浙教版一元二次方程练习4
浙教版八年级下数学第4周一元二次方程强化练习辅导

第4周周末数学强化练习 徐秀前编辑于2014/3/7 姓名_______________1,下列各数与2- )A2 B.2- C.2-+ D2.如图,正方形A BCD 与正方形EFGH 的面积分别为82cm 和162cm ,线段CD , EH 在同一直线上,则△A ED 与△BHC 的面积之和为 2cm . 3.下列各方程中,是一元二次方程的是( )A 、321-=-x xB 、022=-x xC 、y x =-23D 、0312=+-x x4, 032)1(2=-+-x x a 是一元二次方程,则字母a 应满足( ) A .1>a B .1≠a C .0≠a D .1-<a5. 把一元二次方程()32=-x x 化成一般形式是6. 已知x =-1是一元二次方程x 2+px +q =0的一个根,则代数式p -q 的值是( ) (A )1 (B )-1 (C )2 (D )-27.一元二次方程2x (x -1)=3(x -1)的解是( )(A )x =23(B )x =1 (C )x 1=23 或x 2=1 (D )x 1=32 且x 2=18.将方程162=+x x 配方后,原方程变为( ) A .5)3(2=+xB .7)6(2=+xC .10)3(2=+xD .9)6(2=+x9.已知一元二次方程:①x 2+2x +3=0,②x 2﹣2x ﹣3=0.下列说法正确的是( )10.若关于x 的一元二次方程x 2+2x +k =0有两个不相等的实数根,则k 的取值范围是( )11.一元二次方程x 2+x ﹣2=0的根的情况是() H GFEDC B A12.若关于x 的一元二次方程022=++m x x 有实数解,则m 的取值范围是( ) A .1-≤m B .1≤m C .4≤m D .21≤m 13.若关于x 的一元二次方程是0232=+-x ax 有实数根,则a 的值可以是( ) A .1=aB .2=aC .3=aD .0=a14.写一个你喜欢的实数m 的值:_____ ,使关于x 的一元二次方程x 2﹣x +m =0有两个不相等的实数根. 15.若关于x 的方程2230x x c -+=的一个根是1,则c 的值是 。
2024年浙教版数学八年级下学期第二章 一元二次方程 单元练习提高(含简单答案)

2024年浙教版数学八年级下学期第二章一元二次方程单元练习提高一、选择题(每题3分,共30分)1.下列方程属于一元二次方程的是( )A.2x+1=0B.x²−3x+1=0C.x²+y=1D.1=1x22.用配方法解一元二次方程x2+4x﹣5=0,此方程可变形为( )A.(x+2)2=9 B.(x﹣2)2=9 C.(x+2)2=1 D.(x﹣2)2=13.方程x2+5x=0的解为( )A.x=5B.x=-5C.x₁=0,x₂=5D.x₁=0,x₂=−54.我们知道方程x2+2x-3=0的解是x1=1,x2=-3,现给出另一个方程(2x+3)2+2(2x+3)-3=0,它的解是( )A.x1=1,x2=3B.x1=1,x2=-3C.x1=-1,x2=-3D.x1=-1,x2=35.关于x的一元二次方程x2−4x−k=0没有实数根,则k的取值范围是( )A.k>4B.k<4C.k>−4D.k<−46.三角形两边长分别为2和4,第三边是方程x2−11x+30=0的解,则这个三角形的周长是( )A.11B.11或12C.12D.107.已知x₁,x₂是方程:x2−x−2024=0的两个实数根,则代数式x31−2024x1+x22的值是( )A.4 049B.4 047C.2 024D.18.假期老同学聚会,每两个人都握一次手,所有人共握手28次,则参加聚会的人数是( )A.7B.8C.9D.109.方程x2-2013|x|+2014=0的所有实数解的和是( )A.-2013B.0C.2 013D.2 01410.对于一元二次方程a x2+bx+c=0(a≠0),下列说法:①若a+b+c=0,则b2−4ac≥0;②若方程a x2+c=0有两个不相等的实根,则方程a x2+bx+c=0必有两个不相等的实根;③若c是方程a x2+bx+c=0的一个根,则一定有ac+b+1=0成立;②若x0是一元二次方程a x2+bx+c=0的根,则b2−4ac=(2ax0+b)2其中正确的( )A.只有①②④B.只有①②③C.①②③④D.只有①②二、填空题(每题4分,共24分)11.x=2是关于x的方程x2+mx+4=0的解,则m的值是 .12.若(x2+y2)(x2+y2-2)=8,则x2+y2的值为 .13.一个两位数,十位上的数字比个位上的数字的平方少9.如果把十位上的数字与个位上的数字对调,得到的两位数比原来的两位数小27,则原来的两位数是 .14.若实数a,b满足(4a+4b)(4a+4b-2)-8=0,则a+b=_________.15.已知关于x的一元二次方程,x2+ax+(m+1)(m+2)=0对任意的实数a均有实数根,则实数m的取值范围是_____.16.《代数学》中记载,形如x2+8x=33的方程,求正数解的几何方法是:“如图1,先构造一个面积为x2的正方形,再以正方形的边长为一边向外构造四个面积为2x的矩形,得到大正方形的面积为33+16=49,则该方程的正数解为7−4=3.”小唐按此方法解关于x的方程x2+12x=m时,构造出如图2所示的图形,已知阴影部分的面积为64,则该方程的正数解为 .三、解答题(共8题,共66分)17.解下列方程.(1)x2-2=x;(2)2x2+x-1=018.已知关于x的方程x2−(m+2)x+(2m−1)=0.(1)求证:方程恒有两个不相等的实数根;(2)若此方程的一个根是1,求另一个根及m的值.19.已知方程x2-3x-1=0的两根也是方程x4+ax2+bx+c=0的根,求a+b-2c的值.20.已知关于x的方程k x2+(k+1)x+k=0有实数根.4(1)当k=4时,求解上述方程.(2)求k的取值范围.(3)是否存在实数k,使方程有两个根且两根的倒数和为1? 若存在,请求出k的值;若不存在,请说明理由.21.定义:若一元二次方程ax2+bx+c=0(a≠0)满足b=ac.则称此方程为“和美”方程.(1)当b<0时,判断此时“和美”方程ax2+bx+c=0(a≠0)解的情况,并说明理由.(2)若“和美”方程2x2+mx+n=0有两个相等的实数根,请解出此方程.22.已知a>0,b>a+c,判断关于x的方程ax2+bx+c=0的根的情况.23.某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件。
2.1 一元二次方程 浙教版八年级数学下册同步练习(含解析)

第2章一元二次方程2.1一元二次方程基础过关全练知识点1一元二次方程的相关概念1.(2022浙江诸暨浣纱中学月考)下列方程是一元二次方程的是()A.x2-y=1B.x2+2x-3=0C.x2+1=3 D.x-5y=6x2.已知关于x的方程x2+kx-10=0的一个根是2,则k=.3.若方程(a-2)x2-3ax=5是关于x的一元二次方程,则a的取值范围是.知识点2一元二次方程的一般形式4.下列方程是一元二次方程的一般形式的是()A.2x2-3x=0B.x2=1C.2x2-3x=-1D.2x2=-3x5.【新独家原创】四位同学一起做游戏,分别出一个一元二次方程,甲:x2-2x+3=0,乙:x2-2x=3,丙:3(x2-2x+1)=3,丁:3x2-x=3,当这四个方程化为一般形式时,常数项为0的赢,则这次游戏谁赢了()A.甲B.乙C.丙D.丁6.关于x的一元二次方程(m-2)x2+5x+m2-4=0的常数项为0,则m等于() A.2 B.-2 C.2或-2 D.07.将方程5x2+1=4x化成ax2+bx+c=0的形式,则a,b,c的值分别为.知识点3列一元二次方程8.某班学生毕业时,都将自己的照片向本班其他同学送一张留念,全班一共送了1 260张,如果全班有x名同学,根据题意,列出方程为() A.x(x+1)=1 260 B.2x(x+1)=1 260C.x(x-1)=1 260D.x(x-1)=1 260×29.【教材变式·P26合作学习(1)变式】把面积为16 m2的大长方形铁皮割成如图所示的正方形和长方形两个部分,已知长方形的一边长为 6 m,求其邻边长(只需列出方程).10.根据下列问题列一元二次方程,并将方程化为一般形式.(1)三个连续奇数的平方和是251,求这三个数;(2)一个长方形花坛,长20 m,宽8 m,在它的四周有等宽的鹅卵石路,形成一个大长方形,其面积是花坛面积的1.8倍,求路的宽度;(3)用一根长30 cm的铁丝折成一个斜边长13 cm的直角三角形,求这个三角形的直角边长.能力提升全练11.(2022浙江温州外国语学校期中,6,)关于x的一元二次方程(m-3)x2+m2x=9x+5化为一般形式后不含一次项,则m的值为()A.0B.±3C.3D.-312.若关于x的一元二次方程ax2+bx+c=0(a≠0)的一个根为x=-1,则下列等式成立的是() A.a+b+c=0 B.a-b+c=0C.-a-b+c=0D.-a+b+c=013.若(1-m)x m2+1+3mx-2=0是关于x的一元二次方程,则该方程的一次项系数是() A.-1 B.±1 C.-3 D.±314.方程5x2-1=4x化成一般形式后,二次项系数为正,其中一次项系数,常数项分别是()A.4,-1B.4,1C.-4,-1D.-4,115.已知x1=1,x2=-3是一元二次方程ax2+bx-3=0(a≠0)的两个根,求a,b 的值.16.已知关于x的方程(k-2)x2-kx=x2-1.(1)当k为何值时,方程为一元二次方程?(2)当k为何值时,方程为一元一次方程?17.有一个三角形,面积为30 cm2,其中一边比这边上的高的4倍少1 cm,若设这边上的高为x cm,请你列出关于x的方程,并判断它是什么方程,若是一元二次方程,把它化为一般形式,并指出二次项系数、一次项系数和常数项.素养探究全练18.【代数推理】【运算能力】已知实数a是一元二次方程x2-2 022x+1=0的值.的解,求代数式a2-2 021a-a2+12 022答案全解全析基础过关全练1.B x2-y=1中含有2个未知数,不是一元二次方程,所以A不符合题意;x2+2x-3=0符合一元二次方程的定义,是一元二次方程,所以B符合题意;x2+1x =3中1x不是整式,不是一元二次方程,所以C不符合题意;x-5y=6中含有2个未知数,不是一元二次方程,所以D不符合题意.故选B.2.3解析因为关于x的方程x2+kx-10=0的一个根是2,所以22+2k-10=0,解得k=3.3.a≠2解析因为方程(a-2)x2-3ax=5是关于x的一元二次方程,所以a-2≠0,解得a≠2.4.A形如ax2+bx+c=0(a,b,c是常数,且a≠0)是一元二次方程的一般形式.只有A符合题意,故选A.5.C x2-2x+3=0的常数项为3,所以甲输了;x2-2x=3化为一般形式为x2-2x-3=0,常数项为-3,所以乙输了;3(x2-2x+1)=3化为一般形式为x2-2x=0,常数项为0,所以丙赢了;3x2-x=3化为一般形式为3x2-x-3=0,常数项为-3,所以丁输了.故选C.6.B因为常数项为0,所以m2-4=0,解得m=2或-2,当m=2时,方程(m-2)x2+5x+m2-4=0变为5x=0,不是一元二次方程,所以m=2要舍去,故m=-2.7.5,-4,1解析5x2+1=4x移项,得5x2-4x+1=0,所以将方程5x2+1=4x化成ax2+bx+c=0的形式,则a,b,c的值分别为5,-4,1.8.C全班有x名同学,根据“都将自己的照片向本班其他同学送一张留念”可知全班一共送了x(x-1)张照片,又全班一共送了1 260张照片,所以x(x-1)=1 260.9.解析设其邻边长为x m,则可列方程为x(x+6)=16.10.解析(1)设中间的奇数为x,则(x-2)2+x2+(x+2)2=251,化为一般形式:3x2-243=0.(2)设路的宽度为x m,则(20+2x)(8+2x)=1.8×20×8,化为一般形式:4x2+56x-128=0.(3)设一条直角边长为x cm,则另一条直角边长为(17-x)cm,则x2+(17-x)2=132,化为一般形式:2x2-34x+120=0.能力提升全练11.D将(m-3)x2+m2x=9x+5整理得(m-3)x2+(m2-9)x-5=0,由题意得m-3≠0,m2-9=0,解得m=-3,故选D.12.B把x=-1代入方程ax2+bx+c=0得a-b+c=0.13.C由题意得1-m≠0且m2+1=2,解得m=-1.∴该方程的一次项系数为3m=-3.14.C5x2-1=4x化成一般形式是5x2-4x-1=0,它的一次项系数是-4,常数项是-1.故选C.15.解析 把x 1=1,x 2=-3分别代入一元二次方程ax 2+bx -3=0(a ≠0),得{a +b −3=0,9a −3b −3=0,解得{a =1,b =2.16.解析 原方程可化为(k -3)x 2-kx +1=0.(1)当k -3≠0,即k ≠3时,方程(k -2)x 2-kx =x 2-1是一元二次方程.(2)当k -3=0,-k ≠0,即k =3时,方程(k -2)x 2-kx =x 2-1是一元一次方程.17.解析 根据题意可得关于x 的方程为12x (4x -1)=30,它是一元二次方程,整理为一般形式为2x 2-12x -30=0,二次项系数为2,一次项系数为-12,常数项为-30.素养探究全练18.解析 因为实数a 是一元二次方程x 2-2 022x +1=0的解,所以a 2- 2 022a +1=0,所以a 2-2 022a =-1,a 2+1=2 022a , 所以原式=a 2-2 021a -2 022a 2 022=a 2-2 022a =-1.。
浙教版八年级数学下册 一元二次方程根与系数的关系同步练习

浙教版八年级下 2.4一元二次方程根与系数的关系同步练习一.选择题1.(2021•三水区一模)方程x2﹣6x+5=0的两个根之和为()A.﹣6 B.6 C.﹣5 D.52.(2021秋•硚口区校级月考)设x1、x2是一元二次方程x2+2x﹣1=0的两个实数根,则x1•x2=()A.2 B.1 C.﹣2 D.﹣13.(2021秋•江油市月考)一元二次方程x2+px﹣2=0的一个根为2,则p的值以及另一个根为()A.1,﹣1 B.1,1 C.﹣1,﹣1 D.﹣1,14.(2020•遵义)已知x1,x2是方程x2﹣3x﹣2=0的两根,则x12+x22的值为()A.5 B.10 C.11 D.135.(2021春•乐清市期末)已知关于x的方程x2﹣7x+6a=0的一个解是x1=2a,则原方程的另一个解是()A.x2=0或7 B.x2=3或4 C.x2=3或7 D.x2=4或76.(2021秋•黔西南州期末)已知关于x的一元二次方程x2﹣2(a﹣1)x+a2﹣a﹣2=0有两个不相等的实数根x1,x2.且x1,x2满足x12+x22﹣x1x2=16,则a的值为()A.﹣6 B.﹣1 C.1或﹣6 D.6或﹣17.(2021•济宁)已知m,n是一元二次方程x2+x﹣2021=0的两个实数根,则代数式m2+2m+n的值等于()A.2019 B.2020 C.2021 D.20228.(2021秋•霞浦县期中)已知关于x的一元二次方程(a+1)x2+2bx+(a+1)=0有两个相等的实数根,下列判断正确的是()A.1一定不是关于x的方程x2+bx+a=0的根B.0一定不是关于x的方程x2+bx+a=0的根C.1和﹣1都是关于x的方程x2+bx+a=0的根D.1和﹣1不都是关于x的方程x2+bx+a=0的根9.(2021秋•安州区期末)若α、β是一元二次方程x2+3x﹣6=0的两个不相等的根,则α2﹣3β的值是()A.3 B.15 C.﹣3 D.﹣1510.(2020秋•六盘水期末)已知关于x的一元二次方程x2﹣mx+1=0的两根之差为2,则m等于()A.1或﹣1 B.2或﹣2 C.或﹣D.2或﹣2二.填空题11.(2021秋•滨湖区期中)已知x1、x2是一元二次方程2x2﹣4x﹣5=0的两个根,则x1+x2=,x1•x2=.12.(2021秋•十堰期末)若x1,x2是一元二次方程x2﹣3x+1=0的两个根,则x1+x2﹣x1•x2=.13.(2021秋•新都区期末)若关于x的方程x2﹣3x+n=0的一个根是﹣1,则另一个根是.14.(2021•孝南区二模)已知a,b是方程x2+3x﹣1=0的两根,则a2b+ab2的值是.15.(2020春•文登区期中)已知关于x的一元二次方程x2+(2k+1)x+k2﹣2=0的两根x1和x2,且x12﹣2x1+2x2=x1x2,则k的值是.16.(2021春•拱墅区期末)在解一元二次方程x2+bx+c=0时,小明看错了一次项系数b,得到的解为x1=1,x2=2;小刚看错了常数项c,得到的解为x1=3,x2=4.请你写出正确的一元二次方程.三.解答题17.(2021秋•越秀区校级期中)已知m和n是方程2x2﹣5x﹣3=0的两根,求:(1)+的值;(2)m2﹣mn+n2的值.18.(2021秋•章贡区期中)已知关于x的一元二次方程x2﹣(m+2)x+m=0(m为常数).(1)求证:不论m为何值,方程总有两个不相等的实数根;(2)若x1,x2满足,求实数m的值.19.(2021秋•梁子湖区期中)已知关于x的一元二次方程x2+(2m﹣1)x+m2﹣2=0有两个实数根x1,x2.(1)求实数m的取值范围;(2)当m=1时,求代数式(x12+2x1)(x22﹣2)的值.20.(2021秋•荔城区校级期中)已知关于x的一元二次方程:x2﹣(t﹣1)x+t﹣2=0.(1)求证:对于任意实数t,方程都有实数根;(2)若方程的两个根中,其中一个根是另一个根的3倍,求整数t的值.21.(2021秋•南安市期中)阅读下列材料:问题:已知方程x2+x﹣1=0,求一个一元二次方程,使它的根分别是已知方程根的2倍.解:设原方程的根为x1,x2则新方程的根为2x1,2x2.因为x1+x2=﹣1,x1•x2=﹣1,所以2x1+2x2=2(x1+x2)=2×(﹣1)=﹣2.2x1•2x2=4x1x2=4×(﹣1)=﹣4.所以:所求新方程为x2+2x﹣4=0.请用阅读材料提供的方法求新方程.(1)已知方程x2+x﹣2=0,求一个一元二次方程,使它的根分别是已知方程根的相反数,则所求方程为.(2)已知一元二次方程2x2﹣3x﹣1=0,求一个一元二次方程,使它的根分别是已知方程的根的倒数.答案与解析一.选择题1.(2021•三水区一模)方程x2﹣6x+5=0的两个根之和为()A.﹣6 B.6 C.﹣5 D.5【解析】解:方程x2﹣6x+5=0的两个根之和为﹣=﹣=6,故选:B.2.(2021秋•硚口区校级月考)设x1、x2是一元二次方程x2+2x﹣1=0的两个实数根,则x1•x2=()A.2 B.1 C.﹣2 D.﹣1【解析】解:∵x1、x2是一元二次方程x2+2x﹣1=0的两个实数根,∴x1x2=﹣1.故选:D.3.(2021秋•江油市月考)一元二次方程x2+px﹣2=0的一个根为2,则p的值以及另一个根为()A.1,﹣1 B.1,1 C.﹣1,﹣1 D.﹣1,1【解析】解:设方程的另一个根为t,根据题意得2+t=﹣p,2t=﹣2,解得t=﹣1,p=﹣1.故选:C.4.(2020•遵义)已知x1,x2是方程x2﹣3x﹣2=0的两根,则x12+x22的值为()A.5 B.10 C.11 D.13【解析】解:根据题意得x1+x2=3,x1x2=﹣2,所以x12+x22=(x1+x2)2﹣2x1x2=32﹣2×(﹣2)=13.故选:D.5.(2021春•乐清市期末)已知关于x的方程x2﹣7x+6a=0的一个解是x1=2a,则原方程的另一个解是()A.x2=0或7 B.x2=3或4 C.x2=3或7 D.x2=4或7【解析】解:∵关于x的方程x2﹣7x+6a=0的一个解是x1=2a,∴4a2﹣14a+6a=0,解得a=0或a=2,∴当a=0时,方程为x2﹣7x=0,∵x1=0,∴x2=7;当a=2时,x2﹣7x+12=0,∵x1=4,∴x2=7﹣4=3,故选:C.6.(2021秋•黔西南州期末)已知关于x的一元二次方程x2﹣2(a﹣1)x+a2﹣a﹣2=0有两个不相等的实数根x1,x2.且x1,x2满足x12+x22﹣x1x2=16,则a的值为()A.﹣6 B.﹣1 C.1或﹣6 D.6或﹣1【解析】解:根据题意得△=4(a﹣1)2﹣4(a2﹣a﹣2)>0,解得a<3,根据根与系数的关系得x1+x2=2(a﹣1),x1x2=a2﹣a﹣2,∵x12+x22﹣x1x2=16,∴(x1+x2)2﹣3x1x2=16,即4(a﹣1)2﹣3(a2﹣a﹣2)=16,整理得a2﹣5a﹣6=0,解得a1=﹣1,a2=6,而a<3,∴a的值为﹣1.故选:B.7.(2021•济宁)已知m,n是一元二次方程x2+x﹣2021=0的两个实数根,则代数式m2+2m+n的值等于()A.2019 B.2020 C.2021 D.2022【解析】解:∵m是一元二次方程x2+x﹣2021=0的实数根,∴m2+m﹣2021=0,∴m2+m=2021,∴m2+2m+n=m2+m+m+n=2021+m+n,∵m,n是一元二次方程x2+x﹣2021=0的两个实数根,∴m+n=﹣1,∴m2+2m+n=2021﹣1=2020.故选:B.8.(2021秋•霞浦县期中)已知关于x的一元二次方程(a+1)x2+2bx+(a+1)=0有两个相等的实数根,下列判断正确的是()A.1一定不是关于x的方程x2+bx+a=0的根B.0一定不是关于x的方程x2+bx+a=0的根C.1和﹣1都是关于x的方程x2+bx+a=0的根D.1和﹣1不都是关于x的方程x2+bx+a=0的根【解析】解:∵关于x的一元二次方程(a+1)x2+2bx+(a+1)=0有两个相等的实数根,∴,∴b=a+1或b=﹣(a+1).当b=a+1时,有a﹣b+1=0,此时﹣1是方程x2+bx+a=0的根;当b=﹣(a+1)时,有a+b+1=0,此时1是方程x2+bx+a=0的根.∵a+1≠0,∴a+1≠﹣(a+1),∴1和﹣1不都是关于x的方程x2+bx+a=0的根.故选:D.9.(2021秋•安州区期末)若α、β是一元二次方程x2+3x﹣6=0的两个不相等的根,则α2﹣3β的值是()A.3 B.15 C.﹣3 D.﹣15【解析】解:∵α、β是一元二次方程x2+3x﹣6=0的两个不相等的根,∴α2+3α=6,由根系数的关系可知:α+β=﹣3,∴α2﹣3β=α2+3α﹣3α﹣3β=α2+3α﹣3(α+β)=6﹣3×(﹣3)=15故选:B.10.(2020秋•六盘水期末)已知关于x的一元二次方程x2﹣mx+1=0的两根之差为2,则m等于()A.1或﹣1 B.2或﹣2 C.或﹣D.2或﹣2【解析】解:设方程x2﹣mx+1=0的两根分别为a、b,根据根与系数的关系得a+b=m,ab=1,而|a﹣b|=2,∴(a﹣b)2=4,∴(a+b)2﹣4ab=4,∴m2﹣4×1=4,解得m=±2,∵Δ=m2﹣4>0,∴m的值为2或﹣2.故选:D.二.填空题11.(2021秋•滨湖区期中)已知x1、x2是一元二次方程2x2﹣4x﹣5=0的两个根,则x1+x2=2,x1•x2=﹣.【解析】解:∵x1、x2是一元二次方程2x2﹣4x﹣5=0的两个根,∴a=2,b=﹣4,c=﹣5,∴x1+x2=﹣=﹣=2,x1•x2==﹣,故答案为:2,﹣.12.(2021秋•十堰期末)若x1,x2是一元二次方程x2﹣3x+1=0的两个根,则x1+x2﹣x1•x2=2.【解析】解:根据题意得x1+x2=3,x1x2=1,所以x1+x2﹣x1•x2=3﹣1=2.故答案为:2.13.(2021秋•新都区期末)若关于x的方程x2﹣3x+n=0的一个根是﹣1,则另一个根是4.【解析】解:∵关于x的方程x2﹣3x+n=0的一个根是﹣1,设另一根为a,∴﹣1+a=3,解得:a=4,则另一根为4.故答案为:4.14.(2021•孝南区二模)已知a,b是方程x2+3x﹣1=0的两根,则a2b+ab2的值是3.【解析】解:∵a,b是方程x2+3x﹣1=0的两根,∴根据根与系数的关系得:a+b=﹣3,ab=﹣1,∴a2b+ab2=ab(a+b)=(﹣1)×(﹣3)=3,故答案为:3.15.(2020春•文登区期中)已知关于x的一元二次方程x2+(2k+1)x+k2﹣2=0的两根x1和x2,且x12﹣2x1+2x2=x1x2,则k的值是﹣2或﹣.【解析】解:∵x12﹣2x1+2x2=x1x2,x12﹣2x1+2x2﹣x1x2=0,x1(x1﹣2)﹣x2(x1﹣2)=0,(x1﹣2)(x1﹣x2)=0,∴x1﹣2=0或x1﹣x2=0.①如果x1﹣2=0,那么x1=2,将x=2代入x2+(2k+1)x+k2﹣2=0,得4+2(2k+1)+k2﹣2=0,整理,得k2+4k+4=0,解得k=﹣2;②如果x1﹣x2=0,则Δ=(2k+1)2﹣4(k2﹣2)=0.解得:k=﹣.所以k的值为﹣2或﹣.故答案为:﹣2或﹣.16.(2021春•拱墅区期末)在解一元二次方程x2+bx+c=0时,小明看错了一次项系数b,得到的解为x1=1,x2=2;小刚看错了常数项c,得到的解为x1=3,x2=4.请你写出正确的一元二次方程x2﹣7x+2=0.【解析】解:∵小明看错了一次项系数b,∴c=x1•x2=1×2=2;∵小刚看错了常数项c,∴﹣b=x1+x2=3+4=7,∴b=﹣7.∴正确的一元二次方程为x2﹣7x+2=0.故答案为:x2﹣7x+2=0.三.解答题17.(2021秋•越秀区校级期中)已知m和n是方程2x2﹣5x﹣3=0的两根,求:(1)+的值;(2)m2﹣mn+n2的值.【解析】解:(1)∵m和n是方程2x2﹣5x﹣3=0的两根,∴m+n=,mn=﹣,∴+===﹣;(2)m2﹣mn+n2=(m+n)2﹣3mn=()2﹣3×(﹣)=+=10.18.(2021秋•章贡区期中)已知关于x的一元二次方程x2﹣(m+2)x+m=0(m为常数).(1)求证:不论m为何值,方程总有两个不相等的实数根;(2)若x1,x2满足,求实数m的值.【解析】解(1)证明:△=(m+2)2﹣4×1⋅m=m2+4,∵无论m为何值时m2≥0,∴m2+4≥4>0,即Δ>0,所以无论m为何值,方程总有两个不相等的实数根;(2)∵关于x的方程x2﹣(m+2)x+m=0有两个实数根x1,x2∴x1+x2=m+2,x1x2=m.∵,∴(m+2)2﹣2m=16+m,即m2+m﹣12=0,解得:m=﹣4或m=3∴实数m的值为﹣4或3.19.(2021秋•梁子湖区期中)已知关于x的一元二次方程x2+(2m﹣1)x+m2﹣2=0有两个实数根x1,x2.(1)求实数m的取值范围;(2)当m=1时,求代数式(x12+2x1)(x22﹣2)的值.【解析】解:(1)由题意△≥0,∴(2m﹣1)2﹣4(m2﹣2)≥0,∴m≤2;(2)当m=1时,方程为x2+x﹣1=0,则x1+x2=﹣1,x1x2=﹣1,x12+x1=1,x22﹣1=﹣x2,∴(x12+2x1)(x22﹣2)=(1+x1)(﹣x2﹣1)=﹣x1x2﹣1﹣x1﹣x2=1﹣1﹣(﹣1)=1.20.(2021秋•荔城区校级期中)已知关于x的一元二次方程:x2﹣(t﹣1)x+t﹣2=0.(1)求证:对于任意实数t,方程都有实数根;(2)若方程的两个根中,其中一个根是另一个根的3倍,求整数t的值.【解析】(1)证明:∵Δ=[﹣(t﹣1)]2﹣4×(t﹣2)=(t﹣3)2≥0,∴对于任意实数t,方程都有实数根;(2)解:x2﹣(t﹣1)x+t﹣2=0,(x﹣t+2)(x﹣1)=0,解得x1=t﹣2,x2=1,∵方程的两个根中,其中一个根是另一个根的3倍,∴t﹣2=3×1,解得t=5;或3(t﹣2)=1,解得t=(舍去).故整数t的值为5.21.(2021秋•南安市期中)阅读下列材料:问题:已知方程x2+x﹣1=0,求一个一元二次方程,使它的根分别是已知方程根的2倍.解:设原方程的根为x1,x2则新方程的根为2x1,2x2.因为x1+x2=﹣1,x1•x2=﹣1,所以2x1+2x2=2(x1+x2)=2×(﹣1)=﹣2.2x1•2x2=4x1x2=4×(﹣1)=﹣4.所以:所求新方程为x2+2x﹣4=0.请用阅读材料提供的方法求新方程.(1)已知方程x2+x﹣2=0,求一个一元二次方程,使它的根分别是已知方程根的相反数,则所求方程为x2﹣x﹣2=0.(2)已知一元二次方程2x2﹣3x﹣1=0,求一个一元二次方程,使它的根分别是已知方程的根的倒数.【解析】解:(1)设原方程的根为x 1,x2,则新方程的根为﹣x1,﹣x2.因为x1+x2=﹣1,x1•x2=﹣2,所以﹣x1+(﹣x2)=﹣(x1+x2)=﹣1×(﹣1)=1.(﹣x1)•(﹣x2)=x1x2=﹣2,所以所求新方程为x2﹣x﹣2=0;故答案为x2﹣x﹣2=0;(2)设原方程的根为x1,x2,则新方程的根为,,因为x1+x2=,x1•x2=﹣,所以+===﹣3,•===﹣2,所以所求新方程为x2+3x﹣2=0.。
八年级数学下册《一元二次方程》练习题与答案(浙教版)

八年级数学下册《一元二次方程》练习题与答案(浙教版)一、选择题1.下列方程是一元二次方程的一般形式的是( )A.(x ﹣1)2=16B.3(x ﹣2)2=27C.5x 2﹣3x=0D.2x 2+2x=82.已知关于x 的方程x 2﹣kx ﹣6=0的一个根为x=3,则实数k 的值为( )A.1B.﹣1C.2D.﹣23.方程x(x+1)(x ﹣2)=0的根是( )A.﹣1,2B.1,﹣2C.0,﹣1,2D.0,1,24.下表是满足二次函数y=ax 2+bx+c 的五组数据,x 1是方程ax 2+bx+c=0的一个解,则下列选项的正确是( ) x1.6 1.82.0 2.2 2.4 y ﹣0.80 ﹣0.54 ﹣0.20 0.22 0.72 <x <2.45.用直接开平方的方法解方程(2x ﹣1)2=x 2做法正确的是( )A.2x ﹣1=xB.2x ﹣1=﹣xC.2x ﹣1=±xD.2x ﹣1=±x 26.用配方法解一元二次方程x 2﹣6x +4=0,下列变形正确的是( )A.(x ﹣6)2=﹣4+36B.(x ﹣6)2=4+36C.(x ﹣3)2=﹣4+9D.(x ﹣3)2=4+97.下列说法正确的是( )A.x 2+4=0,则x =±2B.x 2=x 的根为x =1C.x 2﹣2x =3没有实数根D.4x 2+9=12x 有两个相等的实数根8.方程(x ﹣2)(x ﹣4)=0的两个根是等腰三角形的底和腰,则这个等腰三角形的周长为( )A.6B.8C.10D.8或109.已知关于x 的一元二次方程(m ﹣2)2x 2+(2m +1)x +1=0有两个不相等的实数根,则m 的取值范围是( )A.m >34B.m ≥34C.m >34且m ≠2D.m ≥34且m ≠210.已知x 1,x 2是关于x 的方程x 2+bx -3=0的两根,且满足x 1+x 2-3x 1x 2=5,那么b 的值为( )A.4B.-4C.3D.-311.如图,某小区计划在一块长为32 m ,宽为20 m 的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570 m 2.若设道路的宽为x m ,则下面所列方程正确的是( )A.(32-2x)(20-x)=570B.32x+2×20x=32×20-570C.(32-x)(20-x)=32×20-570D.32x+2×20x-2x2=57012.如图所示为两条互相垂直的街道,且A到B,C的距离都是7 km,现甲从B地走向A地,乙从A地走向C地,若两人同时出发且速度都是4 km/h,则两人之间的距离为5 km时是出发后( )A.1 hB.0.75 hC.1.2 h或0.75 hD.1 h或0.75 h二、填空题13.把方程 (x﹣1)(x+3)=1﹣x2化为一般形式为.14.若关于x的一元二次方程x2+mx+2n=0有一个根是2,则m+n= .15.若将方程x2+6x=7化为(x+m)2=16,则m=________.16.关于x的方程mx2+x-m+1=0,有以下三个结论:①当m=0时,方程只有一个实数解;②当m≠0时,方程有两个不等的实数解;③无论m取何值,方程都有一个负数解,其中正确的是____________(填序号).17.如图是一张长9cm、宽5cm的矩形纸板,将纸板四个角各剪去一个同样的正方形,可制成底面积是12cm2的一个无盖长方体纸盒,设剪去的正方形边长为xcm,则可列出关于x的方程为 .18.如图,在△ABC中,AB=6 cm,BC=4 cm,∠B=60°,动点P,Q分别从点A,B同时出发,分别沿AB,BC方向匀速移动,点P,Q的速度分别为2 cm/s和1 cm/s.当点P到达点B时,P,Q两点同时停止运动.设点P的运动时间为t(s),当t=时,△PBQ是直角三角形.三、解答题19.用配方法解方程:2x2+4x﹣1=0.20.用公式法解方程:2x2+3=7x.21.已知关于x的一元二次方程:x2﹣2x﹣k﹣2=0有两个不相等的实数根.(1)求k的取值范围;(2)给k取一个负整数值,解这个方程.22.已知关于x的一元二次方程x2-6x+2m+1=0有实数根.(1)求m的取值范围;(2)如果方程的两个实数根为x1,x2,且2x1x2+x1+x2≥20,求m的取值范围.23.在一次商品交易会上,参加交易会的每两家公司之间都要签订一份合同,会议结束后统计共签订了78份合同,问有多少家公司出席了这次交易会?24.如图所示,A,B,C,D是矩形的四个顶点,AB=16 cm,AD=6 cm,动点P,Q分别从点A,C同时出发,点P以3 cm/s的速度向点B移动,一直到达点B为止,点Q以2 cm/s的速度向点D移动.(1)P,Q两点从出发开始到几秒时,四边形PBCQ的面积为33 cm2?(2)P,Q两点从出发开始到几秒时,点P和点Q的距离第一次是10 cm?25.市中心城区“小游园,微绿地”规划已经实施,武侯区某街道有一块矩形空地进入规划试点.如图,已知该矩形空地长为90m,宽为60m,按照规划将预留总面积为4536m2的四个小矩形区域(阴影部分)种植花草,并在花草周围修建三条横向通道和三条纵向通道,各通道的宽度相等.(1)求各通道的宽度;(2)现有一工程队承接了对这4536m2的区域(阴影部分)进行种植花草的绿化任务,该工程队先按照原计划进行施工,在完成了536m2的绿化任务后,将工作效率提高25%,结果提前2天完成任务,求该工程队原计划每天完成多少平方米的绿化任务?参考答案1.C2.A ;3.C4.C5.C6.C.7.D.8.C9.C.10.A11.A12.D13.答案为:2x 2+2x ﹣4=0.14.答案为:-2.15.答案为:316.答案为:①③.17.答案为:(9﹣2x)(5﹣2x)=12.18.答案为:32或125.19.解:x 2+2x ﹣12=0,x 2+2x =12x 2+2x +12=12+12∴(x +1)2=32,∴x +1=±62∴x 1=-2+62,x 2=-2-62.20.解:x 1=12,x 2=3. 21.解:(1)k >﹣3;(2)取k =﹣2,则方程变形为x 2﹣2x =0解得x 1=0,x 2=2.22.解:(1)根据题意得△=(-6)2-4(2m +1)≥0解得m ≤4;(2)根据题意得x 1+x 2=6,x 1x 2=2m +1而2x 1x 2+x 1+x 2≥20所以2(2m +1)+6≥20解得m ≥3,而m ≤4所以m 的范围为3≤m ≤4.23.解:设有x 家公司出席了这次交易会,根据题意得12x(x-1)=78. 解得x 1=13,x 2=-12(舍去).答:有13家公司出席了这次交易会.24.解:(1)设P,Q 两点从出发开始到xs 时,四边形PBCQ 的面积为33cm 2. 根据题意,得PB =AB ﹣AP =(16﹣3x)cm,CQ =2xcm,故12(2x +16﹣3x)×6=33,解得x =5.(2)设P,Q 两点从出发开始到ys 时,点P 和点Q 的距离第一次是10cm. 如图所示,过点Q 作QM ⊥AB 于点M,则BM =CQ =2ycm,故PM =(16﹣5y)cm.在Rt △PMQ 中,有PM 2+QM 2=PQ 2,∴(16﹣5y)2+62=102.=1.6,y 2=245. ∴y 1∵所求的是距离第一次为10cm 时所用的时间,∴y =1.6.25.解:(1)设各通道的宽度为x米根据题意得:(90﹣3x)(60﹣3x)=4536解得:x1=2,x2=48(不合题意,舍去).答:各通道的宽度为2米.(2)设该工程队原计划每天完成y平方米的绿化任务根据题意得:﹣=2,解得:y=400 经检验,y=400是原方程的解,且符合题意.答:该工程队原计划每天完成400平方米的绿化任务.。
2021年浙教版数学八年级下册2.2《一元二次方程的解法》 练习 (含答案)

浙教版数学八年级下册2.2《一元二次方程的解法》精选练习一、选择题1.方程x2﹣4=0的根是()A.x=2B.x=﹣2C.x1=2,x2=﹣2D.x=42.用配方法解方程x2+8x+7=0,则配方正确的是( )A.(x﹣4)2=9B.(x+4)2=9C.(x﹣8)2=16D.(x+8)2=573.把方程x2﹣4x﹣7=0化成(x﹣m)2=n的形式,则m.n的值是( )A.2,7B.﹣2,11C.﹣2,7D.2,114.把方程x2﹣x﹣5=0,化成(x+m)2=n的形式得( )A.(x﹣ 1.5)2= 6.75B.(x﹣ 1.5)2= 13.5C.(x﹣ 1.5)2= 12.75D.(x﹣ 1.5)2= 17.255.已知方程x2﹣6x+q=0可以配方成(x﹣p)2=7形式,则x2﹣6x+q=2可以配方成下列的( )A.(x﹣p)2=5B.(x﹣p)2=9C.(x﹣p+2)2=9D.(x﹣p+2)2=56.方程x(x+1)=5(x+1)的根是( )A.﹣1B.5C.1或5D.﹣1或57.若两个连续整数的积是56,则它们的和是( )A.11B.15C.-15D.±158.方程2x(x-3)=7(3-x)的根是( )A.x=3B.x=3.5C.x1=3,x2=3.5D.x1=3,x2=-3.59.一元二次方程x2+22x-6=0的根是( )A.x1=x2= 2B.x1=0,x2=-2 2C.x1=2,x2=-3 2D.x1=-2,x2=3 210.用公式法解方程2x2=3x+7,a,b,c的值依次是( )A.2,3,7B.2,-3,7C.2,-3,-7D.2,3,-711.已知x为实数,且满足(x2+3x)2+2(x2+3x)-3=0,那么x2+3x的值为( )A.1B.-3或1C.3D.-1或312.若菱形ABCD的一条对角线长为8,边CD的长是方程x2﹣10x+24=0的一个根,则该菱形ABCD的周长为( )A.16 B.24 C.16或24 D.48二、填空题13.一元二次方程x2﹣9=0的解是.14.用配方法将方程x2+10x﹣11=0化成(x+m)2=n的形式(m、n为常数),则m+n= .15.如果2x2+1与4x2-2x-5互为相反数,则x的值为________.16.若方程kx2﹣9x+8=0的一个根为1,则另一个根为________17.三角形的两边长为2和4,第三边长是方程x2﹣6x+8=0的根,则这个三角形的周长是________.18.在实数范围内定义一种运算“*”,其规则为a*b=a2-b2,根据这个规则,方程(x+2)*5=0的解为 .三、解答题19.解方程:(2x﹣5)2﹣(x+4)2=0.20.解方程:(x+3)(x﹣1)=12(用配方法)21.用公式法解下列方程:2y2-7y+5=0;22.用因式分解法解方程:x2+3x-4=0.23.已知三角形两边长分别为2和4,第三边是方程x2-4x+3=0的解,求这个三角形周长.24.解方程:2x 2+43x=22,有位同学解得如下:解:∵a=2,b=43,c=22,∴b 2-4ac=(43)2-4×2×22=32,∴x=-43±322×2=-6±2, ∴x 1=-6+2,x 2=-6-2.请你分析以上解答有无错误,如有错误,指出错误的地方,并写出正确的结果.25.已知△ABC 的两边AB.AC 的长是关于x 的一元二次方程x 2﹣(2k+3)x+k 2+3k+2=0的两个实数根,第三边BC=5.(1)k 为何值时,△ABC 是以BC 为斜边的直角三角形?(2)k 为何值时,△ABC 是等腰三角形?并求此时△ABC 的周长.参考答案1.C.2.答案为:B3.答案为:D4.答案为:D5.答案为:B6.答案为:D7.答案为:D8.答案为:D9.答案为:C10.答案为:C11.A12.答案为:B13.答案为:x 1=3,x 2=﹣3.14.答案为:41.15.答案为:1或.16.答案为:817.答案为:1018.答案为:x=3或x=-7.19.答案为:x 1=1/3,x 2=9.20.解:将原方程整理,得x 2+2x=15,两边都加上12,得x 2+2x+12=15+12,即(x+1)2=16,开平方,得x+1=±4,即x+1=4,或x+1=-4,∴x 1=3,x 2=-5.21.答案为:y 1=1,y 2=5222.答案为:x 1=-4,x 2=1.23.解方程:x 2-4x+3=0,得(x-3)(x-1)=0,∴x 1=3,x 2=1.∵三角形两边长分别为2和4,∴第三边只能是3.∴三角形周长为9.24.解:有错误,错在认为c=2 2.正确解法是: 原方程化为2x 2+43x-22=0,∵a=2,b=43,c=-22, ∴b 2-4ac=(43)2-4×2×(-22)=64,∴x=-43±6422=-6±22, ∴x 1=-6+22,x 2=-6-2 2.25.解:(1)根据题意得 [x﹣(k+1)][x﹣(k+2)]=0,解得,x1=k+1,x2=k+2,若△ABC是直角三角形,且BC是斜边,那么有(k+1)2+(k+2)2=52,解得k1=2,k2=﹣5(不合题意舍去),∴k=2(2)解:①如果AB=AC,△=(2k+3)2﹣4(k2+3k+2)=04k2+12k+9﹣4k2﹣12k﹣8=1≠0,不可能是等腰三角形.②如果AB=5,或者AC=5x1=5,52﹣(2k+3)×5+k2+3k+2=0k2﹣7k+12=0,(k﹣4)(k﹣3)=0k=4或者k=3(都符合题意)k=4时:x2﹣11x+30=0(x﹣5)(x﹣6)=0,∴AB=5,AC=6,周长L=5+5+6=16,k=3时:x2﹣9x+20=0(x﹣4)(x﹣5)=0,∴AB=4,AC=5,周长L=4+5+5=14。
浙教版初中数学2.2 一元二次方程的解法(4)同步练习(含答案)

2.2 一元二次方程的解法(4)重点提示:(1)对于一元二次方程ax 2+bx +c =0(a ≠0),如果b 2-4ac ≥0,那么方程的两个根为x =2b a-±.(2)ac b 42-称为一元二次方程的根的判别式:⇔>-042ac b 方程有两个不相等的实数根;⇔=-042ac b 方程有两个相等的实数根;⇔<-042ac b 方程没有实数根.【夯实基础巩固】1.一元二次方程x 2+2x ﹣6=0的根是( C ) =3=32.下列方程有两个相等的实数根的是( B )3.下列说法中正确的是( B )A . ax 2+bx +c =0是一元二次方程B .方程x (x +2)(x ﹣3)=0的实数根有三个C .一元二次方程的一般形式是ax 2+bx +c =0 ,根是x =D .方程x 2=x 的解是x =14.若关于x 的方程x 2+x ﹣a +=0有两个不相等的实数根,则实数a 的取值范围是( C )5.用公式法解一元二次方程时,一般要先计算b 2﹣4ac 的值.则一元二次方程﹣x 2+5x =3的b 2﹣4ac 的值为 13 .6.把方程(x +3)(x ﹣1)=x (1﹣x )整理成ax 2+bx +c =0的形式为 2x 2+x ﹣3=0 ,b 2﹣4ac 的值是 25 .7.方程2x 2+4x +1=0的根是 x 1=,x 2= .8.有一个数值转换机,其流程如图所示:若输入a =﹣6,则输出的x 的值为 无解 .9.解方程:(1)x 2﹣6x =1 (2)2x 2+x ﹣5=0(3)4x 2-3x -5=x -2 (4)3x (x -3)=2(x -1)(x +1)=3+,﹣ =,﹣10.已知关于x 的一元二次方程x 2-3x -k =0有两个不相等的实数根.(1)求k 的取值范围.(2)请选择一个k 的负整数值,并求出此时方程的根.(1)∵方程有两个不相等的实数根,∴(-3)2-4×(-k )>0,即4k >-9,解得k >-94. (2)若k 是负整数,k 只能为-1或-2.当k =-1时,原方程为x 2-3x +1=0,解得x 1=3+52,x 2=3-52. 当k =-2时,原方程为x 2-3x +2=0,解得x 1=1,x 2=2.【能力提升培优】11.若一元二次方程x 2﹣2x ﹣m =0无实数根,则一次函数y =(m +1)x +m ﹣1的图象不经过( D ).12.等腰三角形ABC 的边长分别为a ,b ,2,且a ,b 是关于x 的一元二次方程x 2﹣6x +n ﹣1=0的两根,则n 的值为( B )13.已知m >n >0,且m 2+n 2=4mn ,则的值等于( A )..14.已知关于x的方程x2﹣(a+2)x+a﹣2b=0的判别式等于0,且x=是方程的根,则a+b的值为.15.已知关于x的方程(a﹣1)x2﹣2x+1=0有实数根,则a的取值范围是a≤2.16.已知a,b,c是△ABC的三边,当m>0时,关于x的方程c(x2+m)+b(x2﹣m)﹣2x=0有两个相等的实数根,则△ABC是直角三角形.17.已知关于x的一元二次方程(a+c)x2+2bx+(a﹣c)=0,其中a,b,c分别为△ABC三边的长.(1)如果x=﹣1是方程的根,试判断△ABC的形状,并说明理由.(2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由.(1)△ABC是等腰三角形.理由如下:∵x=﹣1是方程的根,∴(a+c)×(﹣1)2﹣2b+(a﹣c)=0.∴a+c﹣2b+a﹣c=0.∴a﹣b=0.∴a=b.∴△ABC是等腰三角形.(2)△ABC是直角三角形.理由如下:∵方程有两个相等的实数根,∴ =(2b)2﹣4(a+c)(a﹣c)=0.∴4b2﹣4a2+4c2=0.∴a2=b2+c2.∴△ABC是直角三角形.18.阅读材料:方程ax2+bx+c=0(a≠0)的根是x=.方程y2+by+ac=0的根是y=.因此,要求ax2+bx+c=0(a≠0)的根,只要求出方程y2+by+ac=0的根,再除以a就可以了.例:解方程72x2+8x+=0.解:先解方程y2+8y+72×=0,解得y1=﹣2,y2=﹣6.∴方程72x2+8x+=0的两根是x1=,x2=,即x1=﹣,x2=﹣.请按上述材料中所提供的方法解方程49x2+6x﹣=0.先解方程y2+6y﹣49×=0,即y2+6y﹣7=0,解得y1=1,y2=﹣7.∴方程49x2+6x﹣=0的解为x1=,x2=﹣.【中考实战演练】19.【荆州】已知a是一元二次方程x2﹣x﹣1=0较大的根,则下面对a的估计正确的是(C)20.【本溪】关于x的一元二次方程(k﹣1)x2﹣2x+1=0有两个不相等的实数根,则实数k 的取值范围是k<2且k≠1.【开放应用探究】21.已知关于x的一元二次方程(m﹣1)x2﹣2mx+m+1=0.(1)求证:方程有两个不相等的实数根.(2)m为何整数时,此方程的两个根都为正整数.(1)∵ =(﹣2m)2﹣4(m﹣1)(m+1)=4>0,∴方程有两个不相等的实数根.(2)由求根公式得x=,∴x1==,x2==1.∵m为整数,且方程的两个根均为正整数,∴x1==1+必为正整数.∴m﹣1=1或2.∴m=2或m=3.。
一元二次方程练习(4)(含答案)

一元二次方程测试班级_____________ 学号______________ 姓名______________ 一.填空题:(每小题2分,共22分)1.方程20x x -=的一次项系数是____________,常数项是____________; 2.若代数式219991998m m -+的值为0,则m 的值为____________; 3.在实数范围内分解因式:221x x --=__________________________;4.已知13x =-是方程2230x kx +-=的一个根,2x 是它的另一个根,则k =_____,2x =____5.方程220x -+=的判别式∆=____________,所以方程_________________实数根;6.已知分式2212x x x -+-的值为0,则x 的值为____________;7.以2,-3为根的一元二次方程是__________________________; 8.当方程()()211120m m xm x +--+-=是一元二次方程时,m 的值为________________;9.若12,x x 是方程25x x -=的两根,则2212x x +=________________;10.已知210x x +-=,则2339x x +-=____________; 11.已知2x y +=,1xy =,则x y -=____________; 二.选择题(每小题3分,共30分)1.方程()2211x +=化为一般式为( )A .22421x x ++= B .241x x +=- C .22410x x ++= D .22210x x ++= 2.用配方法解下列方程,其中应在两端同时加上4的是( )A .225x x -= B .2245x x -= C .245x x += D .225x x += 3.方程()1x x x -=的根是( )A .2x =B .2x =-C .122,0x x ==D .122,0x x =-= 4.下列方程中以1,2-为根的一元二次方程是( )A .()()120x x +-=B .()()121x x -+=C .()221x += D .21924x ⎛⎫+= ⎪⎝⎭ 5.下列方程中,无论b取什么实数,总有两个不相等实数根的是( )A .210x bx ++=B .221x bx b +=+C .20x bx b ++=D .22x bx b += 6.将222x x --分解因式为( )A .1144x x ⎛-- ⎝⎭⎝⎭ B .11244x x ⎛+- ⎝⎭⎝⎭C .11244x x ⎛-+ ⎝⎭⎝⎭D .11244x x ⎛-- ⎝⎭⎝⎭7.县化肥厂今年一季度增产a 吨,以后每季度比上一季度增产的百分率为x ,则第三季度化肥增产的吨数为( ) A .()21a x + B .()21100a x + C . ()21100x + D .()2100a a x +8.已知2120m m +=,则1m -=( ) A .0或12- B .0或-2 C .-2 D .12-9.一项工程,甲队独做要x天,乙队独做要y天,若甲乙两队合作,所需天数为( )A .xy x y +B .2x y+ C .x y xy+ D .x y +10.已知方程2220383x x x x+-=+,若设23x x y +=,则原方程可化为( ) A .2208y y -= B .2208y -= C .208y y -= D .2208y y -= 三.解方程(组)(每小题5分,共20分)1.()()22211x x +=- 2.2232211x y x y x y +=⎧⎨+++=⎩ 3.22431242x x x x -=+--- 4.22124321x x x x +++=++四.解答下列各题(每小题7分,共28分)1.已知12,x x 是关于x 的一元二次方程()2160x m x m ++++=的两实数根,且22125x x +=,求m 的值是多少?2.求证:无论k 为何值,方程()23210x k x k -++-=总有两个不相等的实数根. 3.不解方程,求作一个新方程,使它的两根分别是方程22510x x -+=两根的倒数. 4.某人将1000元人民币按一年定期存入银行,到期后将这1000元本金和所得利息又按一年定期全部存入.已知这两年存款的利率不变,这样,第二年到期后,他共取得本金和利息1210元,求这种存款方式的利率是多少? 附加题(20分)一.填空题(每小题3分,共12分)1.已知2410x x +-=,则1x x-=__________________; 2.若a 是一个两位数,b 是一个一位数,则将b 放在a 的左边得到的数为_________________;3.若,a b 满足22326a ab b -+=,且23a b -=,则a b -=______________;4.已知1132x y =⎧⎨=-⎩是方程组22x y m x y n⎧+=⎨+=⎩的一组解,那么此方程组的另一组解是_____________;二.解应用题(8分)甲车自北站,乙车自南站同时相向而行,相会时乙比甲少行108千米,相会后甲车经过9小时到达南站,乙车经过16小时到达北站,求甲乙两车的速度分别是多少? 参考答案 一.填空题:1.-1;0 2.1或1998; 3.(11x x -- 4.5;125.0;有两个相等; 6.1x =- 7.260x x +-= 8.1m =- 9.11; 10.-6; 11.0; 二.选择题1.C 2.C 3.C 4.D 5.B 6.D 7.A 8.D 9.A 10.D 三.解方程(组)1.120,2x x ==- 2.121221,12x x y y ==⎧⎧⎨⎨==⎩⎩ 3.无解 4.12343;1x x x x ====- 四.解答下列各题1.解:12,x x 为原方程的根 ()121216x x m x x m ∴+=-+⋅=+()()()22221212122126x x x x x x m m ∴+=+-=-+-+⎡⎤⎣⎦又22125x x += 2212125m m m ∴++--= 216m ∴= 4m =±又()()22214621424223m m m m m m m ∆=+-+=++--=--4,168230,m m ∴=∆=--= 当时应舍去;4,1682310,m =-∆=+-= 当时故:m 的值为-4.2. 证明:()()()222234216984213112k k k k k k k k ∆=-+--=++-+=-+=-+⎡⎤⎣⎦而无论k 为何值,都有()210k -≥ ()21120k -+ 0∴∆故:无论k 为何值,原方程总有两个不相等的实数根. 3.解:设所求方程的根为y ,则:1y x =即:1x y= 代入上式得:2112510y y ⎛⎫⎛⎫-+= ⎪ ⎪⎝⎭⎝⎭ 2250y y ∴-+=即2520y y ∴-+=为所求方程. 4.解:设这种存款方式的利率是x ,则:()2100011210x += ()2112.1x += ()120.1,2.1x x ∴==舍去答:这种存款方式的利率是10100附加题(20分)一.填空题:1. -4; 2. 100b a + 3. 2; 4.2223x y =-⎧⎨=⎩二.解应用题 解:设甲乙两车的速度分别是x 千米时,y 千米时;则:169108169y x y x x y -=⎧⎪⎨=⎪⎩21123636727277x x y y ⎧=-⎪=⎧⎪∴⎨⎨=⎩⎪=⎪⎩(舍去) 答;甲乙两车的速度分别是36千米时,27千米时。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元二次方程练习4 班级 姓名
1.已知关于x 的一元二次方程2
20x x m --=,用配方法解此方程,配方后的方程是( )
A .2(1)1x m -=+
B .2(1)1x m +=+
C .22(1)1x m -=+
D .22(1)1x m +=+
2.用配方法解下列方程时,配方有错误的是( ) A .22990x x --=化为2(1)100x -= B .2
2740t t --=化为2781416t ⎛⎫-= ⎪⎝⎭ C .2890x x ++=化为2(4)25x += D .23420x x --=化为221039x ⎛⎫-= ⎪⎝⎭ 3.用配方法解方程x 2-2x -5=0时,原方程应变形为( )
A .(x +1)2=6
B .(x +2)2=9
C .(x -1)2=6
D .(x -2)2=9
4.不论x 、y 为何实数,代数式22247x y x y ++-+的值 ( )
A .总小于2
B .总不小于7
C .为任何实数
D .不能为负数
5.已知,则的值等于( )
A.4
B.-2
C.4或-2
D.-4或2
6.若t 是一元二次方程的根,则判别式和完全平方式的关系是( )
A.△=M
B. △>M
C. △<M
D. 大小关系不能确定
7.(1)x 2-43x+ =( )2; (2)x 2+px+ =( )2.
8.已知223730216b a a b -+-+=,则a -的值为 . 9.已知4x 2-ax+1可变为(2x-b )2的形式,则ab=_______.
10.将一元二次方程x 2-2x-4=0用配方法化成(x+a )2=b 的形式为 ,•所以方程的根为_________.
11.把一元二次方程3x 2-2x-3=0化成3(x+m)2=n 的形式是 ;若多项式
x 2-ax+2a-3是一个完全平方式,则a=_________.
12.已知
.则的值为 . 13.已知实数x 满足4x 2-4x+1=0,则代数式122x x +
的值为________. 14.已知y =x 2+x-6,当x =________时,y 的值是24.
15.若方程2x mx n ++可以分解成(x-3)与(x+4)的积的形式,则m =_______,n =________.
16.若规定两数a 、b 通过“※”运算,得到4ab ,即a ※b =4ab ,例如2※6=4×2×6=48.
(1)则3※5的值为 ;(2)则x ※x+2※x-2※4=0中x 的值为 ;
(3)若无论x 是什么数,总有a ※x =x ,则a 的值为 .
11.阅读材料,解答问题:
材料:为解方程22
(1)5(1)40x x ---+=,我们可以将(x 2-1)视为一个整体,然后设(x 2-1)=y , 原方程可化为:2
540y y -+=. ①
解这个方程,得:y 1=1,y 2=4. 当y 1=1时,x 2-1=1,即x 2=2,∴ x =
当y 2=4时,x 2-1=4,即x 2
=5,∴ x =
∴ 原方程的解为:1x 2x =3x =4x =.
解答问题:方程:x 4-x 2-6=0的解为 .。