第九章组合变形
组合变形

§9-1 组合变形和叠加原理 说明:小变形前提
图示纵横弯曲问题,横截面上 内力为 FN P
M x ql q x x 2 Pv x 2 2
当变形较大时,弯矩中与 挠度有关的附加弯矩不能略 去.虽然梁是线弹性的,弯矩、 挠度与P的关系却是非线性的 因而不能用叠加法.除非梁的 刚度较大,挠度很小,轴力引起 的附加弯矩可以略去.
9.1.3叠加原理
构件在小变形和服从胡克定理的条件下,力的 独立性原理是成立的。即所有载荷作用下的内力、 应力、应变和位移等是各个单独载荷作用下的值的 叠加
说明:
1. 必须是线弹性材料,加载在弹性范围内,服从胡 克定律; 2. 必须是小变形,保证能按构件初始形状或尺寸进 行分解与叠加计算,且能保证与加载次序无关.
(3) 压缩正应力 FRAx 0.866 F A A (4) 最大弯曲正应力 1.2 FR Ay 0.6 F max Wz Wz (5)危险点的应力
A D F 1.2m
30° 1.2m
B
FRAy FNAB
FRAx A F D
30°
Fy
B
c max
0.866 F 0.6 F 94.37MPa [ ] A Wz 满足强度要求。
Fy
B
AB杆为平面弯曲与轴向压缩组合变形
Fx
§9-3 拉伸(压缩)与弯曲的组合
例题9.2 悬臂吊车如图所示,横梁用20a工字钢制成. 其抗弯刚度Wz = 237cm3,横截面面积 A=35.5cm2,总荷载 F= 34kN,横梁材料的许用应力为[]=125MPa.校核横梁 AB的强度. C
(2)内力分析,确定危险截面
已知:l=4m, []=160MPa, =5°,P=60kN 求:校核梁的强度。
组合变形例题

F A C b
h
0.5L
L0
d
D L
材料力学
本章结束
A
5 kN
C
B
D
2 kN 5 kN
300 500
2 kN
500
(a)
1.5 kN A m
7 kN
C
1.5 kN m
B
D
5 kN
12 kN
(b)
T
1.5 kN m
如图c、d、e、f 所示
x (c )
1.5 kN A m
7 kN
C
1.5 kN m
B
D
M C (1.5) 2 (2.1) 2 2.58 kNm
M
2.58 kNm 2.48 kNm
因此,得:
x (e)
d 72 mm
(f) x
直径为20mm的圆截面水平直角折杆,受垂直力P=0.2kN,已知[σ]=170MPa 试用第三强度理论确定a的许可值。
解:内力图: 危险截面:A
Tmax Pa 0.2a M max 2Pa 0.4a
所以起重机架的最大起重量取决于杆AC的强度,为
Fmax 26.7 kN
图示横梁AC~立柱CD结构,均由Q235钢制成,C、D两处均为球 铰。在跨度中点受竖向载荷F作用。已知: (1) 横梁AC的L=4000mm,b=60mm,h=120mm,材料许用应力 [ ]=160MPa。 (2) 立柱CD直径d=20mm, L0=500mm;材料参数为 E=200GPa, 许 用应力 [ ] 160MPa , p 100, s 60 , cr (3041.12 ) MPa,稳 定安全系数 nst 4 。 试确定此横梁~立柱结构的许用载荷。
中国民航大学 2024 年研究生招生考试大纲 804材料力学

材料力学 804一、参考教材:《材料力学I、II》,第四版,高等教育出版社,单辉祖编著。
二、课程内容的基本要求:第一章:绪论第二章:轴向拉压应力第三章:轴向拉压变形第四章:扭转第五章:弯曲内力第六章:弯曲应力第七章:弯曲变形第八章:应力分析和强度理论第九章:组合变形第十章:压杆稳定第十一章:能量方法第十二章:动载荷第十三章:应力分析的实验方法三、应该掌握的内容和重点内容第一章绪论材料力学的任务、基本概念,变形体的基本假设,杆件变形的基本形式。
第二章轴向拉压应力1、轴向拉(压)的概念、内力、截面法、轴力的计算和轴力图的画法。
2、轴向拉(压)杆件横截面及斜截面上的应力计算;许用应力;强度条件及应用。
3、材料在拉伸、压缩时的机械性能。
4、剪切面、挤压面的概念及其判定;剪应力和挤压的公式及其计算。
重点:1、轴力及轴力图的画法。
2、拉(压)应力及强度计算。
3、材料的主要性能。
第三章轴向拉压变形1、轴向拉(压)杆件的变形,纵向变形、弹性模量、抗拉刚度、横向变形、泊松比等概念;虎克定律及其应用。
2、桁架节点位移计算。
3、简单静不定问题的计算。
重点:1、轴向拉(压)变形计算。
2、静不定问题的分析和计算。
第四章扭转1、外力扭矩的计算,扭矩、扭矩图。
2、圆轴扭转时横截面上的应力分布和计算;强度条件及其应用。
3、圆轴扭转时变形和刚度计算;材料的扭转破坏实验。
4、扭转静不定问题的计算。
重点:1、圆轴扭转应力和强度计算。
2、圆轴扭转变形和刚度计算。
3、简单扭转静不定的计算。
第五章弯曲内力1、平面弯曲、剪力、弯矩的概念。
2、剪力方程、弯矩方程的列法;剪力图与弯矩图的画法。
3、利用微分关系画剪力图和弯矩图。
重点:剪力图与弯矩图的画法。
第六章弯曲应力1、纯弯曲的概念和平面假设;平面图形的几何性质。
2、弯曲正应力公式及应用;弯曲剪应力计算。
3、弯曲强度计算;提高梁的强度的主要措施。
重点:弯曲正应力分析与强度计算。
第七章弯曲变形1、挠度、转角及其关系;挠曲线微分方程式;积分法、叠加法求梁的变形。
材料力学_陈振中_习题第九章组合变形

第九章组合变形9.1 试求图示各构件在指定截面上的内力分量。
9.2 人字架及承受的载荷如图所示。
试求截面I-I上的最大正应力和A点的正应力9.3 图示起重架的最大起吊重量(包括行走小车等)为P = 40kN ,横梁AC 由两根No.18槽钢组成,材料为A3钢,许用应力[σ] = 120 MPa 。
试校核横梁的强度。
9.7 图示短柱受载荷P 和H 的作用,试求固定端截面上角点A 、B 、C 及D 的正应力,并确定其中性轴的位置。
9.14 图为操纵装置水平杆,截面为空心圆形,内径d = 24 mm,外径D = 30 mm。
材料为A3钢,[σ] = 100 MPa。
控制片受力P1= 600 N。
试用第三强度理论校核杆的强度。
9.17图示皮带轮传动轴,传递功率N = 7kW,转速n =200r/min。
皮带轮重量Q = 1.8kN。
左端齿轮上啮合力Pn与齿轮节圆切线的夹角(压力角)为200。
轴的材料为A5钢,其许用应力[σ] = 80 MPa。
试分别在忽略和考虑皮带轮重量的两种情况下,按第三强度理论估算轴的直径。
9.19 飞机起落架的折轴为管状截面,内径d =70 mm ,外径D = 80 mm 。
材料的许用应力[σ] = 100 MPa ,试按第三强度理论校核折轴的强度。
若P = 1 kN ,Q = 4 kN 。
9.24 端截面密封的曲管的外径为100mm ,壁厚t = 5mm ,内压p = 8MPa 。
集中力P = 3kN 。
A 、B 两点在管的外表面上,一为截面垂直直径的端点,一为水平直径的端点。
试确定两点的应力状态。
解:在内压p 作用下,B 点应力状态分别如图9.24a ,b 所示。
σp1 = pD/(2t) = 8⨯100/(2⨯5) = 80 MPa, σp2 = pD/(4t) = 40 MPa 在集中力P 作用下,曲管受弯扭组合变形,A 点和B 点应力状态分别如图9.24c ,d 所示。
组合变形(工程力学课件)

偏心压缩(拉伸)
轴向拉伸(压缩)
偏心压缩
F2 F2e
轴向压缩(拉伸)和 弯曲两种基本变形组合
偏心压缩(拉伸)
单向偏心压缩(拉伸)
双向偏心压缩(拉伸)
单向偏心压缩(拉伸)
外力
内力
平移定理
应力
+
=
弯矩
轴力
max
min
FN A
Mz Wz
【例 1】求横截面上的最大正应力
F 50 kN
e 10 mm
组合变形的概念 及其分析方法
杆件的四种基本变形
轴向拉压 剪切 扭转
F
F
F
F
Me
Me
沿轴线的伸长或缩短 相邻横截面相对错动 横截面绕轴线发生相对转动
Me
弯曲
Me
F
轴线由直线变为曲线 横截面发生相对的转动
两种或两种以上基本变形的组合,称为组合变形
常见的 组合变形
(1)拉(压)弯组合 (2)斜弯曲(弯、弯组合) (3)偏心压缩(拉伸) (4)弯扭组合
24 106 401.88 103
64
4.3 59.7 64 [ ] 满足强度要求
59.7 55.4
斜弯曲
平面弯曲
作用线与截面的 纵向对称轴重合
梁弯曲后挠曲线位于外力F所在的纵向对称平面内
斜弯曲
作用线不与截面 的对称轴重合
梁弯曲后挠曲线不再位于外力F所在的纵向平面内
图示矩形截面梁,应用叠加原理对其进行分析计算:
3、应力分析
( z,y)
横截面上任意一点 ( z, y) 处 的正应力计算公式为
Mz
z
O
x
1.拉伸正应力
N
《组合变形完整》课件

通过在平面上的移动,改变元素的位置并创造新的形状。
旋转变形
通过绕中心点或轴旋转,改变元素的方向和角度。
缩放变形
通过改变元素的尺寸和比例,实现大小的变化。
பைடு நூலகம்
组合变形的应用实例
汽车刹车灯组合变形实例
通过组合和变换不同形状的灯光元素,实现了刹车时的 亮起与变形效果。
纸牌变形实例
将纸牌变形为不同的形状和结构,创造出令人惊叹的魔 术效果和艺术呈现。
《组合变形完整》PPT课 件
组合变形是一种有趣而强大的技术,通过结合和变换不同元素,创造出新的 形状和结构,本课程将带你深入了解组合变形的概念与应用。
什么是组合变形?
组合变形是一种将不同元素通过结合和变换创造新形状和结构的技术。通过 组合和变换,可以实现创造性的设计和工程应用。
组合变形的基本类型
使用编程语言和计算机图形学的知识,实现组合 变形算法并应用于实际项目。
结语
组合变形技术的应用带来了许多好处,从提升设计灵活性到改善工程应用的 效率。展望未来,组合变形将继续发展并创造更多创新和突破。
组合变形在工程上的应用
设计软件的应用
组合变形在设计软件中被广泛应用,用于创建新的形状和结构,提升设计的创意和灵活性。
机器人操作的应用
组合变形技术使机器人能够通过结合和变换不同部件,适应不同的任务和环境,提高机器人 的操作效率。
组合变形的技术细节
1 算法分析
2 编程实现
通过深入研究不同的算法和数学模型,实现高效 且精确的组合变形技术。
09组合变形习题

图示矩形截面拉杆中间开一深度为h/2的缺口,与不开口的拉杆相比,开中处的最大应力的增大倍数有四种答案:
(A) 2倍;(B) 4倍;(C) 8倍;(D) 16倍;
正确答案是_________________。
04.三种受压杆件如图,设杆1、2、和杆3中的最大压应力(绝对值)分别用 、 和 表示,它们之间的关系有四种答案:
18.试作用图示空间折杆的内力图,(弯曲剪应力图可略)。
19.矩形截面木受力如图,已知 , , ,试验算木条的强度和刚度。
20.图示矩形截面简支梁受均布载荷作用,载荷作用方向如图示, ,简支梁受均布载荷时平面弯曲的跨度挠度值 ,试求该梁的最大总挠度及挠曲线平面的位置。
21.悬重物架,如图所示。已知载荷 。
08用第三强度理论校核图示杆的强度时,有四种答案:
(A) ;
(B) ;
(C) ;
(D) ;
正确答案是__________________。
09.按第三强度理论计算等截面直杆弯扭组合变形的强度问题时,应采用的强度公式有四种答案:
(A) ;
(B) ;
(C) ;
(D) ;
正确答案是__________________。
06.图示正方形截面杆承受弯扭组合变形,在进行强度计算时,其任一截面的危险点位置有四种答案:
(A)截面形心;( B )竖边中点A点;( C )横边中点B点;( D )横截面的角点D点;
正确答案是__________________。
07.折杆危险截面上危险点的应力状态,现有四种答案:
正确答案是__________________。
第九章 组合变形部分
填空题
01.( 5 )偏心压缩实际不就是____________和____________的组合变形问题。
材料力学斜弯曲

y
中性轴
Fl
另一条类似。
四、挠度的方向
z F wy
l
x
y
w φ β wz
F
Fl 3 sin 自由端 wy 3EI z
方向
Fl 3 cos wz 3EI y
t an
wy wz
Iy Iz
t an
结论
挠度
中性轴
t an
一、概念
z
Fy
φ
F
Fz
外力:作用线不与形心主 惯性轴重合; 内力: 弯矩矢不与形心主 惯性轴重合(可分解成两 y 个形心主惯性轴方向的弯 矩); 变形:挠曲线不与载荷线 共面。
斜弯曲
F1
平面弯曲
F2
二、正应力强度条件
例:分析图示斜弯曲变形
z
z
y φ
y
F
A
F φ
B
l
z
y
1.分类:
平面弯曲(绕 y 轴) + 平面弯曲(绕 z 轴)
图中力F是否使梁产生平面弯曲?
F
z y
F
F
z z y
y
弯曲中心的意义
非对称截面梁平面弯曲的条件: 1.外力平行于形心主惯性平面 保证 Iyz=0
(推导弯曲正应力时要求满足Iyz=0)
F
M
2.外力作用线通过弯曲中心 保证 不扭转
图中力F使梁产生平面弯曲, 同时还产生扭转。
A
y
C
z
§9.3 拉(压)弯组合
A
D1
t max
D2
M y max M z max t max 单向应力状态 W c max Wz y
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
z
应力计算: Iz
z
;
y
Iy M z
y
;
Iz y Mz y M z
z y
Iy
由中性轴方程: z Iy 得:tg z tg ; I z I y时, 。 y I
Iz Iz M( y z ) 0; cos sin
f y2 f z2
pz l 3 Pl 3 sin fz 3EI y 3EI y
设挠度f与轴的夹角为α,则可用下式求得:tg 返回 下一张
fz I z tg fy Iy
上一张
小结
• 例:悬臂梁如图示。全梁纵向对称平面内承受均布荷载 q=5KN/m,在 自由端的水平对称平面内受集中力P=2KN的作用。已知截面为25a工字 钢,材料的E= 2 105 MPa,试求: • (1)梁的最大拉、压应力。 • (2)梁的自由端的挠度。 解:(1)固定端截面为危险截面。
返回
下一张
上一张
小结
My Mz Mz My ymax zmax ; 最大应力: max Iz Iy Wz Iy
强度条件: M z M y [ ]; max
Wz Iy
max 在截面距离中性轴最远 的两个角点上。
• 二、挠度计算: • 梁在斜弯曲情况下的挠度,也用叠加原理求得。 p yl 3 Pl 3 cos • 如上例中P集中力的分量在 fy 3EI z 3EI z • 各自弯曲平面内产生的挠度为 总挠度为: f
返回
下一张
上一张
小结
第三节 拉伸(压缩)与弯曲的组合作用
一、概念: 在实际工程中,杆件受横 向力和轴向力的作用,则杆件 将产生拉(压)弯组合变形。 如斜梁,将其所受力P分解 为两个分量Px ,Py 。则垂直于梁 轴的横向力PY使梁产生弯曲变形, 轴向力Px使AB梁段产生轴向压 缩变形,所以在P的作用下,该 梁段产生压弯组合变形。
返回 下一张 上一张 小结第一节 概述一、概念: 1. 组合变形:受力构件产生的变形是由两种或两种以上的 基本变形组合而成的。 2. 组合变形实例 :
返回
下一张
上一张
小结
3. 常见组合变形的类型 : (1) 斜弯曲 (2) 拉伸(压缩)与弯曲组合 (3) 偏心拉伸(压缩) (4) 弯扭组合 二、计算方法 : 组合变形若忽略变形过程中各基本变形间的互相影 响,则可依据叠加原理计算。 1. 叠加原理 :弹性范围小变形情况下,各荷载分别单独 作用所产生的应力、变形等互不影响,可叠加计算。 2. 计算方法: “先分解,后叠加。” 先分解-------应先分解为各种基本变形,分别计算各基本 变形。 后叠加-------将基本变形计算某量的结果叠加即得组合变 形的结果。 返回 下一张 上一张 小结
M y max Pl 2 2 4 KN m M z max 1 2 1 ql 5 2 2 10KN m 2 2
查表: Wy 48.283cm3 ,Wz 401.883cm3 ; I y 280.046cm4 , I z 5023 .54cm4 ;
第10章 组合变形
第一节 第二节 第三节 概述 斜弯曲 拉伸(压缩)与弯曲 的组合作用 杆在弯曲与扭转共同作用下的 强度计算
第四节 偏心压缩(拉伸) 截面核心
第五节 小 结
返 回
四种基本变形计算:
变形 轴向拉伸(压缩) 剪切 扭转 平面弯曲 外力 轴向力 横向力 外力偶 横向力或外力偶 内力 轴力(N) 剪力(Q) 扭矩(Mn) 剪力(Q) 弯矩(M) 符号 拉为正 + 右手螺旋法则 + + 应力 正应力 剪应力 剪应力 剪应力 正应力 分布规律 均匀分布 均匀分布 线性分布 抛物线分布 线性分布
再如重力坝,自重使坝底 受压力,水压力使坝体产生弯 曲变形,该坝为压弯组合变形 构件。
返回 下一张 上一张 小结
二、计算: 以挡土墙为例。 自重作用使任意截面产生轴向 压力N(x);对应各点产生压应力:
N
N ( x) ; A
土压力作用使截面产生弯矩 M(x);对应点产生正应力:
M
M ( x) y ; Iz
计算 N 公式 A 强度 N max [ ] max A 条件
Q A
Mx Ip
QS * I zb
Mzy Iz
Qmax M z max M x max Qmax [ ] [ ] max [ ] max k max [ ] max Wz A Wp A 变形 绝对伸长 挤压变形 扭转角 转角 挠度 n y 荷载 L M L F 刚度 L NL [L] c c [ c ] x [ ] 系数 EIz EA Ac GA 条件
(2)由于截面对称, max 最大拉压应力相等。
M y max M z max Wz Wy
(3)求自由端的挠度: f f y2 f z2
1 01 06 4 1 06 1 0 8 MPa; 40188 2 4 8 2 8 3
ql 4 2 Pl 3 2 ( ) ( ) 9.57m m 8 EI z 3EI y
X截面任意点应力:
k
N ( x) M ( x) y ; A Iz
max min
N ( x) M ( x) ; A Wz
max min
挡土墙底部截面轴力和弯矩最大, 为危险截面,其最大和最小应力为:
第二节 斜弯曲
受力特点:外力垂直杆轴且通过形心但未作用在纵向对称面内; 变形特点:杆轴弯曲平面与外力作用平面不重合。 斜弯曲也称为双向平面弯曲。 一、强度计算: 外力分解: Py P cos Pz P sin 内力计算:
M z Py x P cos x M cos ; M y Pz x P sin x M sin ;