⎧f 0=1,f ′0=0,即⎩⎪⎨⎪⎧c =1,b =0.(2)由(1)得,f ′(x )=x 2-ax =x (x -a )(a >0), 当x ∈(-∞,0)时,f ′(x )>0; 当x ∈(0,a )时,f ′(x )<0; 当x ∈(a ,+∞)时,f ′(x )>0.所以函数f (x )的单调递增区间为(-∞,0),(a ,+∞),单调递减区间为(0,a ). (3)g ′(x )=x 2-ax +2, 依题意,存在x ∈(-2,-1), 使不等式g ′(x )=x 2-ax +2<0成立, 即x ∈(-2,-1)时,a <(x +2x)max =-22,当且仅当x =2x即x =-2时等号成立.所以满足要求的a 的取值范围是(-∞,-22). 引申探究 在本例3(3)中,1.若g (x )在(-2,-1)内为减函数,如何求解?解 方法一 ∵g ′(x )=x 2-ax +2,且g (x )在(-2,-1)内为减函数, ∴g ′(x )≤0,即x 2-ax +2≤0在(-2,-1)内恒成立,∴⎩⎪⎨⎪⎧g ′-2≤0,g ′-1≤0,即⎩⎪⎨⎪⎧4+2a +2≤0,1+a +2≤0,解之得a ≤-3,即实数a 的取值范围为(-∞,-3]. 方法二 ∵g ′(x )=x 2-ax +2,由题意可得g ′(x )≤0在(-2,-1)上恒成立, 即a ≤x +2x 在(-2,-1)上恒成立,又y =x +2x,x ∈(-2,-1)的值域为(-3,-2 2 ], ∴a ≤-3,∴实数a 的取值范围是(-∞,-3]. 2.若g (x )的单调减区间为(-2,-1),求a 的值. 解 ∵g (x )的单调减区间为(-2,-1), ∴x 1=-2,x 2=-1是g ′(x )=0的两个根, ∴(-2)+(-1)=a ,即a =-3.3.若g (x )在(-2,-1)上不单调,求a 的取值范围.解 由引申探究1知g (x )在(-2,-1)上为减函数,a 的范围是(-∞,-3],若g (x )在(-2,-1)上为增函数,可知a ≥x +2x 在(-2,-1)上恒成立,又y =x +2x的值域为(-3,-2 2 ],∴a 的范围是[-22,+∞),∴函数g (x )在(-2,-1)上单调时,a 的取值范围是(-∞,-3]∪[-22,+∞), 故g (x )在(-2,-1)上不单调,实数a 的取值范围是(-3,-22). 思维升华 已知函数单调性,求参数范围的两个方法(1)利用集合间的包含关系处理:y =f (x )在(a ,b )上单调,则区间(a ,b )是相应单调区间的子集.(2)转化为不等式的恒成立问题:即“若函数单调递增,则f ′(x )≥0;若函数单调递减,则f ′(x )≤0”来求解.已知函数f (x )=e xln x -a e x(a ∈R ).(1)若f (x )在点(1,f (1))处的切线与直线y =1e x +1垂直,求a 的值;(2)若f (x )在(0,+∞)上是单调函数,求实数a 的取值范围.解 (1)f ′(x )=e x ln x +e x ·1x -a e x =(1x-a +ln x )e x,f ′(1)=(1-a )e ,由(1-a )e·1e=-1,得a =2.(2)由(1)知f ′(x )=(1x-a +ln x )e x,若f (x )为单调递减函数,则f ′(x )≤0,在x >0时恒成立. 即1x-a +ln x ≤0,在x >0时恒成立.所以a ≥1x+ln x ,在x >0时恒成立.令g (x )=1x+ln x (x >0),则g ′(x )=-1x 2+1x =x -1x2(x >0),由g ′(x )>0,得x >1; 由g ′(x )<0,得0<x <1.故g (x )在(0,1)上为单调递减函数,在[1,+∞)上为单调递增函数,此时g (x )的最小值为g (x )=1,但g (x )无最大值(且无趋近值).故f (x )不可能是单调递减函数. 若f (x )为单调递增函数,则f ′(x )≥0,在x >0时恒成立,即1x-a +ln x ≥0,在x >0时恒成立,所以a ≤1x+ln x ,在x >0时恒成立,由上述推理可知此时a ≤1.故实数a 的取值范围是(-∞,1].5.分类讨论思想研究函数的单调性典例 (14分)已知函数f (x )=ln x ,g (x )=f (x )+ax 2+bx ,其中函数g (x )的图象在点(1,g (1))处的切线平行于x 轴.(1)确定a 与b 的关系;(2)若a ≥0,试讨论函数g (x )的单调性.思维点拨 依据g (x )的切线条件可得g ′(1)=0得a ,b 关系,代g (x )后消去b ,对a 进行分类讨论确定g ′(x )的符号. 规范解答解 (1)依题意得g (x )=ln x +ax 2+bx , 则g ′(x )=1x+2ax +b .[2分]由函数g (x )的图象在点(1,g (1))处的切线平行于x 轴得:g ′(1)=1+2a +b =0,∴b =-2a -1.[4分](2)由(1)得g ′(x )=2ax 2-2a +1x +1x=2ax -1x -1x.∵函数g (x )的定义域为(0,+∞), ∴当a =0时,g ′(x )=-x -1x. 由g ′(x )>0,得0<x <1, 由g ′(x )<0,得x >1,[6分]当a >0时,令g ′(x )=0,得x =1或x =12a ,[7分]若12a <1,即a >12, 由g ′(x )>0,得x >1或0<x <12a ,由g ′(x )<0,得12a <x <1;[9分]若12a >1,即0<a <12, 由g ′(x )>0,得x >12a 或0<x <1,由g ′(x )<0,得1<x <12a,[11分]若12a =1,即a =12,在(0,+∞)上恒有g ′(x )≥0.[12分] 综上可得:当a =0时,函数g (x )在(0,1)上单调递增,在(1,+∞)上单调递减; 当0<a <12时,函数g (x )在(0,1)上单调递增,在(1,12a )上单调递减,在(12a ,+∞)上单调递增;当a =12时,函数g (x )在(0,+∞)上单调递增;当a >12时,函数g (x )在(0,12a)上单调递增,在(12a,1)上单调递减,在(1,+∞)上单调递增.[14分] 温馨提醒 (1)含参数的函数的单调性问题一般要分类讨论,常见的分类讨论标准有以下几种可能:①方程f ′(x )=0是否有根;②若f ′(x )=0有根,求出根后是否在定义域内;③若根在定义域内且有两个,比较根的大小是常见的分类方法. (2)本题求解先分a =0或a >0两种情况,再比较12a和1的大小.[方法与技巧]1.已知函数解析式求单调区间,实质上是求f ′(x )>0,f ′(x )<0的解区间,并注意定义域. 2.含参函数的单调性要分类讨论,通过确定导数的符号判断函数的单调性.3.已知函数单调性可以利用已知区间和函数单调区间的包含关系或转化为恒成立问题两种思路解决.[失误与防范]1.f (x )为增函数的充要条件是对任意的x ∈(a ,b )都有f ′(x )≥0且在(a ,b )内的任一非空子区间上f ′(x )不恒为零,应注意此时式子中的等号不能省略,否则漏解.2.注意两种表述“函数f (x )在(a ,b )上为减函数”与“函数f (x )的减区间为(a ,b )”的区别.3.讨论函数单调性要在定义域内进行,不要忽略函数的间断点.A 组 专项基础训练 (时间:40分钟)1.函数f (x )=(x -3)e x的单调递增区间是____________. 答案 (2,+∞)解析 函数f (x )=(x -3)e x 的导数为f ′(x )=[(x -3)e x ]′=e x +(x -3)e x =(x -2)e x. 由函数导数与函数单调性的关系,得当f ′(x )>0时,函数f (x )单调递增, 此时由不等式f ′(x )=(x -2)e x>0,解得x >2.2.若函数f (x )=2x 3-3mx 2+6x 在区间(2,+∞)上为增函数,则实数m 的取值范围为__________. 答案 (-∞,52]解析 ∵f ′(x )=6x 2-6mx +6, 当x ∈(2,+∞)时,f ′(x )≥0恒成立, 即x 2-mx +1≥0恒成立,∴m ≤x +1x恒成立.令g (x )=x +1x ,g ′(x )=1-1x2,∴当x >2时,g ′(x )>0,即g (x )在(2,+∞)上单调递增, ∴m ≤2+12=52.3.设函数f (x )=x -2sin x 是区间⎣⎢⎡⎦⎥⎤t ,t +π2上的减函数,则实数t 的取值范围是______________________. 答案 ⎣⎢⎡⎦⎥⎤2k π-π3,2k π-π6,k ∈Z解析 由题意得f ′(x )=1-2cos x ≤0,即cos x ≥12,解得2k π-π3≤x ≤2k π+π3 (k ∈Z ),∵f (x )=x -2sin x 是区间⎣⎢⎡⎦⎥⎤t ,t +π2上的减函数,∴⎣⎢⎡⎦⎥⎤t ,t +π2⊆⎣⎢⎡⎦⎥⎤2k π-π3,2k π+π3,∴2k π-π3≤t ≤2k π-π6(k ∈Z ).4.定义在R 上的函数f (x )满足:f ′(x )>f (x )恒成立,若x 1<x 2,则的大小关系为________________. 答案解析 设g (x )=f xex,则g ′(x )=f ′x e x -f x e x ex2=f ′x -f xex,由题意g ′(x )>0,所以g (x )单调递增,当x 1<x 2时,g (x 1)<g (x 2),即f x 1<f x 2,所以.5.函数f (x )在定义域R 内可导,若f (x )=f (2-x ),且当x ∈(-∞,1)时,(x -1)f ′(x )<0,设a =f (0),b =f (12),c =f (3),则a ,b ,c 的大小关系为____________.答案 c <a <b解析 依题意得,当x <1时,f ′(x )>0,f (x )为增函数; 又f (3)=f (-1),且-1<0<12<1,因此有f (-1)<f (0)<f (12),即有f (3)<f (0)<f (12),c <a <b .6.函数f (x )=x -ln x 的单调递减区间为________. 答案 (0,1)解析 函数的定义域是(0,+∞), 且f ′(x )=1-1x =x -1x,令f ′(x )<0,解得0<x <1,所以单调递减区间是(0,1).7.已知a ≥0,函数f (x )=(x 2-2ax )e x,若f (x )在[-1,1]上是单调减函数,则a 的取值范围是________. 答案 [34,+∞)解析 f ′(x )=(2x -2a )e x +(x 2-2ax )e x=[x 2+(2-2a )x -2a ]e x,由题意当x ∈[-1,1]时,f ′(x )≤0恒成立, 即x 2+(2-2a )x -2a ≤0在x ∈[-1,1]时恒成立. 令g (x )=x 2+(2-2a )x -2a ,则有⎩⎪⎨⎪⎧g -1≤0,g 1≤0,即⎩⎪⎨⎪⎧-12+2-2a ·-1-2a ≤0,12+2-2a -2a ≤0,解得a ≥34.8.函数f (x )=x 3+bx 2+cx +d 的图象如图,则函数y =log 2⎝⎛⎭⎪⎫x 2+23bx +c 3的单调递减区间为____________.答案 (-∞,-2)解析 ∵f (x )=x 3+bx 2+cx +d , ∴f ′(x )=3x 2+2bx +c .由题图可知f ′(-2)=f ′(3)=0,∴⎩⎪⎨⎪⎧12-4b +c =0,27+6b +c =0,解得⎩⎪⎨⎪⎧b =-32,c =-18.令g (x )=x 2+23bx +c 3,则g (x )=x 2-x -6,g ′(x )=2x -1. 由g (x )=x 2-x -6>0,解得x <-2或x >3. 当x <-2时,g ′(x )<0,∴g (x )=x 2-x -6在(-∞,-2)上为减函数.∴函数y =log 2⎝⎛⎭⎪⎫x 2+23bx +c 3的单调递减区间为(-∞,-2).9.已知函数f (x )=x 4+a x -ln x -32,其中a ∈R ,且曲线y =f (x )在点(1,f (1))处的切线垂直于直线y =12x .(1)求a 的值;(2)求函数f (x )的单调区间.解 (1)对f (x )求导得f ′(x )=14-a x 2-1x,由f (x )在点(1,f (1))处的切线垂直于直线y =12x 知f ′(1)=-34-a =-2,解得a =54.(2)由(1)知f (x )=x 4+54x -ln x -32,则f ′(x )=x 2-4x -54x2. 令f ′(x )=0,解得x =-1或x =5.因为x =-1不在f (x )的定义域(0,+∞)内,故舍去. 当x ∈(0,5)时,f ′(x )<0, 故f (x )在(0,5)内为减函数; 当x ∈(5,+∞)时,f ′(x )>0, 故f (x )在(5,+∞)内为增函数.综上,f (x )的单调增区间为(5,+∞),单调减区间为(0,5). 10.已知函数f (x )=ln x ,g (x )=12ax +b .(1)若f (x )与g (x )在x =1处相切,求g (x )的表达式; (2)若φ(x )=m x -1x +1-f (x )在[1,+∞)上是减函数,求实数m 的取值范围.解 (1)由已知得f ′(x )=1x , ∴f ′(1)=1=12a ,a =2. 又∵g (1)=0=12a +b ,∴b =-1, ∴g (x )=x -1.(2)∵φ(x )=m x -1x +1-f (x )=m x -1x +1-ln x 在[1,+∞)上是减函数. ∴φ′(x )=-x 2+2m -2x -1x x +12≤0在[1,+∞)上恒成立. 即x 2-(2m -2)x +1≥0在[1,+∞)上恒成立,则2m -2≤x +1x,x ∈[1,+∞), ∵x +1x∈[2,+∞),∴2m -2≤2,m ≤2. 故实数m 的取值范围是(-∞,2].B 组 专项能力提升(时间:20分钟)11.设函数f (x )=12x 2-9ln x 在区间[a -1,a +1]上单调递减,则实数a 的取值范围是__________.答案 1<a ≤2解析 ∵f (x )=12x 2-9ln x , ∴f ′(x )=x -9x(x >0), 当x -9x≤0时,有0<x ≤3, 即在(0,3]上原函数是减函数,∴a -1>0且a +1≤3,解得1<a ≤2.12. f (x ),g (x ) (g (x )≠0)分别是定义在R 上的奇函数和偶函数,当x <0时,f ′(x )g (x )<f (x )g ′(x ),且f (-3)=0,则f x g x<0的解集为____________. 答案 (-3,0)∪(3,+∞)解析 f x g x是奇函数, ∵当x <0时,f ′(x )g (x )<f (x )g ′(x ),⎣⎢⎡⎦⎥⎤f x g x ′=f ′x g x -f x g ′x g 2x <0,则f x g x 在(-∞,0)上为减函数,在(0,+∞)上也为减函数.又f (-3)=0,则有f -3g -3=0=f 3g 3,可知f x g x<0的解集为(-3,0)∪(3,+∞).13.若函数f (x )=-13x 3+12x 2+2ax 在[23,+∞)上存在单调递增区间,则a 的取值范围是________.答案 (-19,+∞) 解析 对f (x )求导,得f ′(x )=-x 2+x +2a =-(x -12)2+14+2a . 当x ∈[23,+∞)时, f ′(x )的最大值为f ′(23)=29+2a .令29+2a >0,解得a >-19. 所以a 的取值范围是(-19,+∞). 14.已知函数f (x )=-12x 2+4x -3ln x 在区间[t ,t +1]上不单调,则t 的取值范围是________.答案 (0,1)∪(2,3)解析 由题意知f ′(x )=-x +4-3x=-x -1x -3x ,由f ′(x )=0得函数f (x )的两个极值点为1和3,则只要这两个极值点有一个在区间(t ,t +1)内,函数f (x )在区间[t ,t +1]上就不单调,由t <1<t +1或t <3<t +1,得0<t <1或2<t <3.15.函数f (x )=ax 3+3x 2+3x (a ≠0).(1)讨论函数f (x )的单调性;(2)若函数f (x )在区间(1,2)上是增函数,求a 的取值范围.解 (1)f ′(x )=3ax 2+6x +3,f ′(x )=3ax 2+6x +3=0的判别式Δ=36(1-a ).①若a ≥1,则f ′(x )≥0,且f ′(x )=0,当且仅当a =1,x =-1,故此时f (x )在R 上是增函数.②由于a ≠0,故当a <1时,f ′(x )=0有两个根,x 1=-1+1-aa ,x 2=-1-1-a a. 若0<a <1,则当x ∈(-∞,x 2)或x ∈(x 1,+∞)时,f ′(x )>0,故f (x )分别在(-∞,x 2),(x 1,+∞)上是增函数;当x ∈(x 2,x 1)时,f ′(x )<0,故f (x )在(x 2,x 1)上是减函数.若a <0,则当x ∈(-∞,x 1)或(x 2,+∞)时,f ′(x )<0,故f (x )分别在(-∞,x 1),(x 2,+∞)上是减函数;当x ∈(x 1,x 2)时,f ′(x )>0,故f (x )在(x 1,x 2)上是增函数.(2)当a >0,x >0时,f ′(x )>0,所以当a >0时,f (x )在区间(1,2)上是增函数.当a <0时,f (x )在区间(1,2)上是增函数,当且仅当f ′(1)≥0且f ′(2)≥0,解得-54≤a <0. 综上,a 的取值范围是⎣⎢⎡⎭⎪⎫-54,0∪(0,+∞).。
数学一轮复习第三章三角函数解三角形第1讲任意角和蝗制及任意角的三角函数学案含解析

第三章三角函数、解三角形第1讲任意角和弧度制及任意角的三角函数[考纲解读]1。
了解任意角的概念及弧度制的概念,能进行弧度与角度的互化.(重点)2.理解任意角的三角函数(正弦、余弦、正切)的定义,并能熟练运用基本知识与基本技能、转化与化归思想等.(重点、难点)[考向预测]从近三年高考情况来看,本讲内容属于基础考查范围.预测2021年高考会考查三角函数的定义、根据终边上点的坐标求三角函数值或根据三角函数值求参数值.常以客观题形式考查,属中、低档试题.1.任意角的概念(1)定义:角可以看成平面内的一条射线绕着错误!端点从一个位置旋转到另一个位置所成的图形.(2)角的分类(3)终边相同的角:所有与角α终边相同的角,连同角α在内,可构成一个集合S={β|β=α+k·360°,k∈Z}.2.弧度制的定义和公式(1)定义:把长度等于错误!半径长的弧所对的圆心角叫做1弧度的角.正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数是0。
(2)公式3.任意角的三角函数定义:设α是一个任意角,它的终边与单位圆交于点P(x,y),那么sinα=错误!y,cosα=错误!x,tanα=错误!错误!.1.概念辨析(1)锐角是第一象限的角,第一象限的角也都是锐角.()(2)角α的三角函数值与其终边上点P的位置无关.()(3)不相等的角终边一定不相同.()(4)三角形的内角必是第一、第二象限角.()答案(1)×(2)√(3)×(4)×2.小题热身(1)下列与错误!的终边相同的角的表达式中正确的是()A.2kπ+45°(k∈Z)B.k·360°+错误!(k∈Z)C.k·360°-315°(k∈Z) D.kπ+5π4(k∈Z)答案C解析角度制与弧度制不能混用,排除A,B;因为错误!=2π+π4,所以与错误!终边相同的角可表示为k·360°+45°(k∈Z)或k·360°-315°等,故选C。
202新数学复习第三章三角函数解三角形3.3.两角和与差的三角公式学案含解析

第三节简单的三角恒等变换课标要求考情分析1.会用向量的数量积推导出两角差的余弦公式.2.能利用两角差的余弦公式推导出两角差的正弦、正切公式.3.能利用两角差的余弦公式推导出两角和的正弦、余弦、正切公式,推导出二倍角的正弦、余弦、正切公式,了解它们的内在联系.1。
利用两角和与差的正弦、余弦、正切公式及二倍角公式进行化简、求值是高考考查的热点,本部分内容常与三角函数的性质、向量、解三角形的知识相结合命题.2.命题形式多种多样,既有选择题、填空题,也有综合性的解答题.知识点一基本公式1.两角和与差的正弦、余弦、正切公式C(α-β):cos(α-β)=cosαcosβ+sinαsinβ.C(α+β):cos(α+β)=cosαcosβ-sinαsinβ。
S(α+β):sin(α+β)=sinαcosβ+cosαsinβ.S(α-β):sin(α-β)=sinαcosβ-cosαsinβ。
T(α+β):tan(α+β)=错误!(α,β,α+β≠错误!+kπ,k∈Z).T(α-β):tan(α-β)=错误!(α,β,α-β≠错误!+kπ,k∈Z).2.二倍角的正弦、余弦、正切公式S2α:sin2α=2sinαcosα.C2α:cos2α=cos2α-sin2α=2cos2α-1=1-2sin2α。
T2α:tan2α=2tanα1-tanα错误!知识点二三角公式的变形技巧1.降幂公式:cos2α=错误!,sin2α=错误!。
2.升幂公式:1+cos2α=2cos2α,1-cos2α=2sin2α。
3.公式变形:tanα±tanβ=tan(α±β)(1∓tanαtanβ).4.辅助角公式:a sin x+b cos x=a2+b2sin(x+φ)错误!知识点三三角恒等变换1.重视三角函数的“三变”:“三变”是指“变角、变名、变式".(1)变角:对角的分拆要尽可能化成同角、特殊角;(2)变名:尽可能减少函数名称;(3)变式:对式子变形一般要尽可能有理化、整式化、降低次数等.2.在解决求值、化简、证明问题时,一般是观察角、函数名、所求(或所证明)问题的整体形式中的差异,再选择适当的三角公式恒等变形.1.思考辨析判断下列结论正误(在括号内打“√”或“×")(1)存在实数α,β,使等式sin(α+β)=sinα+sinβ成立.(√)(2)在锐角△ABC中,sin A sin B和cos A cos B大小不确定.(×)(3)公式tan(α+β)=tanα+tanβ1-tanαtanβ可以变形为tanα+tanβ=tan(α+β)(1-tanαtanβ),且对任意角α,β都成立.(×)(4)公式a sin x+b cos x=错误!sin(x+φ)中φ的取值与a,b的值无关.(×)解析:根据正弦、余弦和正切的和角、差角公式知(2)(3)(4)是错误的,(1)是正确的.2.小题热身(1)(2019·全国卷Ⅰ)tan255°=(D)A.-2-错误!B.-2+错误!C.2-错误!D.2+错误!(2)若sinα=错误!,则cos2α=(B)A.错误!B.错误!C.-错误!D.-错误!(3)sin347°cos148°+sin77°·cos58°=错误!.(4)已知tan(α-错误!)=错误!,则tanα=错误!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A.[ 3 , ) 4
B.[ 4 , ) 3
C.(, 3] 4
D.(, 4] 3
【答案】C 由3 4x 0得 : x ,选C.
8.(2019年)函数y=lg(x+2)的定义域是 ( )
A.(-2,+∞)
B.[-2,+∞)
C.(-∞,-2)
D.(-∞,-2]
【答案】A 要使函数有意义,只要x+2>0,求得x>-2.∴函数y=lg(x+2)的定 义域为(-2,+∞),故选A.
12.(2015年)已知函数f(x)是奇函数,且f(2)=1,则[f(-2)]3= ( )
A.-8
B.-1
C.1
D.8
【答案】B ∵函数是奇函数,且f(2)=1, ∴f(-2)=-1, [f(-2)]3=(-1)3=-1.
13.(2016年)函数f(x)是偶函数,y=f(x)的图象经过点(2,-5),则下 列等式恒成立的是 ( ) A.f(-2)=5 B. f(-2)=-5 C. f(-5)=2 D. f(-5)=-2
考题直通
一、选择题
1.(2018年)已知函数f
(
x)
x x
3, x 0 2 1, x 0
,
设c
f (2),则f (c)
A.1
B.0
C. 1
D. 2
【答案】 B Q 2 0,c f (2) 2 3 1,Q 1 0, f (c) f (1) (1)2 1 0,选B.
A.4
B.-4
C.2
D.-2
【答案】C 由题意可知, f(x)=3x2+bx-1是偶函数,则b=0, 所以f(x)=3x2-1
f(-1)=3×(-1)2-1=2,故选C.
16.(2014年)下列函数在其定义域内单调递减的是
A.y 1 x 2
B.y 2x
C.y ( 1)x 2
D.y x2
【答案】C
11.(2017年)设f(x)是定义在R上的奇函数,已知当x≥0时,
f(x)=x2-4x3,则f(-1)= ( )
A.-5
B.-3
C.3
D.5
【答案】C 当x≥0时,f(x)=x2-4x3,f(1)=12-4×13=1-4=-3. 因为f(x)是定义在R上的奇函数,f(-1)=-f(1)=3, 故选C.
【答案】B 要使函数有意义,只要1 x 0,求得x 1. 函数f (x) 1 x的定义域为[-1, ),故选B.
5.(2016年)函数y 2x 3的定义域是
A.(, )
B.(0, )
C.(, 3] 2
D.[ 3 , ) 2
【答案】D
要使函数有意义,只要2x 3 0,求得x 3 . 2
【答案】B
A.y x2在定义域内不单调;
C.y (1)x 在定义域内单调递减; 3
D.y log3 x log1 x,函数在定义域内单调递减;
3
B.y
3x 2x
( 3)x 定义域内单调递增. 2
选择B
二、填空题
18.(2012年)f(x)是定义在(0,+∞)上的增函数,则不等式
f(x)>f(2x-3)的解集是
三、解答题 21.(2014年)将10米长的铁丝做成一个如下图所示的五边形框 架ABCDE.要求连接AD后,△ADE为等边三角形,四边形ABCD 为正方形. (1)求边BC的长; (2)求框架ABCDE围成的图形的面积.(注:铁丝的粗细忽略不计)
【解】(1)设BC x,
由题意知AB CD DE AE BC x,
9.(2019年)已知函数y=f(x)(x∈R)为增函数,则下列关系正确的是
()
A.f(-2)>f(3)
B.f(2)<f(3)
C.f(-2)<f(-3)
D.f(-1)>f(0)
【答案】B 由题意可知,f(x)在R上的增函数,∵2<3,∴f(2)<f(3),故选B.
10.(2017年)已知函数y=ex的图象与单调递减函数y=f(x)(x∈R)
3.(2014年)函数f (x) 1 的定义域是
1 x A.(,1) B.(1, ) C.[1,1] D.(1,1)
【答案】A 要使函数有意义,只要1 x 0,求得x 1, 函数f (x) 1 的定义域为(-,1),故选A.
1 x
4.(2015年)函数f (x) 1 x的定义域是
A.(, 1] B.[1, ) C.(,1] D.(, )
且5x 10, 解得x 2(m),所以BC的长为2米.
(2)因为ADE是等边三角形,
所以ADE的面积 1 AD AE sin 1 2 2 3 3(m2 );
2
32
2
正方形ABCD的面积 AB BC 2 2 4(m2 ),
因此框架ABCDE围成的图形的面积S (4 3)平方米.
(2) A
(x
5)2 2
25 4
,当x
5 2
时,
A最大
25 4
;
(3)设半径为r,由题得C 2πr 10, 解得 : r 5 , π
S
πr 2
π
25 π2
25 π
,Q
π
4,
25 π
25 4
, S
A.
23.(2019年)如图,已知O(0,0),A(8,0),B(0,6),点P,Q分别为线段 OA,OB上的动点,且|BQ|=|AP|=x(0<x<6).
即: 1 x2 7x 24 12 2
解得 : x1 2, x2 12(不合题意,舍去).
ห้องสมุดไป่ตู้
2.(2019年)已知函数f
(
x)
lg x(x 10x (x
0) 0)
,
若f
(1 10
)=t,
则f
(t
)
A.-1
B. 1
C.1
D.10
10
【答案】 B
Q 1 0, t f ( 1 ) lg 1 lg101 1,
10
10 10
Q 1 0, f (t) f (1) 101 1 ,故选B. 10
.
【答案】9 Q 当x 0时,f (x) 3x f (2) 32 9. 又Q f (x)是偶函数, f (2)=f (2)=9.
20.(2014年)若函数f(x)=-x2+2x+k(x∈R)的最大值为1,
则k=
.
【答案】0 Q f (x) x2 2x k (x 1)2 k 1, 且函数的最大值为1. k 1 1. 求得k 0.
D.6
【答案】 A Q f (x)是R上奇函数, f (0) 0;又f (x 4) f (x), f (4) f (0) 0; f (1) f (1) 3. f (1) 3. f (4) f (5) f (0) f (1) 0 3 3,选A.
15.(2019年)若函数f(x)=3x2+bx-1(b∈R)是偶函数,则f(-1)=( )
.
【答案】( 3 ,3) 2
Q f (x)是定义在(0, )上的增函数,
x0 2x 3
x 2x
0, 3
求得
x x x
0 3 2 3
,即
3 2
x
3,
不等式f (x) f (2x 3)的解集是( 3 ,3). 2
19.(2014年)已知f(x)是偶函数,且x≥0时,f(x)=3x,则f(-2)=
22.(2018年)已知矩形的周长为10,设该矩形的面积为A,一边的长为x. (1)将A表示为x的函数; (2)求A的最大值; (3)设周长为10的圆的面积为S,试比较A和S的大小关系,并说明理由.
【解】 (1) A x(10 2x ) x(5 x) x2 5x(0 x 5); 2
A.y 1 x在其定义域内单调递增; 2
B.y 2x 在其定义域内单调递增;
C.y (1)x 在其定义域内单调递减; 2
D.y x2在其定义域内单调性不唯一.
选择C
17.(2016年)下列函数在其定义域内单调递增的是
A.y x2
3x B.y 2x
C.y (1)x 3
D.y log3 x
【答案】B ∵ y=f(x)的图象经过点(2,-5),且函数f(x)是偶函数, ∴f(2)=-5,则f(-2)=-5. 故选B.
14.(2018年)已知函数f(x)是定义在R上的奇函数,且对于任意实
数x,都有f(x+4)=f(x),若f(-1)=3,则f(4)+f(5)=( )
A.-3
B.0
C.3
(1)写出△OPQ的面积y与x之间的函数解析式; (2)当x为何值时,四边形ABQP的面积等于△OPQ的面积?
【解】 (1)SVOPQ
1 2
OQ OP
1 (6 x) (8 x) 1 x2 7x 24;
2
2
(2) S ABQP
SVOPQ
SVOPQ
1 2
SVABO
1 4
6
8
12
函数y 2x 3的定义域为[- 3 , ),故选D. 2
6.(2017年)函数y 1 的定义域是
4 x A.(, 4] B.(, 4] C.[ 4,+)
D.( 4, )
【答案】D 要使函数有意义,只要4 x 0,求得x>-4. 函数y 1 的定义域为(-4, ),故选D.
4 x
7.(2018年)函数f (x) 3 4x的定义域是( )
的图象相交于点(a,b),给出下列四个结论:
①a=lnb
②b=lna
③f(a)=b
④当x>a时,f(x)<ea