实验三 (上下水箱串级液位控制实验)实验报告电子版2014
实验三 水箱液位串级控制系统实验

(实验三)水箱液位串级控制系统实验报告班级测控四班学号0800201428 姓名王常玥一、实验目的1.通过实验了解水箱液位串级控制系统组成原理。
2.掌握水箱液位串级控制系统调节器参数的整定与投运方法。
3.了解阶跃扰动分别作用于副对象和主对象时对系统主控制量的影响。
4.掌握液位串级控制系统采用不同控制方案的实现过程。
二、实验原理本实验为水箱液位的串级控制系统,它是由主控、副控两个回路组成。
主控回路中的调节器称主调节器,控制对象为锅炉汽包,其液位为系统的主控制量。
副控回路中的调节器称副调节器,控制对象为上水箱,又称副对象,其液位为系统的副控制量。
主调节器的输出作为副调节器的给定,因而副控回路是一个随动控制系统。
副调节器的的输出直接驱动电动调节阀,从而达到控制液位的目的。
为了实现系统在阶跃给定和阶跃扰动作用下的无静差控制,系统的主调节器应为PI 或PID控制。
由于副控回路的输出要求能快速、准确地复现主调节器输出信号的变化规律,对副参数的动态性能和余差无特殊的要求,因而副调节器可采用P 调节器。
本实验系统结构图和方框图如图4-2所示。
图4-2 水箱液位串级控制系统(a)结构图(b)方框图三、实验设备DDD-Z05-I实验对象及DDD-Z05-IK控制屏、DDD-Z05-III 电源控制柜一台、SA-12挂件一个、SA-13A挂件一个、计算机一台、万用表一个、实验连接线若干。
四、实验内容与步骤本实验选择上水箱和锅炉汽包,实验之前先将储水箱中贮足水量,然后将阀门F1-1、F1-6、F2-14全开,F1-9 、F2-15开适当开度(F1-9﹥F2-15),其余阀门均关闭。
1.按照第一章1-6用网线和交换机连接操作员站和服务器,以及服务器和主控单元,“SA31 FM148现场总线远程I/O模块”、“SA31 FWM158现场总线远程I/O模块”挂件挂到屏幕上,并将挂件的通讯线街头插入屏内Profibus-DP总线接口上,将控制屏左侧Profibus-DP总线连接到主控单元DP口,并按照下面的控制屏接线图连接实验系统。
水箱液位串级控制系统实训报告

实训指导教师:系别:专业:生产进程自动化班级:姓名:实训地点:实训时间:9.2.2 水箱液位串级控制系统1.实训目的(1)熟悉集散控制系统的组成(见附录B)。
(2)学习MACS组态软件的利用方式。
(3)培育学生灵活组态的能力。
(4)掌握系统组态与装置调试的技能。
(5)掌握串级控制系统的组态方式。
2.实训内容(1)水箱液位串级控制系统数据库组态。
(2)水箱液位串级控制系统设备组态。
(3)水箱液位串级控制系统算法组态。
(4)水箱液位串级控制系统画面组态。
(5)水箱液位串级控制系统调试。
3.实训设备和器材(1)THSA-1型生产进程自动化技术综合实训装置。
(2)万用表一个、PC/PPI通信电缆一根。
4.实训接线参照图完成系统接线。
图水箱液位串级控制系统接线图5.实训步骤(1)工程分析水箱液位串级控制系统需要两个输入信号端子和一个输出端子,因此选用一个模拟量输入模块(FM148A)和一个模拟量输出模块(FM151)。
FM148A的通道2收集上水箱液位数据,FM148A的通道3收集中水箱液位数据,控制输出信号由模拟量输出模块(FM151)的通道1送出,去操纵电动控制阀的开度。
(2)成立工程。
①参照图和图,打开数据库组态工具,进入数据库组态界面。
图数据库组态工具打开步骤图数据库组态界面②在数据库总控组态界面中工具栏下单击新建工程按钮,弹出如图所示添加工程的对话框,添入工程名称,单击肯定。
图添加工程③工程成立以后能够在c:\hs2000macs组态软件下看到新建的工程名称。
(3)编辑数据库。
①选择编辑→编辑数据库,在弹出的对话框如图所示,输入用户名Bjhc和密码3dlcz,单击肯定,进入数据库编辑界面。
图进入数据库编辑界面②参照图(a)选择系统→数据操作,单击肯定,弹出如图(b)所示窗口。
因为水箱液位串级控制控制系统利用两个模块,三个通道,所以需要编辑三个点号。
③单击数据操作后,选择模拟量输入,在右边选择项名列表框中,选择必需设置的项目名称,见表,单击肯定并添加记录。
实验三 双容水箱液位定值控制

实验三双容液位定值控制实验原理:本实验以中水箱与下水箱串联作为被控对象,下水箱的液位高度为系统的被控制量。
要求下水箱液位稳定至给定量,将压力传感器LT3检测到的下水箱液位信号作为反馈信号,在与给定量比较后的差值通过调节器控制电动调节阀的开度,以达到控制下水箱液位的目的。
实验系统控制方框图如下所示:图3-1 双容液位定值控制系统方框图实验内容一:观察系统在PI控制参数下的动态响应曲线1、按要求设定参数,液位给定值SV=80mm,PI参数为P=20,I=60。
2、设置好系统的给定值后,用手动操作AI智能调节仪的输出,通过电动调节阀给上水箱打水,待其液位达到给定量所要求的值,且基本稳定不变时,把输出切换为自动,使系统投入自动运行状态。
其总貌图如下图所示:图3-2 双容液位定值控制系统总貌图上图曲线中所示,恒定不变的曲线线为下水箱液位的设定值,上面一条曲线为下水箱液位的的测量值,下面一条曲线为中水箱液位的测量值。
3、 观察系统在设定的控制参数下的动态响应曲线,如下图所示:图3-3 双容液位定值控制系统动态响应曲线由上图可知,其最大测量值为PV max =119.35mm ,由此可得出其最大超调量δ=(119.35-80)/80*100%,δ=50% 。
又由实时数据知:t 1=09:59:15,t 2=10:04:43则其上升时间t =t 2-t 1=328s 。
由以上可知,该双容控制系统的动态响应不如单容液位定值控制系统的动态响应,并且,在双容定值控制系统中,系统的响应还有一定的滞后,其滞后时间为T=94s 。
分析以上现象可得出以下的结论:本实验中被测对象由两个不同容积的水箱相串联组成,故称其为双容对象。
根据前一实验单容水箱液位定值控制的原理,可知双容水箱数学模型是两个单容水箱数学模型的乘积,即双容水箱的数学模型可用一个二阶惯性环节来描述:G(s)=G 1(s)G 2(s)=)1s T )(1s T (K 1s T k 1s T k 212211++=+⨯+ (3-1) 式中K =k 1k 2,为双容水箱的放大系数,T 1、T 2分别为两个水箱的时间常数。
液位串级控制系统实习报告

液位串级控制系统实习报告一、实习目的1. 掌握液位串级控制系统的原理及组成;2. 学习使用调节器、传感器、执行器等仪器设备;3. 培养动手能力、观察能力及问题解决能力;4. 理解并实践自动控制系统在实际工程中的应用。
二、实习内容1. 液位串级控制系统原理及组成液位串级控制系统由两个控制器级联组成,上级控制器控制下级控制器,下级控制器控制被控对象。
本实习采用的液位串级控制系统主要由液位控制器、流量控制器、调节器、传感器、执行器等组成。
2. 系统设备及参数(1)调节器:采用电动调节阀,可用于控制液位和流量。
(2)传感器:采用液位变送器,用于测量液位。
(3)执行器:采用气动执行器,用于控制阀门的开关。
(4)被控对象:水箱,用于实现液位的控制。
3. 实习过程(1)设备调试:首先对液位变送器、电动调节阀、气动执行器等设备进行调试,确保设备正常工作。
(2)系统连接:将液位变送器、调节器、执行器等设备按照原理图连接起来,形成液位串级控制系统。
(3)参数设置:根据系统要求,设置调节器的控制参数,包括比例、积分、微分等。
(4)系统投运:启动系统,观察并调整参数,使系统达到稳定运行状态。
4. 问题及解决(1)问题一:系统启动过程中,液位波动较大。
解决:调整调节器参数,减小比例系数,提高系统稳定性。
(2)问题二:液位达到设定值后,系统出现超调。
解决:增加积分时间,减小超调现象。
(3)问题三:流量控制器工作不稳定,导致液位波动。
解决:检查流量控制器设备,清理阀门及管道,确保流量稳定。
三、实习收获1. 掌握了液位串级控制系统的原理及组成;2. 学会了使用调节器、传感器、执行器等设备;3. 培养了动手能力、观察能力及问题解决能力;4. 理解了自动控制系统在实际工程中的应用。
四、实习总结通过本次实习,我对液位串级控制系统有了更深入的了解,掌握了系统的原理、组成及调试方法。
在实际操作过程中,我学会了使用调节器、传感器、执行器等设备,并培养了动手能力、观察能力及问题解决能力。
实验三上水箱下水箱液位串级控制实验

实验三上水箱下水箱液位串级控制实验一.实验目的1.掌握串级控制系统的基本概念和组成。
2.掌握串级控制系统的投运与参数整定方法。
3.研究阶跃扰动分别作用在副对象和主对象时对系统主被控量的影响。
二.实验原理上水箱液位作为副调节器调节对象,下水箱液位做为主调节器调节对象。
控制框图如图3-1所示:3-1、上水箱下水箱液位串级控制框图三.实验设备AE2000A型过程控制实验装置:上位机软件、计算机、RS232-485转换器1只、串口线1根、万用表一只四.实验内容和步骤1、设备的连接和检查:(1)、关闭阀1、阀22将AE2000A 实验对象的储水箱灌满水(至最高高度)。
(2)、打开以丹麦泵、电动调节阀、涡轮流量计组成的动力支路至上水箱的出水阀门:阀1、阀4、阀6,关闭动力支路上通往其他对象的切换阀门:阀2、阀10、阀17、阀20。
(3)、打开上水箱的出水阀:阀8至适当开度。
(4)、检查电源开关是否关闭2、系统连线图:图3-2、实验接线1)、如图5-2所示:将I/O信号接口板上的下水箱液位的钮子开关打到OFF位置,上水箱液位的钮子开关打到ON位置。
2)、将下水箱液位+(正极)接到任意一个智能调节仪的1端(即RSV的+极),下水箱液位-(负端)接到智能调节仪的2端(即RSV的-极)。
智能仪表的地址设为1,软件定义调节仪地址为1的调节器为主调节器,调节仪地址为2的调节器为副调节器。
3)、将主调节仪的4~20mA输出接至I/O信号面板的温度变送器转换电阻上转换成1~5V 电压信号,再将此转换信号接至另一调节仪(副调节器)的1端和2端作为外部给定,上水箱液位信号转换为0.2~1V的信号后接入副调节器的3、2两端。
调节器输出的4~20mA接电动调节阀的4~20mA控制信号两端。
4)、电源控制板上的三相电源、单相Ⅰ的空气开关、单相泵电源开关打在关的位置。
5)、电动调节阀的~220V电源开关打在关的位置。
6)、智能调节仪的~220V电源开关打在关的位置。
自动控制系统综合实验报告——水箱液位控制

自动控制系统综合实验报告水箱液位控制J自动化0703班XXX学号:XXXXX`目录自动控制系统综合实验报告 (1)第一章现场总线控制系统(FCS)的组成 (1)一、系统简介 (1)二、系统组成 (1)1. 被控对象 (2)2. 检测装置 (2)3. 执行机构 (3)4. 控制器 (3)5. 空气压缩机 (3)三、总线控制柜 (3)四、系统软件 (3)1、SIEMENS简介 (4)2、STEPS简介 (4)3、WINCC简介 (4)第二章下位机程序的边协调是与下载 (5)一、STEP 7简介 (5)二、STEP 7的安装 (5)三、STEP 7的硬件配置和程序结构 (5)四、工程新建 (6)五、程序编写 (6)1、添加导轨(0)Rail (6)2、在机架的1号槽添加电源PS 307 5A (6)3、添加CPU 315-2 DP (7)4、添加PROFIBUS-DP通信总线 (8)5、添加以太网通信处理器CP 343-1 (8)6、添加以太网 (8)7、添加DP/PA 连接器IM 153-2 OD (9)8、添加分布式I/O设备ET200M (9)9、添加变频器MICROMASTER 4 (10)11、添加PROFIBUS-PA设备 (11)六、程序下载 (11)第三章上位机组态软件编写 (12)一、WINCC 概述 (12)二、WINCC的安装 (12)三、WINCC的通讯连接和画面组态方法 (12)1. 通讯驱动程序 (13)2. 通道单元 (13)3、连接 (13)4、WINCC变量 (14)四、WINCC组态程序的编写 (14)1.打开WINCC组态环境 (14)2.新建一工程 (15)3.组态变量 (16)4.画面组态 (20)5.实时曲线和历史曲线的组态 (23)6.添加按钮动作 (24)7.保存组态画面 (26)第四章基于OPC技术的matlab与wincc的数据交换 (27)第一节OPC技术简介 (27)第二节Matlab 作为客户端访问OPC服务器的通信流程 (30)第三节MATLAB 与WINCC 数据通讯的实现 (31)自动控制系统综合实验报告第一章现场总线控制系统(FCS)的组成一、系统简介本现场总线控制系统是基于PROFIBUS和工业以太网通讯协议、在传统过程控制实验装置的基础上升级而成的新一代过程控制系统。
上水箱(中水箱或下水箱)液位定值控制系统

第一节上水箱(中水箱或下水箱)液位定值控制系统一、实验目的1.了解单闭环液位控制系统的结构与组成。
2.掌握单闭环液位控制系统调节器参数的整定。
3.研究调节器相关参数的变化对系统动态性能的影响。
二、实验设备1.THJ-2型高级过程控制系统装置2.计算机、上位机MCGS组态软件、RS232-485转换器1只、串口线1根3.万用表 1只三、实验原理本实验系统的被控对象为上水箱,其液位高度作为系统的被控制量。
系统的给定信号为一定值,它要求被控制量上水箱的液位在稳态时等于给定值。
由图3-7 上水箱液位定值控制结构图反馈控制的原理可知,应把上水箱的液位经传感器检测后的信号作为反馈信号。
图3-7为本实验系统的结构图,图3-8为控制系统的方框图。
为了实现系统在阶跃给定和阶跃扰动作用下无静差,系统的调节器应为PI或PID。
图3-8 上水箱液位定值控制方框图四、实验内容与步骤1.按图3-7要求,完成系统的接线。
2.接通总电源和相关仪表的电源。
3.打开阀F1-1、F1-2、F1-6和F1-9,且把F1-9控制在适当的开度。
4.选用单回路控制系统实验中所述的某种调节器参数的整定方法整定好调节器的相关参数。
5.设置好系统的给定值后,用手动操作调节器的输出,使电动调节阀给上水箱打水,待其液位达到给定量所要求的值,且基本稳定不变时,把调节器切换为自动,使系统投入自动运行状态。
6.启动计算机,运行MCGS组态软件软件,并进行下列实验:当系统稳定运行后,突加阶跃扰动(将给定量增加5%~15%),观察并记录系统的输出响应曲线。
7.适量改变PI的参数,用计算机记录不同参数时系统的响应曲线。
五、实验报告1.用实验方法确定调节器的相关参数。
2.列表记录,在上述参数下求得阶跃响应的动、静态性能指标。
3.列表记录,在上述参数下求得系统在阶跃扰动作用下响应曲线的动、静态性能指标。
对系统的性能产生什么影响?4.变比例度δ和积分时间TI。
上水箱液位与进水口流量串级控制实验实验报告

《控制工程实验》实验报告实验题目:上水箱液位与进水口流量串级控制实验课程名称:《控制工程实验》姓名:学号:专业:年级:院、所:日期: 2019.04.18实验三上水箱液位与进水口流量串级控制实验一、实验目的1.通过实验了解水箱液位串级控制系统组成原理。
2.掌握水箱液位串级控制系统调节器参数的整定与投运方法。
3.了解阶跃扰动分别作用于副对象和主对象时对系统主控制量的影响。
4.掌握液位串级控制系统的实现过程。
二、实验设备1. 实验装置对象及控制柜 1套2. 装有Step7、WinCC等软件的计算机 1台3. CP5621专用网卡及MPI通讯线各1个三、实验原理本实验为水箱液位的串级控制系统,它是由主控、副控两个回路组成。
主控回路中的调节器称主调节器,控制对象为下水箱,下水箱的液位为系统的主控制量。
副控回路中的调节器称副调节器,控制对象为中水箱,又称副对象,中水箱的液位为系统的副控制量。
主调节器的输出作为副调节器的给定,因而副控回路是一个随动控制系统。
副调节器的的输出直接驱动电动调节阀,从而达到控制下水箱液位的目的。
为了实现系统在阶跃给定和阶跃扰动作用下的无静差控制,系统的主调节器应为PI或PID控制。
由于副控回路的输出要求能快速、准确地复现主调节器输出信号的变化规律,对副参数的动态性能和余差无特殊的要求,因而副调节器可采用P调节器。
本实验系统结构图和方框图如图1所示。
四、实验内容与步骤本实验选择选择上水箱和中水箱串联作为被控对象。
实验之前先将储水箱中贮足水量,然后将阀门F1-1、F1-7全开,将中水箱出水阀门F1-10开度开到70%左右、下水箱出水阀门F1-11开度50%左右(要求阀F1-10稍大于阀F1-11),其余阀门均关闭。
图1 双容水箱液位串级控制系统(a)结构图 (b)方框图1.用 MPI 通讯电缆线将 S7-300PLC 连接到计算机 CP5621 专用网卡,并按照控制柜接线图连接实验系统。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电子科技大学中山学院学生实验报告
系别:机电工程学院专业:自动化课程名称:过程控制与自动化仪表在设计串级控制系统时,要求系统副对象的时间常数要远小于主对象。
图2、液位串级控制系统结构图
1、用RS232通讯线连接计算机与GK-03串行通讯口,并打开上位机监控软件进入数据采集状态。
2、对象系统:打开进水口阀
3、阀9,出水口阀6、阀7打到一定开度并且使得阀6的开度大于
的开度。
打开磁力泵1使系统运行。
系统稳定后再打开磁力泵2作为扰动,此扰动可以加到上水箱,也可以加到下水箱。
实验参考参数:上水箱出水阀的开度约为80%左右,下水箱出水阀的开度约为70%左右。