人教A版高中数学必修三练习算法的概念
【精品资料】高中数学课件:1算法的概念(新人教必修3)

例1:(2)设计一个算法,判断35是否为质数?
第一步:用2除35,得到余数1,所以2不能整除35.
第二步:用3除35,得到余数2,所以3不能整除35. 第三步:用4除35,得到余数3,所以4不能整除35. 第四步:用5除35,得到余数0,所以5能整除35.
因此,35不是质数.
练习4.写出求一元二次方程 ax2+bx+c=0
a1b2 a2b1 0
1 2 2 1
a b x c b c b (3)
第二步:解(3)得 第三步:
x
c1b2 c2b 1 a1b2 a2 b 1
a2b1 a1b2 y a2c1 a1c2
y a2 c1 a1c2 a2b1 a1b2
1、把冰箱门打开
2、把大象装进去 3、把冰箱门关上
2000春晚小品《钟点工》
又如家中烧开水的 过程分几步?
x 2 y 1 ① 问题1:请写出解二元一次方程组 2 x y 1 ②
的详细求解步骤. 第一步:①+2×②得: 5x=1 ③ 1 第二步: 解③得: x 5 第三步:②-①×2得: 5y=3 ④ 3 第四步: 解④得: y x 1 5 5 第五步:得到方程组的解为 3
B. 从一副扑克牌随意抽取3张扑克牌抽到
24点的可能性
C. 已知坐标平面内的两点求直线的方程
D. 加减乘除运算法则
概念辨析
3.有人对歌德巴赫猜想“任何大于4的偶数都 能写成两个奇质数之和”设计了如下操作步 第一步:检验6=3+3 骤: 第二步:检验8=3+5 第三步:检验10=5+5
利用计算机不断地进行下去!
的根的算法.
人教版高中数学必修三第一章-算法初步第一节《算法的概念》教学课件3(共21张PPT)

一人带着一只狼、一只羊和一箱蔬菜要过河,但只 有一条小船.乘船时,每次只能带狼、羊和蔬菜中的一 种.当有人在场时,狼、羊、蔬菜都相安无事.一旦人 不在,狼会吃羊,羊会吃菜.请设计一个方案,安全地将狼、 羊和蔬菜带过河.
过河游戏
如何发电子邮件?
假如你的朋友不会发电子邮件,你能教会他么? 发邮件的方法很多,下面就是其中一种的操作步骤:
第四步, 用5除35,得到余数0.因为余数为0, 所以5能整除35.因此,35不是质数.
变式: “判断53是否质数”的算法如下:
第1步,用2除53得余数为1,余数不为0,所以2不能整除53;
第2步,用3除53得余数为2,余数不为0,所以3不能整除53;
……
第52步,用52除53得余数为1,余数不为0,故52不能整除53;
第二步, 给定区间[a,b],满足f(a) ·f(b)<0.
第三步,
取中间点
m
a
2
b.
第四步, 若f(a) ·f(m) < 0,则含零点的区间为
[a,m];否则,含零点的区间b].
第五步,判断f(m)是否等于0或者[a,b]的长 度是否小于d,若是,则m是方程的近似解;否 则,返回第三步.
|a-b| 1
0.5 0.25 0.125 0.062 5 0.031 25 0.015 625 0.007 812 5 0.003 906 25
y=x2-2
1 1.25 1.5
1.375
2
于是,开区间(1.4140625,1.41796875)中 的实数都是当精确度为0.005时的原方程的近 似解.
判断“整数n(n>2)是否是质数”的算法 自然语言描述
第一步 给定大于2的整数n. 第二步 令i=2. 第三步 用i除n,得到余数r. 第四步 判断“r=0”是否成立.若是,则n不是质
高中数学 第一章 算法初步 1.1.1 算法的概念教案 新人教A版必修3(2021年整理)

重庆市高中数学第一章算法初步1.1.1 算法的概念教案新人教A版必修3 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(重庆市高中数学第一章算法初步1.1.1 算法的概念教案新人教A版必修3)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为重庆市高中数学第一章算法初步1.1.1 算法的概念教案新人教A版必修3的全部内容。
1.1.1算法的概念一、三维目标:1、知识与技能:(1)了解算法的含义,体会算法的思想。
(2)能够用自然语言叙述算法。
(3)掌握正确的算法应满足的要求。
(4)会写出解线性方程(组)的算法.(5)会写出一个求有限整数序列中的最大值的算法。
(6)会应用Scilab求解方程组.2、过程与方法:通过求解二元一次方程组,体会解方程的一般性步骤,从而得到一个解二元一次方程组的步骤,这些步骤就是算法,不同的问题有不同的算法。
由于思考问题的角度不同,同一个问题也可能有多个算法,能模仿求解二元一次方程组的步骤,写出一个求有限整数序列中的最大值的算法。
3、情感态度与价值观:通过本节的学习,使我们对计算机的算法语言有一个基本的了解,明确算法的要求,认识到计算机是人类征服自然的一各有力工具,进一步提高探索、认识世界的能力.二、重点与难点:重点:算法的含义、解二元一次方程组和判断一个数为质数的算法设计。
难点:把自然语言转化为算法语言.三、学法与教学用具:学法:1、写出的算法,必须能解决一类问题(如:判断一个整数n(n>1)是否为质数;求任意一个方程的近似解;……),并且能够重复使用。
2、要使算法尽量简单、步骤尽量少。
3、要保证算法正确,且计算机能够执行,如:让计算机计算1×2×3×4×5是可以做到的,但让计算机去执行“倒一杯水"“替我理发”等则是做不到的。
新人教A版必修3 高中数学1.1算法的概念学案

① ②
分析:解二元一次方程组的主要思想是消元的思想,有代入消元和加减消元两种消元 学 的方法,请用加减消元法写出它的求解过程. 习 解:第一步: ; 过 第二步: ; 程 与 第三步: 。 方 法 探究:对于一般的二元一次方程组来说,上述步骤应该怎样进一 步完善? 评析:本题的算法是由加减消元法求解的,这个算法也适合一般的二元一次方程组的 解法。下面写出求方程组的解的算法: 2.试写出求方程 组
达标训练 1.写出解方程 x -2x-3=0 的一个 算法。
2
2.求 1×3×5×7×9×11 的值,写出其算法。
3
3.有蓝和黑两个墨水瓶,但现在却错把蓝墨 水装在了黑墨水瓶中,黑墨水错装在了蓝 墨水瓶中,要 求将其互 换,请你设计算法解决这一问题。
4.课本练习。 课 1.算法概念和算法的基本思想 堂 (1)算法与一般意义上具体问题的解法的联系与区别; (2)算法的五个特征。 小 结 2.利用算法的思想和 方法解决实际问题,能写出一此简单问题的算法 作 业 20 页习题 1-1A 组 2、3; 布 置 学 习 小 结
(4)不唯一性:求解某一个问题的解法不一定是唯一的,对于一个问题可以有不同的 算法. (5)普遍性:很多具体的问题,都可以设计合理的算法去解 决,如心算、计算器计算 都要经过有限、事先设计好的步骤加以解决. 合作探究: 例 1、任意给定一个大于 1 的整数 n,试设计一个程序或步骤对 n 是否为质数做出判 断. 分析: (1)质数是只能被 1 和自身整除的大于 1 的整数. (2)要判断一个大于 1 的整数 n 是否为质数,只要根据质数的定义,用比这个 整数小的数去除 n,如果它只能被 1 和本身整除,而不能被其它整数整除,则这个数 便是质数. 解:
高一数学人教A版必修3课件:1.1.1 算法的概念 二

算法的概念
过程 设计 教学 方法 目标 分析
教学 反思
教材 分析
学情 分析
四.教学模式与教法、学法
本课采用“探究——合作”教学模式. 教师的教法 法的引导. 突出活动的组织设计与方
学生的学法
突出探究、发现与交流.
算法的概念
过程 设计
教学 方法 目标 分析
教学 反思
教材 分析
学情 分析
五.教学过程
算法的概念
过程 设计
教学 方法
教学 反思
教材 分析
学情 分析
目标 分析
目标分析
知识技能
M1
解决问题
M2
M4
M3
情感态度
数学思考
知识技能目标
1.了解算法的含义,体会算法的思想
2.能够用自然语言描述解决具体问题的算法 3.理解正确的算法应满足的要求
数学思考
1.通过对具体问题的解决过程与步骤的分析, 让学生体会算法的思想,了解算法的含义.
教材分析
2.教学内容:
《 算法的概念》是全日制普通高级中学教科书必 修3第一章《算法初步》第一节的内容.《算法初步》 是课程标准的新增内容,是数学及其应用的重要组成 部分,也是计算科学的基础.
教材分析
3.地位和作用::
算法概念立足于用自然语言描述解决问题过程中的明确步 骤,是实现用程序框图、程序语言的表示方式的基础. 算法的思想方法几乎贯穿整个高中数学课程的所有章节,如 解三角形、数学归纳法、数学建模等. 本节的内容能为以后学习程序框图、基本算法语句以及选修 1-2第四章“框图”内容奠定基础. 算法是连接人和计算机的纽带,是计算机科学的基础
的步骤吗?
设计意图:在上述“鸡兔同笼”问题中涉及解二元一次方程组的 问题,通过复习所学过的解二元一次方程组的基本步骤,为建立 算法概念做好准备.
人教版高中数学必修三第一章第1节 1.1.1 算法的概念 课件(共65张PPT)

1.写出求方程 x 2 + bx + c = 0 的解的 一个算法 ,并画出算法流程图。
开始
计算△=b2 – 4 c
N
△≥0?
Y
输出无解
输出 x b
2a
结束
四、练习
2.任意给定3个正实数,设计一个算法,判断以这3个数为三 边边长的三角形是否存在.画出这个算法的程序框图.
算法步骤如下:
第一步:输入3个正实数 a,b,c;
计算机的问世可谓是20 世纪最伟大的科学 技术发明。它把人类社会带进了信息技术时代。 计算机是对人脑的模拟,它强化了人的思维智能;
21世纪信息社会的两个主要特征: “计算机无处不在” “数学无处不在”
21世纪信息社会对科技人才的要 求: --会“用数学”解决实际问题 --会用计算机进行科学计算
现算法代的研科究和学应用研正是究本课的程的三主题大!支柱
算法(2) 第一步,用2除35,得到余数1。因为余数 不为0,所以2不能整除35。
第二步,用3除35,得到余数2。因为余数 不为0,所以3不能整除35。
第三步,用4除35,得到余数3。因为余数 不为0,所以4不能整除35。
第四步,用5除35,得到余数0。因为余数 为0,所以5能整除35。因此,35不是质数
语句A
左图中,语句A和语句B是依次执 行的,只有在执行完语句A指定的
操作后,才能接着执行语句B所指
语句B
定的操作.
四、练习 2.设计一个求任意数的绝对值的算法,并画出程序框图。
2. 算法:
框图:
第一步:输入x的值;
第二步:若x≥0,则输出x; 若否,则输出-x;
开始 输入x
x≥0?
是
输出x
2020-2021学年高中数学必修3人教A版课件:1.1.1 算法的概念

其中正确的顺序是( )
A.①②③
B.②③①
(2)设计算法时注意的问题 ①算法从初始步骤开始,每一个步骤只能有一个确定的后继步骤,从而组成 一个步骤序列,序列的终止表示问题得到解答或指出问题没有解. ②一个具体问题的算法不唯一,如解二元一次方程组的算法就有消元法、代 入法两种.由于传统数学问题解法的不唯一,使得求解某一个问题的算法也不唯 一. ③不同的算法有简繁、优劣之分,但每一种都会使问题有一个最终的结果.对 于一个具体的问题,我们可以找到一个算法步骤相对较少、执行步骤也较少的算 法,即最优算法.
4.已知 A(x1,y1),B(x2,y2),求直线 AB 的斜率的一个算法如下: (1)输入 x1、y1、x2、y2 的值. (2)计算 Δx=x2-x1,Δy=y2-y1. (3)若 Δx=0,则输出斜率不存在,否则(Δx≠0),k=__①__.
(4)输出斜率 k.
则①处应填________. 解析: 由斜率的计算公式应填ΔΔyx.
[自主练习] 1.下列叙述不能称为算法的是( ) A.从北京到上海先乘汽车到飞机场,再乘飞机到上海 B.解方程 4x+1=0 的过程是先移项再把 x 的系数化成 1 C.利用公式 S=πr2 计算半径为 2 的圆的面积得 π×22 D.解方程 x2-2x+1=0
解析:
A× A,B 两选项给出了解决问题的方法和步骤,是算法
题型二 算法的设计 写出解方程 x2-2x-3=0 的一个算法. [思路探究] 解一元二次方程的方法很多,此处,我们用因式分解法、配方 法、公式法写出算法. , 解析: 法一:算法如下. (1)将方程左边因式分解,得(x-3)(x+1)=0.① (2)由①得 x-3=0,②或 x+1=0.③ (3)解②得 x=3,解③得 x=-1.
高中人教版数学必修3课本练习_习题参考答案

高中数学必修③课本练习,习题参考答案新心希望教育:RenYongSheng 第一章算法初步1.1算法与程序框图1.1.1算法的概念(p5)1. 解;第一步:输入任意正实数r,第二步:计算第三步:输出圆的面积S2. 解;第一步:给定一个大于l的正整数;第二步:令;第三步:用除,得到余数;第四步:判断“”是否成立,若成立,则i是n的因数;否则,i不是n的因数;第五步:使的值增加l,仍用表示,即令;第六步,判断“”是否成立.若是,则结束算法;否则,返回第三步1.1.2程序框图与算法的基本逻辑(P19)1.解;算法步骤:第一步,给定精确地d,令i=1第二步,取出的到小数点后第i位的不足近似值,记为a;取出的到小数点后第i位的过剩近似值,记为b,第三步,计算第四步,若m<d,则执行第五步;否则,将i的值增加1,返回第二步.第五步,输出程序框图如下图所示:1.1算法与程序框图(P20)A 组解;题目:在国内寄平信(外埠),每封信的质量x(克)不超过60克时的邮费(单位:分)标准为,试写出计算邮费的算法并画出程序框图。
算法如下:第一步,输入质量数x。
第二步,判断是否成立,若是,则输出y=120,否则执行第三步。
第三步,判断是否成立,若是,则输出y=240,否则,输出y=360,算法结束。
程序框图如下图所示:(注释:条件结构)2.解:算法如下:第一步,i=1,S=0.第二步,判断是否成立,若成立,则执行第三步,否则,执行第四步。
第三步,,i=i+1,返回第二步。
第四步,输出S.程序框图如下图所示:(注释:循环结构)3. 解:算法如下:第一步,输入人数x,设收取的卫生费为y元。
第二步,判断x>3是否成立,若不成立,y=5,输出y;否则,输出y.程序框图如下图所示:(注释:条件结构)BB 组1. 解:分析:我们设计对于一般的二元一次方程组(其中)的通用算法:第一步,,得(即) (3)第二步,解(3),得 (4)第三步,将(4)代入(1),得,因此,只要输入相应的未知数的系数和常数项,就能计算出方程组的解,即可以输出x、y的值,用顺序结构即可。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章算法初步
1.1 算法与程序框图
1.1.1 算法的概念
课后篇巩固提升
1.下列所给问题中,不能设计一个算法求解的是( )
A.用二分法求方程x 2-3=0的近似解(精确度0.01)
B.解方程组{x +y +5=0,x -y +3=0
C.求半径为2的球的体积
D.求S=1+2+3+…的值
D,S=1+2+3+…,不知道需要多少步完成,所以不能设计一个算法求解.
2.小明中午放学回家自己煮面条吃,有下面几道工序:①洗锅、盛水2分钟;②洗菜6分钟;③准备面条及佐料2分钟;④用锅把水烧开10分钟;⑤煮面条和菜共3分钟.以上各道工序,除了④之外,一次只能进行一道工序.小明要将面条煮好,最少要用( )
A.13分钟
B.14分钟
C.15分钟
D.23分钟
洗锅、盛水2分钟+④用锅把水烧开10分钟(同时②洗菜6分钟+③准备面条及佐料2分钟)+⑤煮面条和菜共3分钟=15分钟.解决一个问题的算法不是唯一的,但在设计时要综合考虑各个方面的因素,选择一种较好的算法.
3.有如下算法:
第一步,输入不小于2的正整数n.
第二步,判断n 是否为2.若n=2,则n 满足条件;
若n>2,则执行第三步.
第三步,依次从2到n-1检验能不能整除n ,若都不能整除,则n 满足条件.
上述算法中满足条件的n 是( )
A.质数
B.奇数
C.偶数
D.合数
n 是质数.
4.如下算法:
第一步,输入x 的值.
第二步,若x ≥0,则y=x ;否则,y=x 2.
第三步,输出y 的值.
若输出y 的值是9,则x 的值是( )
A.3
B.-3
C.3或-3
D.-3或9
,可知此为分段函数y={x ,x ≥0,x 2,x <0
的算法.当x ≥0时,x=9;当x<0时,x 2=9,x=-3.
5.已知一个算法:
第一步,m=a.
第二步,若b<m ,则m=b ,输出m ,结束算法;否则,执行第三步.
第三步,若c<m ,则m=c ,输出m ,结束算法.
如果a=3,b=6,c=2,那么执行这个算法的结果是( )
A.3
B.6
C.2
D.m
a=3,b=6,c=2时,依据算法执行后,m=a=3<b=6,c=2<3=m ,则m=c=2,即输出m 的值为2.
6.给出下列算法:
第一步,输入x 的值.
第二步,当x>4时,计算y=x+2;否则,计算y=√4-x .
第三步,输出y 的值.
当输入x=0时,输出y= .
x=0>4不成立,故计算y=√4-x =2,输出y=2.
7.结合下面的算法:
第一步,输入x.
第二步,判断x 是否小于0,若是,则输出3x+2,
否则执行第三步.
第三步,输出x 2+1.
当输入的x 的值分别为-1,0,1时,输出的结果分别为 、 、 .
x=-1时,-1<0,输出3×(-1)+2=-1;
当x=0时,0=0,输出02+1=1;
当x=1时,1>0,输出12+1=2.
1 1 2
8.下面是解二元一次方程组{2x -y +6=0,①x +y +3=0②的一个算法,请将该算法补充完整. 第一步,①②两式相加,得3x+9=0.
③ 第二步,由③式可得 . ④
第三步,将④式代入①式,得y=0.
第四步,输出方程组的解 .
,第二步应为解③得x 的值为x=-3,第四步是输出方程组的解{x =-3,y =0.
3 {x =-3,y =0
9.一位商人有9枚银元,其中有1枚略轻的是假银元,你能用天平(不用砝码)将假银元找出来吗?
法一)第一步,任取2枚银元分别放在天平两边,若天平左右不平衡,则轻的一边放的就是假银元;若天平左右平衡,则进行第二步.
第二步,取下右边的银元,放在一边,然后把剩余的7枚银元依次放在右边进行称量,直到天平左右不平衡为止,右边放的就是假银元.
(法二)第一步,把银元分成3组,每组3枚.
第二步,先将任意两组分别放在天平的两边,若天平左右不平衡,则假银元就在轻的那一组里;若天平左右平衡,则假银元就在未称的那一组里.
第三步,取出含假银元的那一组,从中任取2枚银元放在天平的两边,若天平左右不平衡,则轻的一边放的就是假银元;若天平左右平衡,则未称的那一枚就是假银元.
10.从古印度的汉诺塔传说中演变了一个汉诺塔游戏:
(1)有三根杆子A ,B ,C ,A 杆上有三个碟子(大小不等,自上到下,由小到大),如图;
(2)每次移动一个碟子,小的只能叠在大的上面;
(3)把所有碟子从A 杆移到C 杆上.
试设计一个算法,完成上述游戏.
,将A 杆最上面碟子移到C 杆.
第二步,将A 杆最上面碟子移到B 杆.
第三步,将C 杆上的碟子移到B 杆.
第四步,将A 杆上的碟子移到C 杆.
第五步,将B 杆最上面的碟子移到A 杆.
第六步,将B 杆上的碟子移到C 杆.
第七步,将A 杆上的碟子移到C 杆.。