高中数学立体几何的动态问题翻折问题

合集下载

高中数学立体几何动点和折叠问题-含答案

高中数学立体几何动点和折叠问题-含答案

高中数学立体几何动点和折叠问题-含答案1.在正方体ABCD-A1B1C1D1中,BC的中点为M,点P在正方体的表面DCC1D1上移动,且满足∠APD=∠MPC。

求三棱锥P-BCD的体积的最大值。

2.△ABC是边长为23的等边三角形,E、F分别为AB、AC的中点,沿EF把四面体OAEF折起,使点A翻折到点P的位置,连接PB、PC。

当四棱锥P-BCFE的外接球的表面积最小时,求四棱锥P-BCFE的体积。

3.△ABC是边长为23的等边三角形,E、F分别在线段AB、AC上滑动,且EF//BC,沿EF把△AEF折起,使点A翻折到点P的位置,连接PB、PC。

求四棱锥P-BCFE的体积的最大值。

4.已知三棱锥P-ABC满足PA⊥底面ABC,在△ABC中,AB=6,AC=8,且AB⊥AC,D是线段AC上一点,且AD=3DC,球O为三棱锥P-ABC的外接球,过点D作球O的截面。

若所得截面圆的面积的最小值与最大值之和为44π,则求球O的表面积。

5.已知A、B、C、D四点均在半径为R(R为常数)的球O的球面上运动,且AB=AC,AB⊥AC,AD⊥BC。

若四面体ABCD的体积的最大值为V,求V的值。

6.已知A、B、C是球O的球面上的三点,AB=2,AC=23,∠ABC=60°,且三棱锥O-ABC的体积为V。

求V的值。

7.已知三棱柱ABC-A1B1C1内接于一个半径为3的球,四边形A1ACC1与B1BCC1为两个全等的矩形,M是A1B1的中点,且C1M=√3.求三棱锥C1-ABC的体积。

8.在四棱柱ABCD-A1B1C1D1中,底面四边形ABCD是菱形,∠ADC=120°,连接AC,BD交于点O,A1O⊥平面ABCD,AO=BD=4,点C'与点C关于平面BC1D对称。

求三棱锥C'-ABD的体积。

1.删除该题,因为这明显是一道数学计算题,没有文章可言。

2.球O的表面积为4π,则球O的体积为(4/3)π。

二轮复习专题:立体几何中的翻折与旋转问题

二轮复习专题:立体几何中的翻折与旋转问题
1 3 N( , , 0), BC (1,0, 3),CC (0, 3, 3) 2 2 设平面 C′NC 的法向量为 n (x,y,z) 有 BC n 0 , CC n 0 得 n ( 3,1,1) x B 设平面 ANC′的法向量为 m (x, y,z)
∴又∵C′N 平面 BCC′ ∴C′N //平面 ADD′
题醉了
(3)由前,∵AC⊥平面 ABC′ 同理 A C′⊥平面 ABC, 以 A 为原点,直线 AB 为 x 轴、AC 为 y 轴、AC′为 z 轴,建立空间直角坐标系
z
设 AB=1,则 B(1,0,0),C(0, 3 ,0),C′(0,0, 3 )
D C
由已知可知 平面 C′BA⊥平面 ABC 又∵ 平面 C′BA∩平面 ABC=AB ∴ AC⊥平面 AB C′
B N
(2) ∵AD//BC, BC 平面 BCC′ AD 平面 BCC′ ∴AD//平面 BCC′ 同理 AD′ 平面 BCC′ 又∵AD∩AD′=A ∴ 平面 ADD′//平面 BCC′
题醉了
【证明】如图①,连接 DE 交 AD 于 O.
E P
AOΒιβλιοθήκη D1A B
O
C
1
D
C B
(2)在等腰∆ABD 中,∵AD=2,AB=BD= 5 ,且 BO⊥AD ∴BO=2 ∴S∆ABD=2∵三棱锥 P-ABD 的体积是 2 .
在四边形 OBCD 中, OB//DC,且 OB=2, DC=1.∴S∆ABD=2 S∆BOD=4S∆ACD
E
A
D
1
A B C
D
C B


题醉了
【证明】如图①,连接 DE 交 AD 于 O.

立体几何的动态问题翻折问题

立体几何的动态问题翻折问题

立体几何的动态问题之二———翻折问题立体几何动态问题的基本类型:点动问题;线动问题;面动问题;体动问题;多动问题等一、面动问题(翻折问题):(一)学生用草稿纸演示翻折过程: (二)翻折问题的一线五结论.D F A E ⊥一线:垂直于折痕的线即五结论:1)折线同侧的几何量和位置关系保持不变;折线两侧的几何量和位置关系发生改变; 2--D H F D H F ''∠)是二面角的平面角;3D D F ')在底面上的投影一定射线上;二、翻折问题题目呈现:(一)翻折过程中的范围与最值问题1、(2016年联考试题)平面四边形ABCD 中,CD=CB=且A D A B ⊥,现将△ABD 沿对角线BD 翻折成'A B D ∆,则在'A B D ∆折起至转到平面BCD 的过程中,直线'A C 与平面BCD 所成最大角的正切值为_______ .解:由题意知点A 运动的轨迹是以E 为圆心,EA 为半径的圆,当点A运动到与圆相切的时候所称的角最大,所以ta n '3A CB ∠=【设计意图】加强对一线、五结论的应用,重点对学生容易犯的错误12进行分析,找出错误的原因。

2、2015年10月浙江省学业水平考试18).如图,在菱形ABCD 中,∠BAD=60°,线段AD ,BD 的中点分别为E ,F 。

现将△ABD 沿对角线BD 翻折,则异面直线BE 与CF 所成角的取值范围是DABECDABC4) ''D H D H 点的轨迹是以为圆心,为半径的圆;5A D 'E A E .)面绕翻折形成两个同底的圆锥CA.(,)63ππB. (,]62ππC. (,]32ππD. 2(,)33ππ分析:这是一道非常经典的学考试题,本题的解法非常多,很好的考查了空间立体几何线线角的求法。

方法一:特殊值法(可过F 作FH 平行BE,找两个极端情形) 方法二:定义法:利用余弦定理:222254c o s 243F HF CC HF H C C HF H F C+-∠==-,有344C H ≤≤11c o s ,22C F H ⎡⎤∴∠∈-⎢⎥⎣⎦异面直线BE 与CF 所成角的取值范围是(,]32ππ 方法三:向量基底法:111()()222B E FC B A BD F C B A F C B F F A F C=+==+111c o s ,c o s ,,222B E F C F C F A ⎡⎤<>=<>∈-⎢⎥⎣⎦方法四:建系:3、(2015年浙江·理8)如图,已知ABC ∆,D 是AB 的中点,沿直线CD 将ACD ∆折成A CD '∆,所成二面角A CDB '--的平面角为α,则 ( B )A. A DB α'∠≤B. A DB α'∠≥C. A CB α'∠≥D. A CB α'∠≤方法一:特殊值方法二:定义法作出二面角,在进行比较。

高中教案:高考数学难点突破八立体几何中的翻折问题

高中教案:高考数学难点突破八立体几何中的翻折问题

高考数学难点突破八----立体几何中的翻折问题一、知识储备翻折问题就是把平面图形经过折叠变成一个空间图形,实际上,折叠问题就是轴对称的问题,折痕就是对称轴,重合的即是全等图形,解决折叠问题时,要把运动着的空间图形不断地与原平面图形进行对照,看清楚其中哪些量在变化,哪些量没有变化,从而寻找出解决问题的方法,达到空间问题与平面问题相互转化的目的。

核心是抓牢折痕就是翻折前与翻折后平面图形的公共底边,折痕与公共底边上两高所在平面垂直。

二、应用举例例1.如图,在矩形ABCD 中,M 在线段AB 上,且1AM AD ==,3AB =,将ADM ∆沿DM 翻折.在翻折过程中,记二面角A BC D --的平面角为θ,则tan θ的最大值为(C )ABCD例2.在矩形ABCD 中,4,3AB AD ==,E 为边AD 上的一点,1DE =,现将ABE ∆沿直线BE 折成A BE '∆,使得点A '在平面 BCDE 上的射影在四边形BCDE 内(不含边界),设二面角 A BE C '--的大小为θ,直线,A B A C ''与平面BCDE 所成的角分 别为αβ,,则( D ) A.βαθ<< B.βθα<< C.αθβ<< D.αβθ<<例3.如图,矩形ABCD 中心为, O BC AB >,现将DAC 沿着对角线AC 翻折成EAC ,记BOE a ∠=,二面角B AC E --的平面角为β,直线DE 和BC 所成角为γ,则( D )A. ,2a ββγ>>B. ,2a ββγ><C. ,2a ββγ<>D. ,2a ββγ<<例4.如图,在ABC △中,1AB =,22BC =,4B π=,将ABC △绕边AB 翻转至ABP △,使面ABP ⊥面ABC ,D 是BC 中点,设Q 是线段PA 上的动点,则当PC 与DQ 所成角取得最小值时,线段AQ 的长度为( B ) A .52B .255C .355D .253例5.已知在矩形ABCD 中,2AD AB =,沿直线BD 将ABD ∆ 折成'A BD ∆,使得点'A 在平面BCD 上的射影在BCD ∆内(不含边界),设二面角'A BD C --的大小为θ,直线','A D A C 与平面BCD 所成的角分别为,αβ,则( )A. αθβ<<B. βθα<<C. βαθ<<D. αβθ<< 【答案】DQ DPCBA【解析】分析:由题意画出图形,由两种特殊位置得到点A′在平面BCD上的射影的情况,由线段的长度关系可得三个角的正弦的大小,则答案可求.详解:如图,∵四边形ABCD为矩形,∴BA′⊥A′D,当A′点在底面上的射影O落在BC上时,有平面A′BC⊥底面BCD,又DC⊥BC,可得DC⊥平面A′BC,则DC⊥BA′,∴BA′⊥平面A′DC,在Rt△BA′C中,设BA′=1,则,∴A′C=1,说明O为当A′点在底面上的射影E落在BD上时,可知A′E⊥BD,设BA′=1,则A D'=,要使点A′在平面BCD上的射影F在△BCD内(不含边界),则点A′的射影F落在线段OE上(不含端点).可知∠A′EF为二面角A′﹣BD﹣C的平面角θ,直线A′D与平面BCD所成的角为∠A′DF=α,直线A′C与平面BCD所成的角为∠A′CF=β,<,而A′C的最小值为1,可求得DF>CF,∴A′C<A′D,且A′E=13∴sin∠A′DF<sin∠A′CF<sin∠A′EO,则α<β<θ.故答案为:D点睛:本题主要考查二面角的平面角和直线与平面所成的角,考查正弦函数的单调性,意在考查学生对这些基础知识的掌握能力和空间想象能力分析推理能力.例6、(嘉兴市2020年1月期终)已知矩形ABCD ,4AB =,2BC =,E 、F 分别为AB 、CD 的中点,沿直线DE 将ADE △翻折成PDE △,在点P 从A 至F 的运动过程中,CP 的中点G 的轨迹长度为 .22π分析:设 AC ,FC 的中点为 M , N ,CP 的中点G 的轨迹是以 MN 为直径的半圆.例7、(宁波市2020年1月期终)已知平面四边形ABCD 中,90A C ∠=∠=︒,BC CD =,AB AD >,现将ABD △沿对角线BD 翻折得到三棱锥A BCD '-,在此过程中,二面角A BC D '--、A CDB '--的大小分别为α,β,直线A B '与平面BCD 所成角为γ,直线A D '与平面BCD 所成角为δ,则( )A .γδβ<<B .γαβ<<C .αδβ<<D .γαδ<<例8、(柯桥一中2020年1月期终)已知在矩形ABCD 中,2AB =,4AD =,E ,F 分别在边AD ,BC 上,且1AE =,3BF =,如图所示, 沿EF 将四边形AEFB 翻折成A EFB '',则在翻折过程中,二面角B CD E '--的大小为θ,则tan θ的最大值为( C ) A.5B.5C.4例9、(名校合作体2020年3月)已知C 为ABD Rt ∆斜边BD 上一点,且ACD ∆为等边三角形,现将ABC ∆沿AC 翻折至C B A '∆,若在三棱锥ACD B -'中,直线B C '和直线B A '与平面ACD 所成角分别为βα,,则( )A. βα<<0B.βαβ2≤<C.βαβ32≤≤例10、(2020年1月嘉兴期终)已知矩形ABCD ,4AB =,2BC =,E 、F 分别为AB 、CD 的中点,沿直线DE 将ADE △翻折成PDE △,在点P 从A 至F 的运动过程中,CP 的中点G 的轨迹长度为 .分析:取DE 中点O ,连CO PO ,,则点G 的轨迹是以CO 的中点为圆心,2221=PO 为半径的半圆,轨迹长为22ππ=r例11、(2020年4月温州模拟)如图,在ABC ∆中,点M 是边BC 的中点,将ABN ∆沿着AM 翻折成M B A '∆,且点B '不在平面AMC 内,点P 是线段C B '上一点,若二面角B AM P '--与二面角C AM P --的平面角相等,则直线AP 经过C B A '∆的( A ) A. 重心 B. 垂心 C. 内心 D.外心G PFD B A例12、(2020年嘉兴一模)将边长为1的正方形ABCD 沿对角线BD 翻折,使得二面角A BD C --的平面角的大小为π3,若点E ,F 分别是线段AC 和BD 上的动点,则BE CF 的取值范围为 ( )A .[1,0]-B .1[1,]4-C .1[,0]2-D . 11[,]24-例13、(2020年5月暨阳联考)如图:ABC ∆中,︒=∠⊥90,ACB BC AB ,D 为AC 的中点,ABD ∆沿BD 边翻折过程中,直线AB 与BC 直线所成的最大角,最小角分别记为11βα,,直线AD 与直线BC 所成的最大角,最小角分别记为22βα,,则有( D )A. ββαα≤<121,B. 2121ββαα><,C. 2121ββαα≤≥,D.2121ββαα>≥,分析一:翻折到180时,,AB BC 所成角最小,可知130β=,,AD BC 所成角最小,20β=,翻折0时,,AB BC 所成角最大,可知190α=,翻折过程中,可知AD 的投影可与BC 垂直,所以,AD BC 所成最大角290α=,所以 1190,30αβ︒︒==,2290,0αβ︒︒==分析二:对角线向量定理例14、(2020年4月台州二模)如下图①,在直角梯形ABCD 中,90=∠=∠=∠DAB CDB ABC , 30=∠BCD ,4=BC ,点E 在线段CD 上运动,如下图②,沿BE 将BEC ∆折至C BE '∆,使得平面⊥'C BE 平面ABED ,则C A '的最小值为 .⇒例15、(2020年嘉兴市基础知识测试)如图,矩形ABCD 中,2,1==BC AB ,点E 为AD 中点,将ABE ∆沿BE 折起,在翻折过程中,记二面角B DC A --的平面角大小为α,则当α最大时,=αtan ( ) A. 22 B. 32 C. 31 D.21例16、(2020学年温州中学高二上期中)等边三角形ABC 边长为4,N M ,为AC AB ,的中点,沿MN 将AMN ∆折起,当直线AB 与平面BCMN 所成的角最大时,线段AB 的长度为( )A.6B. 22C. 10D.32例17、(2020学年杭外高二上期中)如图,在菱形ABCD 中,︒=∠60BAD ,线段AD ,BD 的中点分别为E ,F ,现将ABD ∆沿对角线BD 翻折,则异面直线BE 与CF 所成的角的取值范围是( )A.),(36ππ B.⎥⎦⎤26ππ,( C. ⎥⎦⎤ ⎝⎛2,3ππ, D.⎪⎭⎫⎝⎛323ππ,例18、(2020学年杭四中高二上期中)如图,矩形ABCD 中,AD AB 2=,E 为边AB 的中点,将ADE ∆沿直线DE 翻折成DE A 1∆,若M 为线段C A 1的中点,则在ADE ∆翻折过程中,下面四个选项中正确的是 (填写所有的正确选项).(1)BM 是定值;(2)点M 在某个球面上运动;(3)存在某个位置,使C A DE 1⊥;(4)存在某个位置,使//MB 平面DE A 1.例19、(2020学年杭师大附中高二上期中)如图,在矩形ABCD 中,6=AB ,4=BC ,E 为DC 边的中点,沿AE 将ADE ∆折起至E D A '∆,设二面角B AE D --'为α,直线D A '与平面ABCE 所成角为β,若︒︒<<9060α,则在翻折过程中( )A. 存在某个位置,使得βα<B. 存在某个位置,使得︒<+90βαB. ︒>45β D.︒︒<<4530β例20、(2020学年台州市高二上期终)如图,在ABC ∆,1=AC ,3=BC ,2π=C ,点D 是边AB (端点除外)上的一动点,若将ACD ∆沿直线CD 翻折,能使点A 在平面BCD内的射影A '落在BCD ∆的内部(不包括边界)且37='C A ,设t AD =,则t 的取值范围是 .例21、(2020学年杭州七县市高二上期末)如图,正方形ABCD 的边长为4,点F E ,分别是BC AB ,的中点,将DAE ∆,EBF ∆,FCD ∆分别沿DE ,EF ,FD 折起,使得A ,B ,C 三点重合于点A ',若点G 及四面体DEF A -'的四个顶点都在同一个球面上,则以DEF ∆为底面的三棱锥DEF G -的高h 的最大值是( ) 326+ B. 346+ C.3462- D.3262-例22、(2020学年慈溪市高二上期终)如图,三棱锥BCD A -的底面BCD 在平面α内,所有棱均相等,E 是棱AC 的中点,若三棱锥BCD A -绕棱CD 旋转,设直线BE 与平面α所成角为θ,则θcos 的取值范围为( )A.⎥⎦⎤⎢⎣⎡163,B. ⎥⎦⎤⎢⎣⎡1,65 C.⎥⎦⎤⎢⎣⎡6110, D.⎥⎦⎤⎢⎣⎡6330,例23、(2021年2月“日知”新高考命题研究联盟高三期终)如图所示,正方形ABCD ,ADEF ,AFGH 平铺在水平面上,先将矩形EDHG 沿AD 折起,使二面角BAD E --'为︒30,再将正方形H G F A ''沿F A '折起,使二面角D F A H -'-'为︒30,则平面H G F A '''与平面ABCD 所成的锐二面角的正切值是( ) A.42 B.37 C.43 D.26例24、(2021年2月丽水中学合作校高三联考卷)如图,在ABC ∆中,MC BM 21=,1==AC AB ,32=BM ,点D 在线段BM 上运动,沿AD 将ADB ∆折到B AD '∆,使得二面角C AD B --'的度数为︒60,若点B '在平面ABC 内的射影为O ,则OC 的最小值为 .例25、(2021年4月杭州二模第10题)如图,在长方体ABCD 中,215=AB ,1=AD ,点E 在线段AB (端点除外)上,现将ADE ∆沿DE 折起为DE A '∆,设α=∠ADE ,二面角C DE A --'的大小为β,若2πβα=+,则四棱锥BCDE A -'体积的最大值为( )A.41 B.32 C. 121-15 D. 81-5例26、(2020学年之江教育联盟高二下开学考)如图,已知椭圆的长轴端点为21,A A ,短轴端点为21,B B ,焦点为21,F F ,长半轴为2,短半轴为3,将左边半个椭圆沿短轴进行翻折,则在翻折过程中,以下说法错误的是( )A. 12F B 与短轴21B B 所成角为6π B. 12F B 与直线22F A 所成角的取值范围为⎥⎦⎤⎢⎣⎡23ππ,C. 12F A 与平面212B B A 所成角的最大值为6πD. 存在某个位置,使得12F B 与21F B 垂直例27、(2021年5月义务高三适应性考试第10题)如图,在等边三角形ABC 中,点ED 、分别是线段AC AB ,上异于端点的动点,且CE BD =,现将三角形ADE 沿直线DE 折起,使平面⊥ADE 平面BCED ,D 从B 滑动到A 的过程中(D 与A B ,均不重合),则下列选项中错误的是( )A. ADB ∠的大小不会发生变化B. 二面角C BD A --的平面角的大小不会发生变化C.BD 与平面ABC 所成的角变大D.AB 与DE 所成的角先变小后变大例28、(2020年4月嘉兴二模第9题)如图,矩形ABCD 中,已知2=AB ,4=BC ,E 为AD 的中点,将ABE ∆沿着BE 向上翻折至BE A '∆,记锐二面角C BE A --'的平面角为α,B A '与平面BCDE 所成的角为β,则下列结论不可能成立的是( )A. βαsin 2sin =B.βαcos cos 2=C.βα2<D. 4πβα>-例29、(2020学年温州十校联盟高二下期终)如图,在等腰三角形ABC 中,2=BC ,︒=∠90C ,D ,E 分别是线段AB ,AC 上异于端点的动点,且BC DE //,先将ADE ∆沿直线DE 折起至DE A ',使平面⊥'DE A 平面BCED ,当D 从B 滑动到A 的过程中,下列选项错误的是( )A. DE A '∠的大小不会发生变化B. 二面角C BD A --'的平面角的大小不会发生变化C. 三棱锥EBC A -'的体积先变大在变小D. B A '与DE 所成的角先变大再变小例30、(2020学年浙南名校联盟高二下期终第17题)如图,在矩形ABCD 中,a AB =,a BC 2=,点E 为AD 的中点,将ABE ∆沿BE 翻折到BE A '∆的位置,在翻折过程中,A '不在平面BCDE 内时,记二面角B DC A --'的平面角为α,则当α最大时,αcos 的值为 .。

高考研讨会资料——立体几何中的翻折问题(共14张PPT)

高考研讨会资料——立体几何中的翻折问题(共14张PPT)
故答案:D
例 3.正四面体 ABCD,CD 在平面 α 内,点 E 是线段 AC 的中 点,在该四面体绕 CD 旋转的过程中,直线 BE 与平面 α 所成 角正弦值的范围
F θ
定 面 求 角
cos BEF cos q cos BEF
所以
cos BEF cos q
0 q BEF .
B. ������ < ������ < ������ D. ������ < ������ < ������
θ
β
α
定 边 求 角
AO tan a OD AO tan b OC AO tan q OE

OE EF BF CF OC OD ,
所以 即:
tan a tan b tan q a b q.
小结
角度(线线角、线面角、二面角) 求解翻折问题前必做的两件事 作出翻折前后两幅图 找出翻折中的不变量和不变关系 角 线(射影) 面
不变
动中寻静
定量关系
天道酬勤
由Байду номын сангаас可得:
33 所 以 0 sin q sin BEF . 6
例 4. (2018 年 11 月浙江省高中学业水平考试 18) 如图, 四边形 ABCD 为矩形, 沿 AC 将 D ADC 翻折成 D ADC .设二面角 D AB C 的平 面角为 q , 直线 AD 与直线 BC 所成角为 q1 , 直线 AD 与平面 ABC 所 成角为 q2 .当 q 为锐角时,有 A. q2 q1 q B. q2 q q1 C. q1 q2 q D. q q2 q1
综上q2 q q1.
故答案:B

专题06 立体几何中的翻折问题(解析版)

专题06 立体几何中的翻折问题(解析版)

第三篇 立体几何专题07 立体几何中的翻折问题常见考点考点一 翻折问题典例1.如图1五边形ABCDE 中,ED EA =,//AB CD ,2CD AB =,150EDC ∠=︒,将EAD 沿AD 折到PAD △的位置,得到四棱锥P ABCD -,如图2,点M 为线段PC 的中点,且BM ⊥平面PCD .(1)求证:CD ⊥平面PAD ;(2)若直线PC 与AB 所成角的正切值为12,求二面角P BD C --余弦值.【答案】(1)证明见解析;(2) 【解析】 【分析】(1)取PD 的中点N ,连结AN ,MN ,利用中位线定理可证明四边形ABMN 为平行四边形,从而//AN BM ,可得AN ⊥平面PCD ,推出AN PD ⊥,AN CD ⊥,利用PAD △为等边三角形,由边角关系可得CD AD ⊥,结合线面垂直的判定定理证明即可;(2)利用线线角的定义可得PCD ∠为直线PC 与AB 所成的角,从而得到2CD PD =,设1PD =,建立合适的空间直角坐标系,求出点的坐标和向量的坐标,利用待定系数法求出平面的法向量,由空间向量夹角公式计算即可. 【详解】(1)证明:取PD 的中点N ,连接AN ,MN 则//MN CD ,12MN CD =, 又//AB CD ,12AB CD =,所以//MN AB ,MN AB =,则四边形ABMN 为平行四边形,所以//AN BM ,又BM ⊥平面PCD ,∴AN ⊥平面PCD ,∴AN PD ⊥,AN CD ⊥. 由ED EA =即PD PA =及N 为PD 的中点,可得PAD △为等边三角形, ∴60PAD ∠=︒,又150EDC ∠=︒,∴90CDA ∠=︒,∴CD AD ⊥,又,AN AD 在平面PAD 内相交, ∴CD ⊥平面PAD .(2)//AB CD ,∴PCD ∠为直线PC 与AB 所成的角, 由(1)可得90PDC ∠=︒,∴1tan 2PD PCD CD ∠==,∴2CD PD =, 设1PD =,则2CD =,1PA AD AB ===,取AD 的中点O ,连接PO ,易知PO ⊥平面ABCD 过O 作AB 的平行线, 可建立如图所示的空间直角坐标系O xyz -,则1,0,02D ⎛⎫- ⎪⎝⎭,1,1,02B ⎛⎫⎪⎝⎭,1,2,02C ⎛⎫- ⎪⎝⎭,P ⎛⎫ ⎪ ⎪⎝⎭,∴14M ⎛⎫- ⎪ ⎪⎝⎭, 所以()1,1,0DB =,1,1,2PB ⎛⎫= ⎪ ⎪⎝⎭,34BM ⎛⎫=- ⎪ ⎪⎝⎭, 设(),,n x y z =为平面PBD的法向量,则0102x y x y z +=⎧⎪⎨+=⎪⎩, 取3x =,则(13,3,n =-为平面PBD 的一个法向量, 又平面BCD 的法向量()20,0,1n =,设二面角P BD C --为θ∴1212123cos cos ,721n n n n n n θ⋅-====-,由图可知二面角为钝角,所以二面角P BD C --余弦值为变式1-1.如图,在Rt ABC 中,AC BC ⊥,30BAC ∠=︒,BC =,3AC DC =,//DE BC ,沿DE 将点A 折至1A 处,使得1A C DC ⊥,点M 为1A B 的中点.(1)证明:1A B ⊥平面CMD . (2)求二面角B CM E --的余弦值.【答案】(1)证明见解析;(2 【解析】(1)先证明DC ⊥平面1A CB ,可得1DC A B ⊥,再利用勾股定理计算出1A C BC =,由三线合一得1CM A B ⊥,即可证明出1A B ⊥平面CMD ;(2)以C 为原点建立空间直角坐标系,写出点的坐标,得平面CMB 的法向量为()11,0,0n =,求出平面CME 的法向量,再利用向量的夹角公式计算余弦值. 【详解】(1)证明:由DC BC ⊥,1A C DC ⊥,且1AC BC C =, 可得DC ⊥平面1A CB ,又1A B ⊂平面1A CB ,因此1DC A B ⊥.由30BAC ∠=︒,BC =33AC DC ===,因此1DC =,12AD A D ==,由勾股定理可得1AC BC =. 又因为点M 为1A B 的中点,所以1CM A B ⊥, 而CD CM C ⋂=,故1A B ⊥平面CMD .(2)解:因为DE CD ⊥,1DE A D ⊥,所以DE ⊥平面1A CD ,又//BC DE ,所以BC ⊥平面1A CD .如图,以C 为原点,建立空间直角坐标系C xyz -,则M ⎛⎝⎭,E ⎛⎫ ⎪ ⎪⎝⎭,()B ,则0,,22CM ⎛⎫= ⎪ ⎪⎝⎭,1,3CE ⎛⎫= ⎪ ⎪⎝⎭.易知()11,0,0n =是平面CMB 的一个法向量.设平面CME 的法向量为()2,,n x y z =,则2200n CM n CE ⎧⋅=⎪⎨⋅=⎪⎩,即00y x y =⎨⎪=⎪⎩,令y =(2n =-.12cos ,n n ==易知二面角B CM E --为锐角,故二面角B CM E --【点睛】本题考查了立体几何中的线面垂直的判定和二面角的求解问题,意在考查学生的空间想象能力和逻辑推理能力;解答本题关键在于能利用直线与直线、直线与平面、平面与平面关系的相互转化,通过严密推理进行证明,同时对于立体几何中角的计算问题,往往可以利用空间向量法,通过求解平面的法向量,利用向量的夹角公式求解.变式1-2.如图,在等腰梯形ABCD 中,//AB CD ,1AB =,3CD =,45ADC∠=︒,AE 为梯形ABCD 的高,将ADE 沿AE 折到PAE △的位置,使得PB(1)求证:PE ⊥平面ABCE ;(2)求平面PBC 与平面P AE 所成二面角的余弦值. 【答案】(1)证明见解析;(2【解析】 【分析】(1)连接BE ,易知PE AE ⊥,BE 1PE =,由勾股定理证得PE BE ⊥,再由线面垂直的判定定理,得证;(2)以E 为原点建立空间直角坐标系,求得平面PBC 的法向量n ,由线面垂直的判定定理可证得EC ⊥平面PAE ,故平面PAE 的一个法向量为EC ,再由cos EC <,||||EC n n EC n ⋅>=⋅,即可得解.【详解】(1)证明:折叠前DE AE ⊥,折叠后PE AE ⊥,折叠前由已知得1DE AE AB ===,在AEB △中,BEBE =1PE =,因为PB PEB △为直角三角形,即PE BE ⊥,, 因为AE BE E =,AE ⊂平面ABCE ,BE ⊂平面ABCE , 所以PE ⊥平面ABCE .(2)由(1)知PE EC ⊥,又EA EC ⊥所以以E 为原点,建立如图所示的空间直角坐标系,()0,0,0E ,()0,2,0C , 所以平面P AE 的法向量为()0,2,0CE =-,又()0,0,1P ,()1,1,0B -,()1,1,1PB =--,()0,2,1PC =- 设平面PBC 的一个法向量为(),,n x y z =则0PBn PCn ⎧⋅=⎪⎨⋅=⎪⎩可求得平面PBC 的一个法向量为()1,1,2n =-计算得cos ,n CE <>==所以平面PBC 与平面P AE变式1-3.已知边长为2的等边ABC (图1),点D 和点E 分别是边AC 、AB 上的中点,将ADE 沿直线DE 折到ADE 的位置,使得平面A DE '⊥平面BCDE (图2),此时点O 和点P 分别是边DE 、BE 上的中点.(1)证明:CD ⊥平面A OP ';(2)求平面ACD '与平面BCDE 所成锐二面角的余弦值.【答案】(1)证明见解析;(2【解析】【分析】(1)先证明DC OP ⊥,再由平面A DE '⊥平面BCDE 证明AOCD '⊥,利用线面垂直的判定定理即可证明CD ⊥平面A OP ';(2)以O 为坐标原点,分别以OH ,OD ,OA '所在直线为x ,y ,z 轴建立空间直角坐标系,利用向量法求出平面ACD '与平面BCDE 所成锐二面角的余弦值.【详解】(1)连接BD∴点O 和点P 分别是边DE 、BE 上的中点. ∴//BD OP∴等边ABC 中,点D 是边AC 的中点 ∴DC BD ⊥∴DC OP ⊥∴等边ADE 中,点O 是边DE 的中点 ∴A O DE '⊥又∴AO '⊂平面A DE∴平面A DE '⊥平面BCDE 且平面A DE '平面BCDE DE =∴AO '⊥平面BCDE ∴AOCD '⊥ ∴A O OP O '⋂=∴CD ⊥平面A OP '(2)设BC 的中点H ,由图1得OH BC ⊥以O 为坐标原点,分别以OH ,OD ,OA '所在直线为x ,y ,z 轴建立空间直角坐标系,则A ⎛' ⎝⎭,10,,02D ⎛⎫⎪⎝⎭,C ⎫⎪⎪⎝⎭,所以10,2DA ⎛'=- ⎝⎭,31,02DC ⎛⎫= ⎪ ⎪⎝⎭设平面ACD '的法向量为(),,n x y z =.由10231022n DA y z n DC x y ⎧⋅=-+=⎪⎪⎨⎪⋅=+=⎪'⎩,取y =()1,3,1n =-; 因为平面BCDE 的法向量为()0,0,1m =设平面ACD '与平面BCDE 所成锐二面角为θcos 51m n m nθ⋅===+ 所以,平面ACD '与平面BCDE .【点睛】立体几何解答题的基本结构:(1)第一问一般是几何关系的证明,用判定定理;(2)第二问是计算,求角或求距离(求体积通常需要先求距离),通常可以建立空间直角坐标系,利用向量法计算.典例2.如图1,在高为6的等腰梯形ABCD 中,AB ∴CD ,且CD =6,AB =12,将它沿对称轴OO 1折起,使平面ADO 1O ∴平面BCO 1O ,如图2,点P 为BC 的中点,点E 在线段AB 上(不同于A ,B 两点),连接OE 并延长至点Q ,使AQ ∴OB .(1)证明:OD ∴平面P AQ ;(2)若BE =2AE ,求二面角C ­BQ ­A 的余弦值.【答案】(1)证明见解析;(2【解析】(1)由OA,OB,OO1两两垂直建立空间直角坐标系,由向量坐标运算得到OD∴AQ,OD∴PQ证得OD∴平面P AQ;(2)由空间直角坐标系求得平面CBQ的法向量和平面ABQ的法向量,根据数量积的夹角公式可得答案.【详解】(1)证明:由题设知OA,OB,OO1两两垂直,∴以O为坐标原点,OA,OB,OO1所在直线分别为x轴,y轴,z轴建立如图所示的空间直角坐标系,设AQ的长为m,则O(0,0,0),A(6,0,0),B(0,6,0),C(0,3,6),D(3,0,6),Q(6,m,0).∴点P为BC的中点,∴P9 (0,,3)2,∴OD=(3,0,6),AQ=(0,m,0),PQ=9 (6,,3)2m--.∴OD·AQ=0,OD·PQ=0,∴OD∴AQ,OD∴PQ,即OD∴AQ,OD∴PQ,又AQ∩PQ=Q,∴OD∴平面P AQ.(2)∴BE=2AE,AQ∴OB,∴AQ=12OB=3,则Q(6,3,0),∴OB=(-6,3,0),BC=(0,-3,6).设平面CBQ 的法向量为1n =(x ,y ,z ),由11.0,.0,n QB n BC ⎧=⎪⎨=⎪⎩得630,360,x y y z -+=⎧⎨-+=⎩令z =1,则y =2,x =1,1n =(1,2,1). 易得平面ABQ 的一个法向量为2n =(0,0,1). 设二面角C ­BQ ­A 的大小为θ,由图可知,θ为锐角, 则cos θ=212||||I n n n n ⋅⋅=即二面角C ­BQ ­A 【点睛】本题考查了立体几何,建立空间直角坐标系是解题的关键,线面垂直可以通过直线的方向向量进行相应的计算,二面角的平面角可以通过法向量之间进行相应的计算,就能够得到问题的解决. 变式2-1.如图1,四边形ABCD 是正方形,四边形11ADE F 和22BCE F 是菱形,2AB =,1260DAF CBF ∠=∠=︒.分别沿AD ,BC 将四边形11ADE F 和22BCE F 折起,使1E 、2E 重合于E ,1F 、2F 重合于F ,得到如图2所示的几何体.在图2中,M 、N 分别是CD 、EF 的中点.(1)证明:MN ⊥平面ABCD ;(2)求平面DCN 与平面ABF所成锐二面角的余弦值. 【答案】(1)证明见解析;(2. 【解析】 【分析】(1)先利用菱形与等边三角形的垂直关系得EF ⊥平面DNC ,再根据//EF AD 得AD ⊥平面DNC ,再得AD MN ⊥,又根据M 是DC 的中点得MN DC ⊥,故MN ⊥平面ABCD ;(2)根据题意,以M 为原点,MG ,MC ,MN 所在的直线分别为x ,y ,z 轴,建立空间直角坐标系M xyz -,利用法向量求解即可. 【详解】(1)连接DF ,由图1知,四边形ADEF 为菱形,且60DEF ∠=︒, 所以DEF 为等边三角形,从而EF DN ⊥. 同理EF CN ⊥,又DN CN N =,∴EF ⊥平面DNC .∴//EF AD ,∴AD ⊥平面DNC ,又∴MN ⊂平面DNC ,∴AD MN ⊥. ∴ND NC =,M 是DC 的中点,∴MN DC ⊥.又AD ⊂平面ABCD ,DC ⊂平面ABCD ,AD DC D =,∴MN ⊥平面ABCD . (2)取AB 的中点G ,连接MG ,∴四边形ABCD 是正方形,MG DC ⊥.如图,以M 为原点,MG ,MC ,MN 所在的直线分别为x ,y ,z 轴,建立空间直角坐标系M xyz -, 则M ()0,0,0M ,()2,1,0A -,()2,1,0B ,()2,0,0G,(F , ∴()0,2,0AB =,(AF =-,()2,0,0MG =.设平面ABF 的法向量为(),,n x y z =,由00n AB n AF ⎧⋅=⎪⎨⋅=⎪⎩得200y x y =⎧⎪⎨-+=⎪⎩,取()2,0,1n =,∴MG ⊥平面DNC ,∴取平面DNC 的法向量()2,0,0MG =,∴22cos ,23MG n MG n MG n⋅===⋅ 设平面DCN 与平面ABF 所成锐二面角的平面角为θ,∴cos θ=,故平面DCN 与平面ABF 【点睛】本题考查线面垂直的证明,利用向量方法求解二面角问题,考查数学运算能力,是中档题.变式2-2.如图,已知四边形ABDE AD 与BE 相交于点O ,BCD △为等边三角形.现将EAD 沿AD 折起到E AD '的位置,将CBD 沿BD 折起到C BD '的位置,使得折后E D '⊥平面C BO '.(1)求证:OB ⊥平面'AE D ; (2)求二面角A OC B -'-的大小.【答案】(1)见解析;(2)3π.【解析】 【分析】(1)推导出E D OB '⊥,OB AD ⊥,由此能证明OB ⊥平面AE D '.(2)以O 为原点,OA ,OB ,OE '为x ,y ,z 轴,建立空间直角坐标系,利用向量法能求出二面角A OC B -'-的大小. 【详解】(1)证明:E D '⊥平面C BO ',OB ⊂平面C BO ',∴E D OB '⊥, ∴在正方形ABDE 中,O 为AD 与BE 的交点,OB AD ∴⊥E D AD D '⋂=,OB ∴⊥平面AE D '.(2)解:AE E D '=',O 为AD 中点,E O AD ∴'⊥以O 为原点,OA ,OB ,OE '为x ,y ,z 轴,建立空间直角坐标系A ,B ,(D ,E ',E D '⊥平面C BO ',∴平面C BO '的一个法向量为(3,0,n E D ='=E D '⊥平面C BO ',∴E D OC '⊥'设(,,)C x y z ',则(,)DC x y z '=+,(,)BC x y z '=1E D OC '⊥,||||6DC BC '='=,066=∴,解得x y z ⎧=⎪⎪=⎨⎪=⎪⎩或x y z ⎧=⎪⎪⎪⎪=⎨⎪⎪=⎪⎪⎩(舍).(C ∴' 设平面AOC '的法向量(,,)n x y z =则OA 3x 0OC 3x 0n n '⎧⋅==⎪⎨⋅=-=⎪⎩,取1y =,得(0,1,1)n =- 设二面角A OC B -'-为θ,则|||31cos ||||22n m n m θ⋅-===⋅⋅由图知3πθ=,∴ 二面角A OC B -'-的大小为3π.【点睛】本题考查了线面垂直的判定,考查了二面角的求法.在证明线面垂直时,关键是在平面内找到两条直线与已知直线垂直,常运用勾股定理、矩形的临边、正方形的对角线、等腰三角形三线合一、线面垂直的性质等来证明线线垂直.求二面角的大小时,建立空间直角坐标系,求出两个平面的法向量,进而可求.变式2-3.如图1,在矩形ABCD 中,AB =BC =点E 、P 分别在线段DC 、BC 上,且DE =152DP =,现将AED ∆沿AE 折到'AED ∆的位置,连结'CD ,'BD ,如图2(1)证明:'AE D P ⊥;(2)记平面'AD E 与平面'BCD 的交线为l .若二面角'B AE D --为23π,求l 与平面'D CE 所成角的正弦值.【答案】(1)证明见解析 (2 【解析】(1)建立坐标系证明AE DP ⊥,再由线面垂直的判定定理以及线面垂直的性质证明'AE D P ⊥; (2)根据公理3得到平面'AD E 与平面'BCD 的交线,再根据二面角定义得到二面角'B AE D --的平面角,建立空间直角坐标系,利用向量法求l 与平面'D CE 所成角的正弦值. 【详解】解:(1)证明:如图1,线段,DP AE 交于点O在Rt PCD ∆中,由DC AB ==152DP =,PC =以点A 为坐标原点,建立直角坐标系,则(5,2AE =,PD ⎛=- ⎝⎭即30AE PD ⋅=-= AE DP ∴⊥,从而有AE OD ⊥,AE OP ⊥,即在图2中有AE OD '⊥,AE OP ⊥,OD OP O '⋂=,,OD OP '⊂平面POD 'AE ∴⊥平面POD 'D P '⊂平面POD ',AE D P '∴⊥;(2)延长AE ,BC 交于点Q ,连接'D Q根据公理3得到直线'D Q 即为l ,再根据二面角定义得到23D OP π'∠=. 在平面'POD 内过点O 作底面垂线,O 为原点,分别以OA 、OP 、及所作为x 轴、y 轴、z 轴建立空间直角坐标则(0,D '-,(1,0,0)E -,(11,0,0)Q -,(3,4,0)C -,(11,1,D Q '=-,(2,4,0)EC =-,(1,ED '=-,设平面'D EC 的一个法向量为(,,)n x y z =,由2400n EC x y n ED x y ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩', 取1y =,得2,1,n ⎛= ⎝⎭. l ∴与平面D CE '所成角的正弦值为15cos ,5n D Q n D Q n D Q'⋅'=='⋅【点睛】本题主要考查了由线面垂直证线线垂直以及利用向量法证明线面角,属于较难题.巩固练习练习一 翻折问题1.如图1,在平面五边形ABCDE 中,AD ∥,24,BC AD BC AB ===90ABC ∠=,ADE 是等边三角形.现将ADE 沿AD 折起,记折后的点E 为E ',连接,E B E C ''得到四棱锥E ABCD '-,如图2.(1)证明:BC CE ⊥';(2)若平面E CD '⊥平面ABCD ,求二面角'A DE B --的余弦值. 【答案】(1)证明见解析【解析】 【分析】(1)构建CE '所在的面,通过线面垂直证明线线垂直(2)建立坐标系,通过法向量夹角的余弦值求解二面角的余弦值 (1)如上图所示,设M 为AD 中点,连接,E M CM ',因为ADE 是等边三角形,所以AD E M ⊥',因为AD∥,BC 所以BC E M ⊥',因为2AD BC =所以AM BC =且//AM BC ,所以//AB CM ,因为90,ABC =∠所以CM BC ⊥ 又,CME M M '=CM 、EM ⊂平面E MC ', BC ∴⊥平面E MC ',又因为'CE ⊂平面E MC ',所以'BC CE ⊥(2)如下图所示,过A 作AH DC ⊥于点H ,由平面E CD '⊥平面ABCD ,平面E CD '平面ABCD CD =,AH ∴⊥平面,E CD '又因为'CE ⊂平面E MC ',所以AH E C ⊥' 又'BC C E ⊥,,AH BC 相交,AH 、BC ⊂平面ABCDCE ∴'⊥平面,ABCD CE '以C 为原点建立如图所示的坐标系()()()(,,2,0,0,D A B E '-()(',BD BE =-=-,()('4,0,0,2,AD AE =-=-设平面'BDE 的法向量(),,n x y z =满足(0403,26,020n BD x n n BE x ⎧⎧⋅=-=⎪⎪⇒⇒=⎨⎨⋅=-=⎪'⎪⎩⎩ 设平面'ADE 的法向量(),,m x y z =满足()4000,1,1200x m AD m x m AE ⎧-=⎧⋅=⎪⎪⇒⇒=⎨⎨-+=⎪=⎩⎪⎩'⋅313cos ,13n m m n n m ⋅==⋅.所以二面角'A DE B --2.如图所示,在边长为12的正方形11AA A A ''中,点B ,C 在线段AA '上,且3AB =,4BC =,作11BB AA ∥,分别交11A A '、1AA '于点1B 、P ,作11CC AA ∥,分别交11A A '、1AA '于点1C 、Q ,将该正方形沿BB 1、CC 1折叠,使得1A A ''与1AA 重合,构成如图2所示的三棱柱111ABC A B C -.(1)试判断直线AQ 是否与平面11AC P 平行,并说明理由; (2)求平面APQ 与平面ABC 所成二面角的余弦值. 【答案】(1)直线AQ 是否与平面11AC P 不平行,理由见解析【解析】 【分析】(1)建立空间直角坐标系,求出平面11AC P 的法向量,看向量AQ 是否与平面11AC P 的法向量垂直,从而得到答案;(2)求出平面APQ 与平面ABC 的法向量,从而求出平面APQ 与平面ABC 所成二面角的余弦值. (1)直线AQ 是否与平面11AC P 不平行,理由如下:如图,以B 为原点,BA 为x 轴,BC 为y 轴,1BB 为z 轴,建立空间直角坐标系,则()0,0,0B ,()3,0,0A ,()0,4,0C ,()13,0,12A ,()10,4,12C ,()0,0,3P ,()0,4,7Q ,所以()3,4,7AQ =-,设平面11AC P 的法向量为(),,n x y z =,则11039093,,149040n PA x z n y z n PC ⎧⋅=+=⎧⎪⎛⎫⇒⇒=-⎨⎨ ⎪+=⎝⎭⋅=⎩⎪⎩,因为0AQ n ⋅≠,所以直线AQ 与平面11AC P 不平行;(2)设平面APQ 的法向量()1111,,x n y z =则()11103301,1,14400n PA x z n y z n PQ ⎧⋅=-=⎧⎪⇒⇒=-⎨⎨+=⋅=⎩⎪⎩ 所以,面APQ 的法向量为()11,1,1=-n ,由题意得:面ABC 的法向量为()20,0,1n =,所以1212121cos ,3n n n n n n ⋅===,设平面APQ 与平面ABC 所成二面角为α,显然α为锐角,故123cos cos ,3n n α== 所以平面APQ 与平面ABC 3.如图,四边形ABCD 是一个边长为2的菱形,且π3B ∠=,现沿着AC 将ABC 折到EAC 的位置,使得平面EAC ⊥平面ACD ,M ,N 是线段EC ,ED 上的两个动点(不含端点),且EM ENEC EDλ==.(1)证明://MN 平面EAB ;(2)求直线EC 与平面EAD 所成的角的正弦值;(3)设平面AMN 与平面EAD 所成锐二面角为θ,当cos θ=λ的值. 【答案】(1)证明见解析(3)13【解析】 【分析】(1)根据已知条件可得//MN CD 、//AB CD ,进而可得//MN AB ,再由线面平行的判定定理即可求证;(2)取AC 的中点O ,连接,EO BO ,证明,,OB OC OE 两两垂直,如图建立空间直角坐标系,求出平面EAD 的一个法向量n 以及EC 的坐标,由空间向量夹角公式即可求解;(3)由(2)知平面EAD 的法向量n ,根据AM AE EC λ=+,AN AE ED λ=+求出AM 和AN 的坐标,再求出平面AMN 的一个法向量m ,根据空间向量夹角公式计算cos cos 105,m n θ==解方程即可得λ的值. (1) 因为EM ENEC EDλ==,所以//MN CD , 因为四边形ABCD 是一个边长为2的菱形,所以//AB CD , 所以//MN AB ,因为MN ⊄平面EAB ,AB 平面EAB ,所以//MN 平面EAB . (2)因为2EA EC ==,取AC 的中点O ,连接,EO BO ,则EO AC ⊥,BO AC ⊥, 因为平面EAC ⊥平面ACD ,平面EAC 平面ACD AC =,OE ⊂面EAC , 所以EO ⊥面ABCD ,可得,,OB OC OE 两两垂直,如图:以O 为原点,分别以,,OB OC OE 所在的直线为,,x y z 轴建立空间直角坐标系,则(E ,()0,1,0C ,()0,1,0A -,()D ,所以(0,1,EC =,(AE =,()AD =-, 设平面EAD 的一个法向量(),,n x y z =,则3030AE n y z AD n x y⎧⋅=+=⎪⎨⋅=-+=⎪⎩,令1x =,可得y =1z =-,所以()1,3,1n =-, 设直线EC 与平面EAD 所成的角为α,则2sin cos ,52EC n EC nEC nα⋅====⨯⋅. 所以直线EC 与平面EAD . (3)由(2)知:平面EAD的法向量为()1,3,1n =-, 因为EM ENEC EDλ==,所以()0,,EM EC λλ==,(),0,EN ED λ==-,()0,1AM AE EM λ=+=+,()AN AE EN =+=,设平面AMN 的一个法向量()000,,=m x y z ,则()))000001030AM my z AN m x y z λλ⎧⋅=++=⎪⎨⋅=-++=⎪⎩,令0y 011z λλ+=-,01x =-,所以11m λλ+⎛⎫=- ⎪-⎝⎭, 所以cos cos ,55m n m n m nθ⋅====⋅⨯,整理可得:29610λλ-+=,解得:13λ=.4.如图,正方形11ABB A 的边长为2,11,AB A B 的中点分别为1,C C ,正方形11ABB A 沿着1CC 折起形成三棱柱111ABC A B C -,三棱柱111ABC A B C -中,AC BC ⊥,1AD AA λ→→=.(1)证明:当12λ=时,求证:1DC ⊥平面BCD ;(2)若二面角1D BC C --λ的值. 【答案】(1)证明见解析 (2)14λ= 【解析】 【分析】(1)由题知点D 是1AA 的中点,进而根据几何关系得1DC DC ⊥,再根据已知条件证明BC ⊥平面11ACC A 得1BC DC ⊥,最后结合判定定理证明即可;(2)根据题意,点C 为原点,以CA →,CB →,1CC →作为x ,z ,z 轴的正方向建立空间直角坐标系,利用坐标法求解即可. (1)证明:当12λ=时,点D 是1AA 的中点,因为1111AC AD A D AC ====,所以1DC DC ==又12CC =,所以22211DC DC CC +=,所以1DC DC ⊥,因为BC AC ⊥,1BC CC ⊥,1AC CC C =, 所以BC ⊥平面11ACC A ,1DC ⊂平面11ACC A , 所以1BC DC ⊥,且DC BC C =,所以1DC ⊥平面BCD ; (2)解:因为1CC ,CA ,CB 两两互相垂直,所以以点C 为原点,以CA →,CB →,1CC →作为x ,z ,z 轴的正方向,建立空间直角坐标系,如下图,CA ⊥平面1BCC ,所以向量()1,0,0CA →=是平面1BCC 的法向量,设AD h =()0,1,0B ,()10,0,2C =,()1,0,D h ,()10,1,2BC →=-,()1,1,BD h →=-,设平面1DBC 的法向量(),,n x y z →=,所以100BC n BD n ⎧⋅=⎪⎨⋅=⎪⎩,即020x y hz y z -+=⎧⎨-+=⎩,令1z =,2x h =-,2y =,所以平面1DBC 的一个法向量()2,2,1n h →=-,cos ,CA nCA n CA n→→→→→→⋅==12h = 所以114AD AA →→=,即14λ=,此时二面角1D BC C--5.如图甲所示,在矩形ABCD 中,4AB =,2BC =,E 为DC 的中点,沿AE 将AED 翻折,使D 折至D 处,且二面角D AE B '--为直二面角(如图乙).(1)求证:AD BE '⊥;(2)求平面D EC '与平面ECB 所成角的正切值. 【答案】(1)答案见解析;(2 【解析】 【分析】(1)建立空间直角坐标系,求出各点的坐标,进而得到(1,1,2),(2,2,0)AD BE '=-=--,计算出数量积为0,由此即可得证; (2)求得OD '=是平面EBC 的一个法向量,求出平面CD E '的一个法向量,再利用向量的夹角公式求得所求二面角的余弦值,进而求得正切值. 【详解】(1)证明:由题意4AB =,2BC =,E 为DC 的中点,AD E '∴为等腰三角形,取AE 的中点O ,则D O AE '⊥,又因为二面角D AE B '--为直二面角,平面D AE '平面EABC AE =,所以D O '⊥平面EABC ,以O 为原点,过O 分别作,AB BC 的平行线作为,y x 轴,OD '为z 轴建立如图坐标系:则(0,0,0),(1,1,0),(1,3,0),(1,3,0),(1,1,0),O A B C E D '---,∴(1,1,2),(2,2,0)AD BE '=-=--, ∴0AD BE '⋅=,ADBE '∴⊥;(2)(0,2,0),(1,EC ED '==-,OD '=是平面EBC 的一个法向量,设平面CD E '的一个法向量为(,,)n x y z =,则·20·0n EC y n ED x y ⎧==⎪⎨=-'+=⎪⎩,则可取(2,0,1)n =-,∴3cos ,3||||OD n OD n OD n '⋅'<>==',∴tan ,2OD n '<>=,即平面CD E '与平面ECB6.如图1,Rt ABC 中,90B ∠=︒,AB =2BC =,D ,E分别是AB ,AC 的中点.把ADE 沿DE 折至PDE △的位置,P ∉平面BCED ,连接PB ,PC ,F 为线段PB 的中点,如图2.(1)求证:DF ⊥平面PBC ;(2)当三棱锥P BDE -的体积为12时,求直线BD 与PC 所成角的正切值.【答案】(1)见解析;(2【解析】 【分析】(1)根据已知容易得出DF PB ⊥,再由DE ⊥平面PBD ,DE BC ∕∕可得BC DF ⊥,从而可证DF ⊥平面PBC ;(2)根据三棱锥P BDE -的体积为12及BDE 的面积可得PD ⊥平面BDE ,以点D 为坐标原点建立空间直角坐标系,利用向量法即可求得直线BD 与PC 所成角的正切值. 【详解】(1)证明:因为D 是AB 的中点, 所以AD BD =,即PD BD =,又因F 为线段PB 的中点,所以DF PB ⊥, 因为D ,E 分别是AB ,AC 的中点, 所以DE BC ∕∕,因为90B ∠=︒,所以DE AB ⊥, 即DE PD ⊥,DE BD ⊥, 因为PD BD D ⋂=, 所以DE ⊥平面PBD ,所以BC ⊥平面PBD , 因为DF ⊂平面PBD , 所以BC DF ⊥, 又因BC PB B =, 所以DF ⊥平面PBC ;(2)解:因为AB =2BC =,D ,E 分别是AB ,AC 的中点,所以BD PD ==1DE =, 由(1)得BDE 为直角三角形,故BDES=, 设三棱锥P BDE -的高为h ,则1132P BDE BDEV Sh -=⋅==,所以h PD ,所以线段PD 即为三棱锥P BDE -的高, 所以PD ⊥平面BDE ,则,PD BD PD DE ⊥⊥, 如图,以点D 为坐标原点建立空间直角坐标系,则()0,0,0D ,)B ,(P ,)C ,故()3,0,0DB =,(3,2,PC =,所以cos ,103DB PC DB PC DB PC⋅===, 又因直线BD 与PC 所成角的范围为0,2π⎛⎤⎥⎝⎦,所以直线BD 与PC所以直线BD 与PC7.如图是矩形ABCD 和边AB 为直径的半圆组成的平面图形,将此图形沿AB 折叠,使平面ABCD 垂直于半圆所在的平面,若点E 是折后图形中半圆O 上异于,A B 的点.(1)证明:EA EC ⊥;(2)若22AB AD ==,且异面直线AE 和DC 所成的角为6π,求平面DCE 与平面AEB 所成的锐二面角的余弦值.【答案】(1)证明见解析;(2. 【解析】 【分析】(1)由面面垂直的性质得BC ⊥圆O ,由线面垂直的性质得BC EA ⊥,根据线面垂直的判定可得EA ⊥面EBC ,再由线面垂直的性质可证EA EC ⊥.(2)法一:以点O为坐标原点,建立如图所示的空间直角坐标系,首先求得1,0)2E ,再分别求平面DCE 和平面AEB 的法向量,利用法向量求二面角的余弦值;法二:首先作出两个平面的交线,再作出二面角的平面角,再求二面角的余弦值. 【详解】(1)∴平面ABCD 垂直于圆O 所在的平面,两平面的交线为AB ,BC ⊂平面ABCD ,BC AB ⊥,∴BC 垂直于圆O 所在的平面.又EA 在圆O 所在的平面内,∴BC EA ⊥. ∴AEB ∠是直角,∴BE EA ⊥.而BE BC B =,∴EA ⊥平面EBC . 又∴EC ⊂平面EBC ,∴EA EC ⊥. (2)法1(向量法):如图,以点O 为坐标原点,AB 所在的直线为y 轴,过点O 与BC 平行的直线为z 轴,建立空间直角坐标系O xyz -.由异面直线AE 和DC 所成的角为6π,//AB DC 知6BAE π∠=,∴3BOE π∠=,∴1,0)2E . 由题设可知(0,1,1)C ,(0,1,1)D -,∴33(,1)22DE =-,31(,1)2CE =--. 设平面DCE 的一个法向量为000(,,)p x y z =,由0DE p ⋅=,0CE p ⋅=000000302102y z y z +-=--= 得00z x =,00y =,取02x =,得0=z∴p =.又平面AEB 的一个法向量为(0,0,1)q =, ∴21cos ,7p q p q p q ⋅<>==. 故平面DCE 与平面AEB法2(几何法):如图,过点E 作直线//m DC , 则m 是平面DCE 与平面AEB 的交线. 再过点B 作BP m ⊥,P 为垂足,连接CP ,则BPC ∠是平面DCE 与平面AEB 所成锐二面角的平面角.在直角三角形AEB 中,6BAE π∠=,2AB =,所以 1.BE =在直角三角形PEB 中,,13BEP BE π∠==,所以BP =.在直角三角形PBC 中,BP PC BPC PC ==∠=.故平面DCE 与平面AEB . 8.如图1是由正方形11ACC A 和长方形11BCC B 组成的平面图形,且24AC BC ==,D 、E 分别是11A C 、BC 的中点.将其沿1CC 折起,使得二面角1A CC B --的平面角大小为60,如图2.(1)判断直线1C E 与平面ABD 的位置关系,并证明你的结论; (2)求直线BC 与平面ABD 所成角的正弦值.【答案】(1)1//C E 平面ABD ,证明见解析;(2 【解析】 【分析】(1)取AB 的中点N ,连接EN 、DN ,证明出四边形1ENDC 为平行四边形,可得出1//C E DN ,利用线面平行的判定定理可得出结论;(2)以点B 为坐标原点,BC 为x 轴,BA 为y 轴,1BB 为z 轴建立空间直角坐标系,利用空间向量法可求得直线BC 与平面ABD 所成角的正弦值.【详解】(1)1//C E 平面ABD ,理由如下:取AB 的中点N ,连接EN 、DN ,因为四边形11ACC A 为正方形,则11//AC A C 且11AC A C =, D 为11A C 的中点,所以,1//DC AC 且112DC AC =, N 、E 分别为AB 、BC 的中点,则//NE AC 且12NE AC =, 所以,1NE DC =且1//NE DC ,故四边形1ENDC 为平行四边形,从而1//C E DN .而DN ⊂平面ABD ,1C E 平面ABD ,所以1//C E 平面ABD ;(2)1CC AC ⊥,1CC BC ⊥,所以,二面角1A CC B --的平面角为ACB ∠,所以60ACB ∠=.而4AC =,2CB =,由余弦定理可得2222cos 12AB AC BC AC BC ACB =+-⋅∠=,由勾股定理可得222AB BC AC +=,从而AB BC ⊥.在图2中,1CC AC ⊥,1CC BC ⊥,AC BC C =,1CC ∴⊥平面ABC ,11//CC BB ,1BB ∴⊥平面ABC ,以点B 为原点,BC 为x 轴,BA 为y 轴,1BB 为z 轴建立如图所示的空间直角坐标系.则()0,0,0B、()0,A、()4D 、()2,0,0C .从而()BA =,()1,BD =,()2,0,0BC =. 设平面ABD 的法向量为(),,n x y z =,由00n BA n BD ⎧⋅=⎪⎨⋅=⎪⎩,得040x z ⎧=⎪⎨+=⎪⎩, 取4x =,则()4,0,1n =-,所以,cos ,17n BCn BC n BC ⋅===⋅ 所以直线BC 与平面ABD 【点睛】方法点睛:计算线面角,一般有如下几种方法:(1)利用面面垂直的性质定理,得到线面垂直,进而确定线面角的垂足,明确斜线在平面内的射影,即可确定线面角;(2)在构成线面角的直角三角形中,可利用等体积法求解垂线段的长度h ,从而不必作出线面角,则线面角θ满足sin h lθ=(l 为斜线段长),进而可求得线面角;(3)建立空间直角坐标系,利用向量法求解,设a 为直线l 的方向向量,n 为平面的法向量,则线面角θ的正弦值为sin cos ,a n θ=<>.。

立体几何中的翻折、轨迹及最值(范围)问题--备战2022年高考数学配套word试题(创新设计版)

立体几何中的翻折、轨迹及最值(范围)问题)1.翻折问题是立体几何的一类典型问题,是考查实践能力与创新能力的好素材.解答翻折问题的关键在于画好折叠前后的平面图形与立体图形,并弄清折叠前后哪些发生了变化,哪些没有发生变化.解题时我们要依据这些变化的与未变化的量来分析和解决问题.而表面展开问题是折叠问题的逆向思维、过程,一般地,涉及多面体表面的距离问题不妨将它展开成平面图形试一试.2.在立体几何中,某些点、线、面按照一定的规则运动,构成各式各样的轨迹,探求空间轨迹与探求平面轨迹类似,应注意几何条件,善于基本轨迹转化.对于较为复杂的轨迹,常常要分段考虑,注意特定情况下的动点的位置,然后对任意情形加以分析判定,也可转化为平面问题.对每一道轨迹命题必须特别注意轨迹的纯粹性与完备性.3.立体几何中的体积最值问题一般是指有关距离的最值、角的最值或面积、体积的最值.其一般方法有:(1)几何法:通过证明或几何作图,确定图形中取得最值的特殊位置,再计算它的值;(2)代数方法:分析给定图形中的数量关系,选取适当的自变量及目标函数,确定函数解析式,利用函数的单调性、有界性,以及不等式的均值定理等求出最值.题型一立体几何中的翻折问题【例1】(2019·全国Ⅲ卷)图①是由矩形ADEB,Rt△ABC和菱形BFGC组成的一个平面图形,其中AB=1,BE=BF=2,∠FBC=60°.将其沿AB,BC折起使得BE与BF重合,连接DG,如图②.(1)证明:图②中的A,C,G,D四点共面,且平面ABC⊥平面BCGE;(2)求图②中的二面角B-CG-A的大小.(1)证明由已知得AD∥BE,CG∥BE,所以AD∥CG,所以AD ,CG 确定一个平面,从而A ,C ,G ,D 四点共面.由已知得AB ⊥BE ,AB ⊥BC ,且BE ∩BC =B ,BE ,BC ⊂平面BCGE , 所以AB ⊥平面BCGE .又因为AB ⊂平面ABC ,所以平面ABC ⊥平面BCGE .(2)解 作EH ⊥BC ,垂足为H .因为EH ⊂平面BCGE ,平面BCGE ⊥平面ABC ,平面BCGE ∩平面ABC =BC , 所以EH ⊥平面ABC .由已知,菱形BCGE 的边长为2,∠EBC =60°,可求得BH =1,EH = 3. 以H 为坐标原点,HC →的方向为x 轴的正方向,建立如图所示的空间直角坐标系H-xyz ,则A (-1,1,0),C (1,0,0),G (2,0,3),CG→=(1,0,3),AC →=(2,-1,0).设平面ACGD 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧CG →·n =0,AC →·n =0,即⎩⎨⎧x +3z =0,2x -y =0. 所以可取n =(3,6,-3).又平面BCGE 的法向量可取m =(0,1,0),所以cos 〈n ,m 〉=n ·m |n ||m |=32.因此二面角B -CG -A 的大小为30°.【训练1】 (2021·浙江名师预测卷四)在梯形ABCD 中,对角线AC 与BD 交于点O ,AD =2AB =2BC =2CD .将△BCD 沿BD 翻折至△BPD ,且满足平面ABP ⊥平面BPD .(1)求证:二面角P -BD -A 是直二面角;(2)(一题多解)求直线PD 与平面P AO 所成角的正弦值的大小.(1)证明由已知条件易得∠BAD=60°,∠BDA=30°,AB⊥BD.在△BPD中,过点D作DH⊥BP,交BP的延长线于点H.∵平面ABP⊥平面BPD,平面ABP∩平面BPD=BP,∴DH⊥平面ABP,∵AB⊂平面ABP,∴DH⊥AB.又∵BD∩DH=D,∴AB⊥平面BPD,∵AB⊂平面ABD,∴平面ABD⊥平面BPD.即二面角P-BD-A是直二面角.(2)解法一过点P作PG⊥BD,交BD于点G,则G是BD的中点.由(1)可知平面PBD⊥平面ABD,又∵平面PBD∩平面ABD=BD,∴PG⊥平面ABD.设OB=1,则OP=1,OA=2,AB=BP=3,∵AB⊥平面BPD,∴AB⊥BP,∴AP=AB2+BP2=6,由余弦定理得cos∠AOP=OA2+OP2-AP22OA·OP=-14,则sin∠AOP=15 4.设点D到△AOP的距离为h,∵V P-AOD=V D-AOP,∴13·PG·S△AOD=13·h·S△AOP,∵PG=32,S△AOD=12×2×2·sin2π3=3,S△AOP=12×1×2×154=154,∴h=215 5,∵PD =3,∴直线PD 与平面P AO 所成角θ的正弦值sin θ=h PD =255.法二 分别取BD ,AD 的中点E ,F ,连接EP ,EF ,则EF ∥AB .由(1)可知AB ⊥平面BPD ,∴EF ⊥平面BPD ,∴EF ⊥BD ,EF ⊥EP .∵PB =PD ,∴PE ⊥BD ,以点E 为坐标原点,EF→,ED →,EP →的方向为x 轴、y 轴、z 轴的正方向建立空间直角坐标系.设OB =1,可得P ⎝⎛⎭⎪⎫0,0,32,D ⎝ ⎛⎭⎪⎫0,32,0, A ⎝ ⎛⎭⎪⎫3,-32,0,O ⎝ ⎛⎭⎪⎫0,-12,0. ∴PD →=⎝ ⎛⎭⎪⎫0,32,-32,P A →=⎝⎛⎭⎪⎫3,-32,-32, AO→=(-3,1,0). 设平面P AO 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧P A →·n =0,AO →·n =0,即⎩⎨⎧3x -32y -32z =0,-3x +y =0, 令x =1,则n =(1,3,-1),∴直线PD 与平面P AO 所成角θ的正弦值为sin θ=|cos 〈n ,PD →〉|=|n ·PD →||n |·|PD →|=255. 题型二 立体几何中的轨迹问题【例2】 (1)已知在平行六面体ABCD -A 1B 1C 1D 1中,AA 1与平面A 1B 1C 1D 1垂直,且AD =AB ,E 为CC 1的中点,P 在对角面BB 1D 1D 所在平面内运动,若EP 与AC 成30°角,则点P 的轨迹为( )A .圆B .抛物线C .双曲线D .椭圆(2)已知正方体ABCD -A 1B 1C 1D 1的棱长为1,点P 是平面AC 内的动点, 若点P 到直线A 1D 1的距离等于点P 到直线CD 的距离,则动点P 的轨迹所在的曲线是()A.抛物线B.双曲线C.椭圆D.直线答案(1)A(2)B解析(1)因为在平行六面体ABCD-A1B1C1D1中,AA1与平面A1B1C1D1垂直,且AD=AB,所以该平面六面体ABCD-A1B1C1D1是一个底面为菱形的直四棱柱,所以对角面BB1D1D⊥底面ABCD,AC⊥对角面BB1D1D.取AA1的中点F,则EF∥AC,因为EP与AC成30°角,所以EP与EF成30°角.设EF与对角面BB1D1D 的交点为O,则EO⊥对角面BB1D1D,所以点P的轨迹是以EO为轴的一个圆锥的底面,故选A.(2)如图,以A为原点,AB为x轴、AD为y轴,建立平面直角坐标系.设P(x,y),作PE⊥AD于E、PF⊥A1D1于F,连接EF,易知|PF|2=|PE|2+|EF|2=x2+1,又作PN⊥CD于N,则|PN|=|y-1|.依题意|PF|=|PN|,即x2+1=|y-1|,化简得x2-y2+2y=0,故动点P的轨迹为双曲线,选B.【训练2】(1)在正方体ABCD-A1B1C1D1中,点M,N分别是线段CD,AB上的动点,点P是△A1C1D内的动点(不包括边界),记直线D1P与MN所成角为θ,若θ的最小值为π3,则点P的轨迹是()A.圆的一部分B.椭圆的一部分C.抛物线的一部分D.双曲线的一部分(2)如图,AB是平面α的斜线段,A为斜足,若点P在平面α内运动,使得△ABP 的面积为定值,则动点P的轨迹是()A.圆B.椭圆C.一条直线D.两条平行直线答案(1)B(2)B解析(1)延长D1P交底面ABCD的内部于点Q,连接QD,则∠D1QD为直线D1Q 与底面ABCD所成的角,也就是直线D1P与MN所成角θ的最小值,故∠D1QD=π3,从而∠DD1Q=π6,所以D1Q的轨迹是以D1D为轴,顶点为D1,母线D1Q与轴D1D的夹角为π6的圆锥面的一部分,则点P的轨迹就是该部分圆锥面与△A1C1D面(不包括边界)的交线,而△A1C1D面所在平面与轴D1D斜交,故点P 的轨迹是椭圆的一部分.(2)由于线段AB 是定长线段,而△ABP 的面积为定值,所以动点P 到线段AB 的距离也是定值.由此可知空间点P 在以AB 为轴的圆柱侧面上.又P 在平面内运动,所以这个问题相当于一个平面去斜切一个圆柱(AB 是平面的斜线段)得到的切痕是椭圆.P 的轨迹就是圆柱侧面与平面α的交线是椭圆.题型三 立体几何中的长度、面积、体积的最值(范围)问题【例3】 (1)如图,正三棱锥S -ABC 的底面边长为2a ,E 、F 、G 、H 分别为SA ,SB ,CB ,CA 的中点,则四边形EFGH 的面积的取值范围是( )A .(0,+∞) B.⎝ ⎛⎭⎪⎫33a 2,+∞ C.⎝ ⎛⎭⎪⎫36a 2,+∞ D.⎝ ⎛⎭⎪⎫12a 2,+∞ (2)(2021·“超级全能生”联考)在长方体ABCD -A 1B 1C 1D 1中,底面ABCD 是边长为4的正方形,侧棱AA 1=t (t >4),点E 是BC 的中点,点P 是侧面ABB 1A 1内的动点(包括四条边上的点),且满足tan ∠APD =4tan ∠EPB ,则四棱锥P -ABED 的体积的最大值是( )A.433 B .16 3 C.1633 D.6439答案 (1)B (2)C解析 (1)因为E 、F 、G 、H 分别为SA ,SB ,CB ,CA 的中点,∴EF 綉12AB ,HG綉12AB ,∴EF 綉HG ,同理,EH 綉FG ,所以EFGH 为平行四边形,又∵S -ABC 为正三棱锥,∴SC ⊥AB ,∴EF ∥AB ,FG ∥SC ,所以EF ⊥FG ,从而四边形EFGH 为矩形,其面积S =GH ·GF =12a ·SC ,当正三棱锥的高→0时,SC →正三角形ABC的外接圆的半径233a ,所以四边形EFGH 的面积→33a 2,选B.(2)作PF ⊥AB ,垂足为点F ,在长方体ABCD -A 1B 1C 1D 1中,DA ⊥平面ABB 1A 1,CB ⊥平面ABB 1A 1,在Rt △P AD 和Rt △PBC 中,所以tan ∠APD =AD AP ,tan ∠EPB=BE PB .因为tan ∠APD =4tan ∠EPB ,BE =12BC =12AD ,所以PB =2AP .因为平面ABB 1A 1⊥平面ABCD ,平面ABB 1A 1∩平面ABCD =AB ,PF ⊥AB ,所以PF ⊥平面ABCD .设PF =h ,AF =x ,则BF =4-x ,x ∈[0,4],由PB =2AP ,得h 2+(4-x )2=4(x 2+h 2),即h 2=-x 2-83x +163.因为函数y =-x 2-83x +163在[0,4]上单调递减,所以当x =0时,(h 2)max =163,即h max =433,所以四棱锥P -ABED 的体积的最大值(V P -ABED )max =13×12×(2+4)×4×433=1633,故选C.【训练3】 (1)在棱长为6的正方体ABCD -A 1B 1C 1D 1中,M 是BC 中点,点P 是平面DCC 1D 1所在的平面内的动点,且满足∠APD =∠MPC ,则三棱锥P -BCD 体积的最大值是( )A .36B .12 3C .24D .18 3(2)(2021·镇海中学模拟)已知棱长为1的正方体ABCD -A 1B 1C 1D 1,球O 与正方体的各条棱相切,P 为球O 上一点,Q 是△AB 1C 的外接圆上的一点,则线段PQ 长的取值范围是________.答案 (1)B (2)⎣⎢⎡⎦⎥⎤3-22,3+22 解析 (1)因为AD ⊥平面D 1DCC 1,则AD ⊥DP ,同理BC ⊥平面D 1DCC 1,则BC ⊥CP ,∠APD =∠MPC ,则△P AD ∽△PMC ,∵AD =2MC ,则PD =2PC ,下面研究点P 在面ABCD 的轨迹(立体几何平面化),在平面直角坐标系内设D (0,0),C (6,0),D 1(0,6),C 1(6,6),设P (x ,y ),因为PD =2PC ,所以x 2+y 2=2(x -6)2+y 2,化简得(x -8)2+y 2=16,该圆与CC 1的交点纵坐标最大,交点为(6,23),三棱锥P -BCD 的底面BCD 的面积为18,要使三棱锥P -BCD 体积最大,只需高最大,当P 在CC 1上且CP =23时棱锥的高最大,V =13·18·23=12 3.(2)因为球O 与正方体的各条棱相切,所以球心O 为正方体的中心,切点为各条棱的中点,则易得|OP |=22.△AB 1C 为边长为2的等边三角形,设其外接圆的圆心为M ,则易得|MB 1|=63.在正方体ABCD -A 1B 1C 1D 1中,易得BD 1⊥平面AB 1C ,则OM ⊥MB 1.又因为|OB |=32,|MB |=33,所以|OM |=36,则|OQ |=|OB 1|=|OM |2+|MB 1|2=32,所以|PQ |max =|OQ |+|OP |=3+22,|PQ |min =|OQ |-|OP |=3-22,即线段PQ 的取值范围为⎣⎢⎡⎦⎥⎤3-22,3+22一、选择题1.已知线段AB 垂直于定圆所在的平面,B ,C 是圆上的两点,H 是点B 在AC 上的射影,当C 运动时,点H 运动的轨迹( )A .是圆B .是椭圆C .是抛物线D .不是平面图形答案 A解析 设在定圆内过点B 的直径与圆的另一个交点为点D ,过点B 作AD 的垂线,垂足为点E ,连接EH ,CD .因为BD 为定圆的直径,所以CD ⊥BC ,又因为AB 垂直于定圆所在的平面,所以CD ⊥AB ,又因为AB ∩BC =B ,所以CD ⊥平面ABC ,所以CD ⊥BH ,又因为BH ⊥AC ,AC ∩CD =C ,所以BH ⊥平面ACD ,所以BH ⊥EH ,所以动点H 在以BE 为直径的圆上,即点H 的运动轨迹为圆,故选A.2.设P 是正方体ABCD -A 1B 1C 1D 1的对角面BDD 1B 1(含边界)内的点,若点P 到平面ABC 、平面ABA 1、平面ADA 1的距离相等,则符合条件的点P ( )A .仅有一个B .有有限多个C .有无限多个D .不存在答案 A解析 与平面ABC ,ABA 1距离相等的点位于平面ABC 1D 1上;与平面ABC ,ADA 1距离相等的点位于平面AB 1C 1D 上;与平面ABA 1,ADA 1距离相等的点位于平面ACC 1A 1上;据此可知,满足题意的点位于上述平面ABC 1D 1,平面AB 1C 1D ,平面ACC 1A 1的公共点处,结合题意可知,满足题意的点仅有一个.3.(2021·温州中学模拟)如图所示,用一边长为2的正方形硬纸,按各边中点垂直折起四个小三角形,做成一个蛋巢,将体积为4π3的鸡蛋(视为球体)放入其中,蛋巢形状保持不变,则鸡蛋(球体)离蛋巢底面的最短距离为( )A.5+12B.5-12C.3+12D.3-12答案 D解析 因为蛋巢的底面是边长为1的正方形,所以过四个顶点截鸡蛋所得的截面圆的直径为1.又因为鸡蛋(球体)的体积为4π3,所以球的半径为1,所以球心到截面圆的距离d =1-14=32,则截面圆到球体最低点的距离为1-32,而蛋巢的高度为12,故鸡蛋(球体)到蛋巢底面的最短距离为12-⎝⎛⎭⎪⎫1-32=3-12,故选D. 4.(2021·温州适考)如图,在△ABC 中,点M 是边BC 的中点,将△ABM 沿着AM 翻折成△AB ′M ,且点B ′不在平面AMC 内,点P 是线段B ′C 上一点.若二面角P -AM -B ′与二面角P -AM -C 的平面角相等,则直线AP 经过△AB ′C 的( )A .重心B .垂心C .内心D .外心答案 A解析因为二面角P-AM-B′与二面角P-AM-C的平面角相等,所以点P到两个平面的距离相等,所以V P-AB′M=V P-ACM,即V A-PB′M=V A-PCM.因为两三棱锥的高相等,故S△PB′M =S△PCM,故B′P=CP,故点P为CB′的中点,所以直线AP经过△AB′C的重心,故选A.5.(2021·浙江名师预测卷一)如图,在四棱锥P-ABCD中,底面ABCD为正方形,侧面P AD为正三角形,且侧面P AD⊥底面ABCD,已知在侧面P AD内存在点Q,满足PQ⊥QD,则当AQ最小时,二面角A-CD-Q的余弦值是()A.2-34 B.2+34C.2-62 D.2+64答案 D解析取PD的中点M,因为四边形ABCD为正方形,所以CD⊥AD,又平面P AD⊥平面ABCD,且平面P AD∩平面ABCD=AD,CD⊂平面ABCD,所以CD⊥平面P AD,所以CD⊥QD,则二面角A-CD-Q的平面角是∠ADQ,又因为点Q的轨迹是以M为圆心的圆,如图,当|AQ|最小时,∠ADQ=∠ADP-∠QDP=60°-45°=15°,即二面角A-CD-Q的余弦值为cos 15°=cos(60°-45°)=2+6 4,故选D.6.(2021·浙江新高考仿真卷二)如图所示,在棱长为1的正方体ABCD-A1B1C1D1中,P,Q分别为BD1,BB1上的动点,则△C1PQ周长的最小值为()A.215 3B.4+2 2C.4+83 2D.213 3答案 B解析连接B1D1,BC1,由图易得△C1PQ的三边分别在三棱锥B-B1C1D1的三个侧面上,将三棱锥B-B1C1D1的侧面展开成平面图形,如图,可得四边形BC1D1C1′为直角梯形,当C1′,P,Q,C1四点共线时,△C1PQ的周长最小,最小值为C1′D21+D1C21=4+22,即△C1PQ的周长的最小值为4+22,故选B.7.(2021·上虞区期末调测)在棱长均为23的正四面体ABCD中,M为AC的中点,E为AB的中点,P是DM上的动点,Q是平面ECD上的动点,则AP+PQ的最小值是()A.3+112 B.3+ 2C.534D.2 3答案 A解析 如图,作MG ⊥CE 于点G ,连接DG .由已知得平面CDE ⊥平面ABC ,又平面CDE ∩平面ABC =CE ,则MG ⊥平面CDE ,故DG 为DM 在平面CDE 上的射影.将半平面ADM 沿DM 翻折至与半平面DMG 所成二面角为180°,记翻折后的点A 即A ′到DG 的距离为h A ,则h A 为△A ′DG 的边DG 上的高,且AP +PQ =A ′P +PQ ≥h A .因为MG =12AE =32,DM =DC 2-⎝ ⎛⎭⎪⎫AC 22=3,则sin ∠MDG=MG DM =36,故cos ∠MDG =336.又∠ADM =∠A ′DM =π6,所以sin ∠A ′DG =sin ⎝ ⎛⎭⎪⎫∠MDG +π6=336×12+36×32=3+3312,所以AP +PQ的最小值h A =A ′D sin ∠A ′DG =11+32.故选A. 二、填空题8.在正方体ABCD -A 1B 1C 1D 1中,点P 在侧面BCC 1B 1及其边界上运动,总有AP ⊥BD 1,则动点P 的轨迹为________. 答案 线段B 1C解析 易证BD 1⊥平面ACB 1,所以满足BD 1⊥AP 的所有点P 都在一个平面ACB 1上.而已知条件中的点P 是在侧面BCC 1B 1及其边界上运动,因此,符合条件的点P 在平面ACB 1与平面BCC 1B 1的交线上,故所求的轨迹为线段B 1C .9.已知正方体ABCD -A 1B 1C 1D 1的棱长为3,长为2的线段MN 的一个端点M 在DD 1上运动,另一个端点N 在底面ABCD 上运动,则MN 的中点P 的轨迹与正方体的面所围成的几何体的体积为________. 答案 π6解析 连接DP ,因为MN =2,所以PD =1,因此点P 的轨迹是一个以D 为球心,1为半径的球面在正方体内的部分,所以点P的轨迹与正方体的表面所围成的几何体的体积为球的体积的18,即V=18×43π×13=π6.10.已知在矩形ABCD中,AB=3,BC=a,若P A⊥平面AC,在BC边上取点E,使PE⊥DE,若满足条件的E点有两个时,则a的取值范围是________.答案(6,+∞)解析连接AE,由三垂线逆定理可知DE⊥AE,要使满足条件的E点有两个则须使以AD为直径的圆与BC有两个交点,所以半径长a2>3,∴a>6.11.如图,已知∠ACB=90°,DA⊥平面ABC,AE⊥DB交DB于E,AF⊥DC交DC于F,且AD=AB=2,则三棱锥D-AEF体积的最大值为________.答案2 6解析因为DA⊥平面ABC,所以DA⊥AB,AD⊥BC,∵AE⊥DB,又AD=AB=2,∴DE=2,又因为BC⊥AC,AC∩AD=A,所以BC⊥平面ACD,所以平面BCD⊥平面ACD,∵AF⊥DC,平面BCD∩平面ACD=CD,所以AF⊥平面BCD,所以AF⊥EF,BD⊥EF,所以BD⊥平面AEF,由AF2+EF2=AE2=2≥2AF·EF可得AF·EF≤1,所以S△AEF ≤12,所以三棱锥D-AEF体积的最大值为13×2×12=26.12.如图,在长方形ABCD中,AB=2,BC=1,E为DC的中点,F为线段EC(端点除外)上一动点.现将△AFD 沿AF 折起,使平面ABD ⊥平面ABC .在平面ABD 内过点D 作DK ⊥AB ,K 为垂足.设AK =t ,则t 的取值范围是________.答案 ⎝ ⎛⎭⎪⎫12,1解析 如图,在平面ADF 内过D 作DH ⊥AF ,垂足为H ,连接HK .过F 点作FP ∥BC 交AB 于点P.设∠F AB =θ,则cos θ∈⎝ ⎛⎭⎪⎫22,255.设DF =x ,则1<x <2, ∵平面ABD ⊥平面ABC ,平面ABD ∩平面ABC =AB ,DK ⊥AB ,DK ⊂平面ABD ,∴DK ⊥平面ABC ,又AF ⊂平面ABC ,∴DK ⊥AF . 又∵DH ⊥AF ,DK ∩DH =D ,DK ,DH ⊂平面DKH , ∴AF ⊥平面DKH ,∴AF ⊥HK ,即AH ⊥HK . 在Rt △ADF 中,AF =1+x 2,∴DH =x 21+x 2, ∵△ADF 和△APF 都是直角三角形,PF =AD , ∴Rt △ADF ≌Rt △FP A ,∴AP =DF =x . ∵△AHD ∽△ADF ,∴cos θ=11+x 2t =x1+x 2. ∴x =1t .∵1<x <2,∴1<1t <2,∴12<t <1. 三、解答题13.(2018·全国Ⅰ卷)如图,四边形ABCD 为正方形, E ,F 分别为AD ,BC 的中点,以DF 为折痕把△DFC 折起,使点C 到达点P 的位置,且PF ⊥BF .(1)证明:平面PEF ⊥平面ABFD ; (2)求DP 与平面ABFD 所成角的正弦值.(1)证明 由已知可得,BF ⊥PF ,BF ⊥EF ,又PF ∩EF =F ,PF ,EF ⊂平面PEF ,所以BF ⊥平面PEF .又BF ⊂平面ABFD ,所以平面PEF ⊥平面ABFD . (2)解 作PH ⊥EF ,垂足为H .由(1)得,PH ⊥平面ABFD .以H 为坐标原点,分别以FB→,HF →,HP →的方向为x 轴、y 轴、z 轴的正方向,|BF →|为单位长,建立如图所示的空间直角坐标系H -xyz .由(1)可得,DE ⊥PE .又DP =2,DE =1,所以PE = 3.又PF =1,EF =2,故EF 2=PE 2+PF 2,所以PE ⊥PF . 可得PH =32,EH =32.则H (0,0,0),P ⎝ ⎛⎭⎪⎫0,0,32,D ⎝ ⎛⎭⎪⎫-1,-32,0,DP →=⎝ ⎛⎭⎪⎫1,32,32,HP →=⎝ ⎛⎭⎪⎫0,0,32为平面ABFD 的一个法向量.设DP 与平面ABFD 所成角为θ, 则sin θ=⎪⎪⎪⎪⎪⎪⎪⎪HP →·DP →|HP →||DP →|=343=34. 所以DP 与平面ABFD 所成角的正弦值为34.14.(2021·杭州二中仿真模拟)如图,平面四边形ABCD 关于直线AC 对称,∠A =60°,∠C =90°,CD =2.把△ABD 沿BD 折起.(1)若二面角A -BD -C 的余弦值为33,求证:AC ⊥平面BCD ; (2)若AB 与平面ACD 所成的线面角为30°时,求AC 的长. 解 (1)取BD 的中点E ,连接AE ,CE . 因为AB =AD ,CB =CD , 所以AE ⊥BD ,CE ⊥BD , 又AE ∩CE =E ,所以BD ⊥平面ACE ,所以BD ⊥AC , 所以∠AEC 是二面角A -BD -C 的平面角.在△AEC 中,AC 2=AE 2+CE 2-2AE ·CE cos ∠AEC =4,则AC 2+CE 2=AE 2, 所以AC ⊥CE .因为CE ∩BD =E ,CE ,BD ⊂平面BCD , 所以AC ⊥平面BCD .(2)由(1)得以点C 为坐标原点建立如图所示的空间直角坐标系,则C (0,0,0),B (2,0,0),D (0,2,0). 设A (m ,m ,n ),则BA→=(m -2,m ,n ),CA →=(m ,m ,n ),CD →=(0,2,0). 设平面ACD 的法向量n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·CA →=0,n ·CD →=0,即⎩⎨⎧xm +ym +zn =0,2y =0,取⎩⎨⎧x =n ,y =0,z =-m ,所以n =(n ,0,-m ), 因为BA =22,所以(m -2)2+m 2+n 2=8, 则|cos 〈BA→,n 〉|=|n (m -2)-mn |22m 2+n 2=12,解得m 2=n 2,解得m =2或m =-23, 所以AC =23或AC =23 3.。

立体几何翻折问题


角线 BD 翻折,则异面直线 BE 与 CF 所成角的取值范围是
A.
(6
,
3
)
B.
(6,Leabharlann 2]C.(3
,
2
]
D.
( , 2 )
33
过 F 作 FH ∥ EB,交 AD于 H .设菱形 ABCD的边长为 1,

3 4
CH
21 4
, cos CFH
CF 2 FH 2 CH 2 2 *CF * FH
2
2
3
2
3
4
CH 2 15 CH 2 16
2* 3 * 3 24
3 4
5 4 CH 2 Q 3 CH 21 cos CFH [ 1 , 1]
43
4
4
22
CFH
的取
值范
围是
[ 3
,
2 3
]
,但
异面直线
BE 与
CH
所成角的范围是(
3
, ] 2
定义法: 对于异面直线所成的角,如利用平 行线转化为平面角,把空间问题转 化为平面问题
的夹
角范围是
[
3
,
2 3
] ∴异面直线
BE, CF
所成角的范围是

3
,
2
]
.
1、特殊法(极端情形),关注特殊位置、特殊图形、特殊点等. 2、建立角或者边的关系的函数,转化为函数的最值问题. 3、充分挖掘翻折过程中点、线、面的几何本质.
2、翻折之后的求值问题
2、翻折之后的求值问题
向量法
BE ( 3 , 3 cos , 3 sin ), FC (0, 3 ,0)

2024年高考数学总复习:立体几何中的动态问题

第1页共5页2024年高考数学总复习:立体几何中的动态问题[解题策略]立体几何中的“动态”问题就变化起因而言大致可分为两类:一是平移;二是旋转.就所求变量而言可分为三类:一是相关线、面、体的测度;二是角度;三是距离.立体几何动态问题的解决需要较高的空间想象能力与化归处理能力,在各省市的高考选择题与填空题中也时有出现.在解“动态”立体几何题时,如果我们能努力探寻运动过程中“静”的一面,动中求静,往往能以静制动、克难致胜.1.去掉枝蔓见本质——大道至简在解决立体几何中的“动态”问题时,需从复杂的图形中分化出最简单的具有实质性意义的点、线、面,让几何图形的实质“形销骨立”,即从混沌中找出秩序,是解决“动态”问题的关键.例1如图1,直线l ⊥平面α,垂足为O .正方体ABCD -A 1B 1C 1D 1的棱长为2.点A 是直线l 上的动点,点B 1在平面α内,则点O 到线段CD 1中点P 的距离的最大值为________.图1答案2+2解析从图形分化出4个点O ,A ,B 1,P ,其中△AOB 1为直角三角形,固定AOB 1,点P 的轨迹是在与AB 1垂直的平面上且以AB 1的中点Q 为圆心的圆,从而OP ≤OQ +QP =12AB 1+2=2+2,当且仅当OQ ⊥AB 1,且点O ,Q ,P 共线时取到等号,此时直线AB 1与平面α成45°角.2.极端位置巧分析——穷妙极巧在解决立体几何中的“动态”问题时,对于移动问题,由图形变化的连续性,穷尽极端特殊之要害,往往能直取答案.例2在正四面体A -BCD 中,E 为棱BC 的中点,F 为直线BD 上的动点,则平面AEF 与平面ACD 所成二面角的正弦值的取值范围是________.答案1解析本例可用极端位置法来加以分析.。

高考数学 立体几何动态问题

立体几何的动态问题立体几何的动态问题,主要有五种:动点问题、翻折问题、旋转问题、投影与截面问题以及轨迹问题。

基本类型:点动问题;线动问题;面动问题;体动问题;多动问题等。

解题时一般可以通过改变视角、平面化或者寻找变化过程中的不变因素而把问题回归到最本质的定义、定理或现有的结论中,若能再配以沉着冷静的心态去计算,那么相信绝大多数问题可以迎刃而解。

动点轨迹问题空间中动点轨迹问题变化并不多,一般此类问题可以从三个角度进行分析处理,一是从曲线定义或函数关系出发给出合理解释;二是平面与平面交线得直线或线段;三是平面和曲面(圆锥,圆柱侧面,球面)交线得圆,圆锥曲线。

很少有题目会脱离这三个方向。

(注意:阿波罗尼斯圆,圆锥曲线第二定义)1.(2015·浙江卷8)如图11-10,斜线段AB与平面α所成的角为60°,B为斜足,平面α上的动点P满足∠PAB=30°,则点P的轨迹是()A.直线B.抛物线C.椭圆D.双曲线的一支式题如图,平面α的斜线AB交α于B点,且与α所成的角为θ,平面α若动点C的轨迹为椭圆,则θ的取值范围为________.3.(2015春•龙泉驿区校级期中)在棱长为1的正方体ABCD﹣A1B1C1D1中,M是A1D1的中点,点P在侧面BCC1B1上运动.现有下列命题:①若点P总保持PA⊥BD1,则动点P的轨迹所在的曲线是直线;②若点P到点A的距离为,则动点P的轨迹所在的曲线是圆;③若P满足∠MAP=∠MAC1,则动点P的轨迹所在的曲线是椭圆;④若P到直线BC与直线C1D1的距离比为2:1,则动点P的轨迹所在的曲线是双曲线;⑤若P到直线AD与直线CC1的距离相等,则动点P的轨迹所在的曲线是抛物线.其中真命题的个数为()A.4 B.3 C.2 D.14.(2018•温州模拟)已知线段AB垂直于定圆所在的平面,B,C是圆上的两点,H是点B在AC上的射影,当C 运动,点H运动的轨迹()A.是圆B.是椭圆C.是抛物线D.不是平面图形5.(2013•铁岭模拟)如图所示,△PAB所在的平面α和四边形ABCD所在的平面β互相垂直,且AD⊥α,BC⊥α,AD=4,BC=8,AB=6.若tan∠ADP﹣2tan∠BCP=1,则动点P在平面α内的轨迹是()A.椭圆的一部分B.线段C.双曲线的一部分D.以上都不是6.(2013•嘉兴二模)设m是平面α内的一条定直线,P是平面α外的一个定点,动直线n经过点P且与m成30°角,则直线n与平面α的交点Q的轨迹是()A.圆B.椭圆C.双曲线D.抛物线7.(2008•浙江)如图,AB是平面a的斜线段,A为斜足,若点P在平面a内运动,使得△ABP的面积为定值,则动点P的轨迹是()A.圆B.椭圆C.一条直线D.两条平行直线8.(2015春•台州校级月考)AB是平面α的斜线段,长度为2,点A是斜足,若点P在平面α内运动,当△ABP 的面积等于3 时,点P的轨迹是()A.圆B.椭圆C.双曲线D.抛物线9.(2016•浙江二模)在正三棱柱(底面是正三角形的直棱柱)ABC ﹣A 1B 1C 1中,AB =AA 1=2.若点M 在△ABC 所在平面上运动,且使得△AC 1M 的面积为1,则动点M 的轨迹为( ) A .圆B .椭圆C .双曲线D .抛物线10.(2016•武汉校级模拟)如图,AB 是平面α外的固定斜线段,B 为斜足,若点C 在平面α内运动,且∠CAB 等于直线AB 与平面α所成的角,则动点C 的轨迹为( )A .圆B .椭圆C .双曲线D .抛物线11.(2008年浙江·理10)如图,AB 是平面a 的斜线段,A 为斜足,若点P 在平面a 内运动使得△ABP 的面积为定值,则动点P 的轨迹是 ( )(A )圆 (B )椭圆 (C )一条直线 (D )两条平行直线12.(2014年金华高二十校联考·文10)圆柱的轴截面ABCD 是边长为2的正方形,M 为正方形ABCD 对角线的交点,动点P 在圆柱下底面内(包括圆周),若直线BM 与直线MP 所成角为45°,则点P 形成的轨迹为 ( ) A .椭圆的一部分B .抛物线的一部分C .双曲线的一部分D . 圆的一部分13.(2014•杭州二模)在等腰梯形ABCD 中,E ,F 分别是底边AB ,BC 的中点,把四边形AEFD 沿直线EF 折起后所在的平面记为α,p ∈α,设PB ,PC 与α所成的角分别为θ1,θ2(θ1,θ2均不为零).若θ1=θ2,则满足条件的P 所形成的轨迹是 .ABP B ACDMP14.(2018秋•诸暨市校级期中)如图,在底面为平行四边形的四棱锥P﹣ABCD中,E,F分别是棱AD,BP上的动点,且满足AE=2BF,则线段EF中点的轨迹是()A.一条线段B.一段圆弧C.抛物线的一部分D.一个平行四边形15.(2015秋•太原期末)如图,在棱长为1的正方体ABCD﹣A1B1C1D1中,P为棱A1B1的中点,点Q在侧面DCC1D1内运动,给出下列结论:①若BQ⊥A1C,则动点Q的轨迹是线段;②若|BQ|=,则动点Q的轨迹是圆的一部分;③若∠QBD1=∠PBD1,则动点Q的轨迹是椭圆的一部分;④若点Q到AB与DD1的距离相等,则动点Q的轨迹是抛物线的一部分.其中结论正确的是(写出所有正确结论的序号).16.如图,长方体ABCD﹣A′B′C′D′中,AB=BC=,AA,上底面A′B′C′D′的中心为O′,当点E在线段CC′上从C移动到C′时,点O′在平面BDE上的射影G的轨迹长度为()A.B.C.D.17.(2016秋•温州期末)点P为棱长是2的正方体ABCD﹣A1B1C1D1的内切球O球面上的动点,点M为B1C1的中点,若满足DP⊥BM,则动点P的轨迹的长度为()A.B.C.D.18.(2018•宁波二模)已知棱长为1的正方体ABCD﹣A1B1C1D1中,E为侧面BB1C1C中心,F在棱AD上运动,正方体表面上有一点P满足=x(x≥0,y≥0),则所有满足条件的P点构成图形的面积为.19.(2017•定海区校级模拟)已知异面直线a,b所成角为60°,直线AB与a,b均垂直,且垂足分别是点A,B 若动点P∈a,Q∈b,|PA|+|QB|=m,则线段PQ中点M的轨迹围成的区域的面积是.20.(2017秋•赣州期末)如图,在等腰梯形ABCD中,CD=2AB=2EF=2a,E,F分别是底边AB,CD的中点,把四边形BEFC沿直线EF折起,使得平面BEFC⊥平面ADFE.若动点P∈平面ADFE,设PB,PC与平面ADFE 所成的角分别为θ1,θ2(θ1,θ2均不为0).若θ1=θ2,则动点P的轨迹围成的图形的面积为()A.B.C.D.翻折问题面(动问题)翻折问题的一线五结论.DF AE⊥一线:垂直于折痕的线即五结论:1)折线同侧的几何量和位置关系保持不变;折线两侧的几何量和位置关系发生改变;2--D HF D H F''∠)是二面角的平面角;3D DF')在底面上的投影一定射线上;1、(2016年联考试题)平面四边形ABCD中,AD=AB=2,CD=CB= 5,且AD AB⊥,现将△ABD沿对角线BD翻折成'A BD∆,则在'A BD∆折起至转到平面BCD的过程中,直线'A C与平面BCD所成最大角的正切值为_______2.(2015年10月浙江省学业水平考试18)如图,在菱形ABCD中,∠BAD=60°,线段AD,BD的中点分别为E,F。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

立体几何的动态问题之二立体几何动态问题的基本类型:点动问题;线动问题;面动问题;体动问题;多动问题等、面动问题(翻折问题):(一)学生用草稿纸演示翻折过程:(二)翻折问题的一线五结论一线:垂直于折痕的线即DF AE.五结论:1)折线同侧的几何量和位置关系保持不变;折线两侧的几何量和位置关系发生改变;2)DHF是二面角D -H-F的平面角;3)D在底面上的投影一定射线DF 上;4)点D'的轨迹是以H为圆心,DH为半径的圆;5)面AD'E绕AE翻折形成两个同底的圆锥.二、翻折问题题目呈现:(一)翻折过程中的范围与最值问题1、(2016年联考试题)平面四边形ABCD中,AD=AB=2,CD=CB= , 5 ,且AD AB,现将厶ABD沿对角线BD翻折成A'BD,则在A'BD折起至转到平面BCD的过程中,直线A'C与平面BCD所成最大角的正切值为__________ .解:由题意知点A运动的轨迹是以E为圆心,EA为半径的圆,当点1的错误一进行分析,找出错误的原因。

22、2015年10月浙江省学业水平考试18).如图,在菱形ABCD中, Z BAD=60,线段AD, BD的中点分别为E, F。

现将△ ABD沿对角线BD翻折,则异面直线BE与CF所成角的取值范翻折问题运动到与圆相切的时候所称的角最大,所以tan A'CB【设计意图】加强对一线、五结论的应用,重点对学生容易犯围是A.(6,3)B.(6,2]分析:这是一道非常经典的学考试题,本题了空间立体几何线线角的求法。

方法一:特殊值法(可过F作FH平行方法二:定义法:利用余弦定理:cos FHC FH2 F C2CH22FH FC 5 4CH2 4 3cos CFH 1 1——异面直线2'2BE与CF所成角的取值范围是3'2方法三:向量基底法:*(BA B D)|F C ^BApC ^(B F F A)F Ccos1cos21 12'2方法四:建系:ACD,所成二:面角 A CD B的平面角为,则(B )A. ADBB.ADBC. ACBD.ACB3、(2015年浙江•理8)如图,已知ABC, D是AB的中点,沿直线CD将方法一:特殊值方法二:定义法作出二面角,在进行比较。

方法三:抓住问题的本质,借助圆锥利用几何解题ACD折成4、(14年1月浙江省学业学考试题)如图在Rt△ ABC中,AC= 1, BC=x,D是斜边AB的中点,将△ BCD沿直线CD翻折,若在翻折过程中存在某个位置,使得CB丄AD贝U x的取值范围是(A )A. (0, 3] C . (3, 2 3] D . (2 , 4]方法一:利用特殊确定极端值方法二:在DAB中利用余弦定理转化为BDA的函数求解。

方法三:取BC的中点E,连接EA,ED在DEA中利用两边之和大于第三边求解。

(二)翻折之后的求值问题5、(2016届丽水一模13)已知正方形ABCD,E是边AB的中点,将厶ADE沿DE折起至ADE,如图所示,若A CD为正三角形,则ED三、课后练习1、(2012年浙江10)已知矩形ABCD AB=1,BC=/2。

将ABD沿矩形的对角线BD所在的与平面A DC所成角的余弦值是2、556、(2016届温州一模8)如图,在矩形ABCD中,AB 2,AD 4,点E在线段AD上且AE 3,现分别沿BE,CE将ABE, DCE翻折, 使得点D落在线段AE上,则此时二面角D EC B的余弦值为直线进行翻折,在翻折过程中( B )2 (2009年浙江17)如图,在长方形 ABCD 中, AB=2,BC=1,E 为DC 的中点,F 为线段EC (端 点除外)上一动点,现将 AFD 沿 AF 折起,使平面ABDL 平面ABC,在平面ABD 内过点D 作DK1丄AB,K 为垂足,设 AK=t,则t 的取值范围是 _(一,1) ___ .23、( 16年浙江六校联考) 如图,在边长为 2的正方形ABCD 中,现将△ ADE 所在平面沿 AE 折起,使点D 在平面ABC 上的射 影H 在直线AE 上,当E 从点D 运动到C ,再从C 运动到B , 则点H 所形成轨迹的长度为4、(2010年浙江19改编)如图,在矩形 ABCD 中,点E, F 分别在 2线段 AB , AD 上, AE EB AF - FD 4 .沿直线 EF 将 AEF 翻 3 折成 A EF ,使平面A'EF 平面BEF •点M , N 分别在线段FD, BC 上,若沿直线 MN 将四边形MNCD 向上翻折,使 C 与A'重合,则线 段FM 的长为 __________5、( 16届金华十校一模 17)如图,在矩形ABCD 中,已知AB=2, AD=4,点E 、F 分别在AD BC 上,且AE=1, BF =3,将四边形 AEFB 沿EF 折起,使点B 在平面CDEF 上的射影H 在直线DE 上.(I )求证:CD 丄BEA.存在某个位置,使得直线 AC 与直线BD 垂直.B.存在某个位置,使得直线 AB 与直线CD 垂直.C.存在某个位置,使得直线 AD 与直线BC 垂直.D.对任意位置,三对直线AC 与 BD', “AB 与 CD', “AD 与 BC 均不垂直CB22,(n )求线段BH 的长度;(川)求直线AF 与平面EFCD 所成角的正弦值17.解:(1)由于BH CD ,又由于CDDE , BH DE H ,••• CD 平面DBE , •- CD BE .法一:(2)设 BH h , EH k ,过 F 作 FG 垂直ED 于点G , 因为线段BE , BF 在翻折过程中长度不变, 根据勾股定理: BE 2 BF 2 BH 2 FH BH 2 EH 22 BH 2 FG 2 GH 25 h 2 k 29 22h 2(2k)2,可解得k 1,•线段BH 的长度为 2. (2)延长BA 交EF 于点M ,因为AE : BF MA: MB 1:3 ,•••点A 到平面EFCD 的距离为点B 到平面EFCD 距离的1 , 3 •••点A 到平面EFCD 的距离为2,而 AF 13,直3 线AF 与平面EFCD 所成角的正弦值为 2 1339 法二:(2)如图,过点E 作ER // DC , 过点E 作ES 平面EFCD,分别以ER 、ED 、ES 为x 、y 、z 轴建立空间直角坐标系,设点 B(0, y, z)(y 0,z0),x 、 BF2 2y z4 (y 2)5, 2z解得y9 z 11于是B(0,1,2),所以线段BH 的长度为2.(3)从而FB (2,— 1 — 2 12■ 、1,2),故 EA FB (, , ) , FA FE EA 3 3 3 3(8 7,3),设平面EFCD的一个法向量为n (0,0,1),设直线AF与平面EFCD所成角的大小为FA n则sinFA r;39立体几何的动态问题之三----- 最值、范围问题1、( 2006年浙江•理14)正四面体ABCD的棱长为1,棱AB//平面a,则正四面体上的所有点在平面a内的射影构成的图形面积的取值范围是__________________ .2、( 2008年浙江•理10)如图,AB 是平面a 的斜线段,A 为斜足, 若点P 在平面a 内运动使得△ ABP 的面积为定值,则动点 P 的轨迹是 () (A )圆 (B )椭圆 (C ) 一条直线 (D )两条平行直线3、 ( 15届高考模拟卷•文)如图,已知球 O 是棱长为1的正方体ABCD A 1B 1C 1D 1的内切球,则平面 ACD 1截球O 的截面面积为 _____________4、 ( 2014年金华高二十校联考•文 10)圆柱的轴截面 ABC [是边长为2的正 方形,M 为正方形ABCD 寸角线的交点,动点P 在圆柱下底面内(包括圆周),m AC= 25 m ,/ BCI W 30°,贝U tan e 的最大值是 ____________ .(仰角e 为直线AP 与平面ABC 所成角)6 (2015 -浙江卷8)如图11-10,斜线段AB 与平面a 所成的角为 60°, B 为斜足,平面 a 上的动点P 满足/ PAB= 30°,则点 P 的 轨迹是( ) A.直线B.抛物线C.椭圆 D.双曲线的一支式题 (1)如图,平面a 的斜线AB 交a 于B 点,且与a 所成的角为ne ,平面a 内有一动点C 满足/ BAO —,若动点C 的轨迹为椭圆,则6e 的取值范围为 __________⑵ 在正四面体 ABCDh M 是AB 的中点,N 是棱CC 上的一个动点, 若直线 MN 与BD 所成的若直线BM 与直线MP 所成角为 45°,则点P 形成的轨迹为() A.椭圆的一部分 B. 抛物线的一部分 C.双曲线的一部分 D. 圆的一部分 5 (2014 •浙江卷理科 击训练.已知点A 到墙面的距离为 AB 某目标点 人为了准确瞄准目标点 P,需计算由点A 观察点17)某人在垂直于水平地面 ABC 勺墙面前的点 A 处进行射 P 沿墙面上的射线 CM 移动,此 P 的仰角e 的大小.若AB= 15CB4角为a,则COS a的取值范围是 ___________ .7、(2014年7月浙江学考第25题)在棱长为1的正方体ABCD-A 1B1C1D1中,E、F分别是棱A1D1> C1D1的中点,N 为线段B i C 的中点,若p 、 M 分别为D i B 、EF 的动 点,则PM+P!的最小值为8、(16届嘉兴一模•文15)边长为1的正方体ABCD A i B i C i D i 将其对角线 AC i 与平面 垂直,则正方体 ABCD A i B i C i D i 在平面上的投影面积为 _________________9、(i6届高考模拟卷•理)正方体ABC D ABiCiD 的棱长为i ,底面ABCD 勺对角线BD 在平 面a 内,则正方体在平面 a 内的投影构成的图形面积的取值范围 是 _____________ .iO 、(I6届高考模拟卷•理)将一个棱长为a 的正方体嵌入到四个半径为i 且两两相切的实心小球所形成的球间空隙内, 的最大值为( )八 2 2.6 口 2.3 6 Q 2 3 2 2 3 2 2 3 663311、 ( i6届宁波一模•理i4)在 ABC 中,BAC iO , ACB 30 ,将直线BC 绕AC旋转得到B i C ,直线AC 绕AB 旋转得到AC i ,则在所有旋转过程中, 直线B i C 与直线AC i 所成角的取值范围为 ___________________________ .12、 ( i6届金华十校一模・理i4)在四面体 ABCD^,已知ADL BCAD=6,BC=2,且△旦=些=2 ,BD CD则V 四面体ABCD 的最大值为【答案】B.【解析】 试题分析:设 ADC ,设AB 2,则由题意AD BD 1,在空间图形中,设AB t ,使得正方体能够任意自由地转动, 则aA. 6B. 2 iiC. 2 . i5i3、(i5年上海高考题改编) 在四面体 ABCD 中,已知AD BC , AD 6, BC 2 ,AB BD AC CD t(t 7,),则V 四面体ABCD 最大值的取值范围是A. 2 7,B. 3,C.2 2, D. 2,2 2 2 2 2 2AD DB AB 1 1 t 2A D DB 2 11过 N 作 NP/ /MB ,连结 AP ,••• NP DC ,丄7®泊-厂=上匚+竺工=亠心厶fDZ 竺卫2d n "isin* 9 sin* & sin" &sin" dV —/. CO 5C?>CO ^/M 【当&二二时取等号h siiTS瓯 ir/8 2Vtz,厶17>E 走而T = CO5T 衽[Q H ]上背遥減函数…••立E/XDA 故选B在Rt AND 中,DN A D cos A DCcos , ANA Dsin A DC 同理,BM PN sin,DM cos ,故BP MN2cos ,显然BP 面A NP ,故 BP AP ,在Rt 2A BP 中,A P 2 2 2AB BP t(2 cos )2t 24cos 2,则 ANP 就是二面角 A CD B 的平面角,• ANP 在 ANP 中,sin在 ACB 中,cos A DB2 t 2 2在空间图形中,过 A 作AN DC ,过B 作BMDC ,垂足分别为N , M ,cos cos A NPAN 2 NP 2 A P 2sin 2 sin 2 (t 2 4cos 2 )2A N NP2sin sin。

相关文档
最新文档