兰州一中2015-2016-1高二期末考试数学试题(文科)
甘肃省兰州第一中学2014-2015学年高二上学期期末考试数学(文)试卷 Word版含答案

甘肃省兰州第一中学2014-2015学年高二上学期期末考试数学(文)试题 说明:本试卷分第I 卷(选择题)和第II卷(非选择题)两部分.满分100分,考试时间100分钟.答案写在答题卷(卡)上,交卷时只交答题卷(卡) 第I 卷(选择题) 一、选择题(每小题3分,共30分,将答案写在答题卡上) 1已知为虚数单位,且,则的值为() A B. C.-4 D. 2.过点P(2,4)且与抛物线y2=8x有且只有一个公共点的的直线有() A0条 B.1条 C.2条 D..3条 3双曲线的一条渐近线方程是( ) A. B. C. D. 4.下列命题错误的是 ( ) A.命题“若,则”的逆否命题为“若,则” B.若命题,,则“”为: C.“ ”是“”的充分不必要条件 D.若或;q:或,则是的必要不充分条件. 5.曲线与曲线的()A.焦点相同B.离心率相等C.准线相同D.焦距相等 6.根据右边程序框图,当输入10时,输出的是() A .12 B.19 C.14.1 D.30 7.如果命题p?q为真命题,p?q为假命题,那么()A.命题p、q都是真命题B.命题p、q都是假命题C.命题p、q只有一个真命题D.命题p、q至少有一个是真命题 8.设双曲线的一条渐近线与抛物线只有一个公共点,则双曲线的离心率为() A. B.5 C. D. 9.已知p:关于x的不等式的解集为R;q:关于x的不等式的解集为R,则p是q成立的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件 10.已知F是双曲线的左焦点,E是该双曲线的右顶点,过点F且垂直于x轴的直线与双曲线交于A、B两点,若ABE是锐角三角形,则该双曲线的离心率e的取值范围为( )A.(1,+∞)B.(1,2)C.(1,1+)D.(2,1+) 第II卷(非选择题) 二、填空题(每小题4分,共1分,将答案写在答题卡上) 1的共轭复数是. 12.过抛物线的焦点作倾斜角为直线,直线抛物线,两点,则弦的长是13.已知椭圆与双曲线的公共焦点为F1,F2,点P是两条曲线的一个公共点,则cos∠F1PF2的值为 . 14.若椭圆与直线交于A,B两点,若,则过原点与线段AB的中点M的连线的斜率为 . 兰州一中201-2015学年第一学期高二年级期末数学试题 答题卡() 第I 卷(选择题) 一、选择题(每小题分,共分) 题号 1 2 3 4 5 6 7 8 9 10 答案第II卷(非选择题) 二、填空题(每小题4分,共1分) 11.__________________ 12.__________________ 13.14.__________________ 三、解答题(本题共5小题,共分) 15(10分),若, ();()的值 . 16.(10分)设分别为椭圆的左、右两个焦点. ()若椭圆上的点两点的距离之和等于,椭圆的方程和焦点坐标; ()设点是()中所得椭圆上的动点,17.(10分)已知命题成立.命题有实数根.若为假命题,为假命题,求实数的取值范围 18.(本题12分)、, 且过点. (1)求双曲线方程; (2)若点在双曲线上,求证:; (3)对于(2)中的点,求的面积. 19.(本题12分)如图,设抛物线:的焦点为F,为抛物线上的任一点(其中≠0),过P 点的切线交轴于点 (),求证; (),过M点的直线抛物线于A、B两点,若,求的值 兰州一中201-2015学年第一学期高二年级期末数学试题 答() 第I 卷(选择题) 一、选择题(每小题分,共分) 题号 1 2 3 4 5 6 7 8 9 10 答案 C B DD C C D B B 第II卷(非选择题) 三、解答题(本题共5小题,共分) 15.(10分), …………………………….5分 (2)把Z=1+i代入,即, 得 …………………………….7分 所以 解得 所以实数,b的值分别为-3,4 …………………………….10分 16. (10分)解:()椭圆C的焦点在x轴上, 由椭圆上的点A到F1、F2两点的距离之和是4,得2a=4,即a=2又点所以椭圆C的方程为…………4分()设 …………8分又 ………….10分17.(10分) 解: 即命题…………………………分 有实数根…,即…………………………分 因为为假命题,为假命题 则为真命题,所以为假命题,为真命题,:…………………………分 由 即的取值范围是: …………………………1分 18.(本题12分), 又双曲线过点,解得 故双曲线方程为. ……………………………4分,,∴, ∴,,∴, 又点在双曲线上,∴, ∴,即. ……………………………8分 ,∴的面积为6. ……………………………12分 19.(本题12分)解(Ⅰ)证明:由抛物线定义知, …….2分 设过P点的切线 由 令得, 可得PQ所在直线方程为 ∴得Q点坐标为(0, )∴即|PF|=|QF| ………………………….6分 (Ⅱ)设A(x1, y1),B(x2, y2),又M点坐标为(0, y0)∴AB方程为 由得 M P Q y x F O A B M P Q y x F O A B。
甘肃省兰州第一中学2015-2016学年高一下学期期末考试数学试题 含答案

兰州一中2015-2016—2学期期末考试试题高一数学说明:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分100分,考试时间100分钟.答案写在答题卡上,交卷时只交答题卡.第Ⅰ卷(选择题)一、选择题(本题共10小题,每小题3分,共30分.在每小题给出的四个选项中只有一个....选项符合题意)1。
已知角α的终边经过点)3,(-m p ,且54cos -=α,则m 等于( )A .114-B .114 C .-4 D .42.在ABC ∆中,角A 、B 、C 的对边分别为a 、b 、c ,已知,13A a b π===,则c=( )A .1B . 2C 1 D3。
πππ425tan 32cos 3)34sin(-+-的值为( )A .13+-B .13--C .3D .1-4.已知510cos sin =+αα,则=αtan ( )A .—3或31-B .-3C .31-D .3或31-5.将函数sin y x x =的图象向右平移a (a>0)个单位长度,所得函数的图象关于y 轴对称,则a 的最小值是( )A .3πB .76π C6。
如图,在ABC ∆中,13AN AC =,P 是若2,11AP mAB AC =+则实数m 的A .911 B .511 C .311 D .211=-20cos 20sin 10cos 2.7( )A .21 B .1 C .2D .38.若向量a 与b 不共线,0≠⋅b a ,且b ba a a a c ⋅⋅-=(,则向量a 与c 的 夹角为( )A .0B .6πC .3πD .2π9.已知53)4sin(=+πx ,且π<<x 0,则=x 2cos ( ) A .2524 B .2524- C .257D .257-10.已知0,ω>函数()sin()4f x x πω=+在(,)2ππ上单调递减,则ω的取值范围是( )A .15[,]24 B .13[,]24C .1(0,]2D .(0,2]第Ⅱ卷(非选择题)二、填空题(本题共5小题,每小题4分,共20分) 11.在ABC ∆中,已知150,30,b c B ===则C = .12。
易错汇总2015-2016年甘肃省兰州一中高二上学期期末数学试卷(文科)与解析

,
由 cos∠PF1F2+cos∠QF1F2=0,得
+
=0,
整理得:
,∴ 5a=7c,
第 8 页(共 15 页)
(x)的导函数,若 f ′(1)=3,则 a 的值为( )
A.4
B.3
【解答】 解: f ′(x)=alnx+a,
C.2
D.1
∵ f ′( 1) =3,∴ a=3.
故选: B.
5.(4 分) “≤a0”是“函数 f( x) =| (ax﹣ 1) x| 在区间( 0,+∞)内单调递增 ”的
()
A.充分不必要条件
可得 yA=2 , yB=﹣ 2 , ∴ | AB| =4 .
故选: D. 8.(4 分)已知 F1、F2 为双曲线 C:x2﹣y2=2 的左、右焦点,点 P 在 C上,| PF1| =2| PF2| ,
则 cos∠ F1PF2=( )
A.
B.
C.
D.
【解答】 解:将双曲线方程 x2﹣y2=2 化为标准方程 ﹣ =1,则 a= ,b= ,
A.
B.
C.
D.
二、填空题(本大题共 4 小题,每小题 4 分,共 16 分) 13.( 4 分)若抛物线 y2=2px(p>0)的准线经过双曲线 x2﹣y2=1 的一个焦点,
则 p=
.
14.(4 分)设函数 f(x)在(0,+∞)内可导,且 f( ex)=x+ex,则 f (′1)=
.
15.( 4 分)有甲、乙、丙、丁四位歌手参加比赛,其中只有一位获奖,有人走
圆心 C 的轨迹方程是(
)
A.
B.
C.y2=8x
D.y2=8x( x≠ 0)
2015-2016学年甘肃省兰州一中高二(下)期末数学试卷(理科)(解析版)

2015-2016学年甘肃省兰州一中高二(下)期末数学试卷(理科)一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(4分)回归分析中,相关指数R2的值越大,说明残差平方和()A.越小B.越大C.可能大也可能小D.以上都不对2.(4分)如图,用K、A1、A2三类不同的元件连接成一个系统.当K正常工作且A1、A2至少有一个正常工作时,系统正常工作,已知K、A1、A2正常工作的概率依次是0.9、0.8、0.8,则系统正常工作的概率为()A.0.960B.0.864C.0.720D.0.5763.(4分)已知某批零件的长度误差(单位:毫米)服从正态分布N(0,32),从中随机抽取一件,其长度误差落在区间(3,6)内的概率为()(附:若随机变量ξ服从正态分布N(μ,σ2),则P(μ﹣σ<ξ<μ+σ)=68.26%,P (μ﹣2σ<ξ<μ+2σ)=95.44%)A.4.56%B.13.59%C.27.18%D.31.74%4.(4分)在极坐标系中,曲线关于()A.直线θ=对称B.直线θ=对称C.点对称D.极点对称5.(4分)若直线y=kx+1与圆x2+y2+kx+my﹣4=0交于M,N两点,且M,N关于直线x+2y =0对称,则实数k+m=()A.﹣1B.1C.0D.26.(4分)设(5x﹣)n的展开式的各项系数之和为M,二项式系数之和为N,若M﹣N =56,则展开式中常数项为()A.5B.15C.10D.207.(4分)设等差数列{a n}的前n项和为S n,若S m﹣1=﹣2,S m=0,S m+1=3,则m=()A.3B.4C.5D.68.(4分)函数的图象沿x轴向右平移a个单位(a>0),所得图象关于y 轴对称,则a的最小值为()A.πB.C.D.9.(4分)已知,若P点是△ABC所在平面内一点,且,则的最大值等于()A.13B.15C.19D.2110.(4分)两球O1和O2在棱长为1的正方体ABCD﹣A1B1C1D1的内部,且互相外切,若球O1与过点A的正方体的三个面相切,球O2与过点C1的正方体的三个面相切,则球O1和O2的表面积之和的最小值为()A.3(2﹣)πB.4(2﹣)πC.3(2+)πD.4(2+)π二、填空题(本大题共5小题,每小题4分,共20分)11.(4分)已知随机变量2ξ+η=8,若ξ~B(10,0.4),则E(η)=,D(η).12.(4分)(选做题)在极坐标系中,曲线C1:ρ=2cosθ,曲线C2:,若曲线C1与曲线C2交于A、B两点则AB=.13.(4分)某种电路开关闭合后,会出现红灯或绿灯闪烁,已知开关第一次闭合后出现红灯闪烁的概率是,两次闭合后都出现红灯闪烁的概率为,则在第一次闭合后出现红灯闪烁的条件下,第二次出现红灯闪烁的概率是.14.(4分)若(1﹣2x)2016=a0+a1x+a2x2+…+a2016x2016(x∈R),则+++…+=.15.(4分)只用1,2,3三个数字组成一个四位数,规定这三个数必须同时使用,且同一数字不能相邻出现,这样的四位数共有个.三、解答题(本大题共4小题,每小题10分,共40分.解答应写出文字说明、证明过程或演算步骤)16.(10分)4月23人是“世界读书日”,某中学在此期间开展了一系列的读书教育活动,为了解本校学生课外阅读情况,学校随机抽取了100名学生对其课外阅读时间进行调查,下面是根据调查结果绘制的学生日均课外阅读时间(单位:分钟)的频率分布直方图,若将日均课外阅读时间不低于60分钟的学生称为“读书谜”,低于60分钟的学生称为“非读书谜”(1)根据已知条件完成下面2×2的列联表,并据此判断是否有99%的把握认为“读书谜”与性别有关?(2)将频率视为概率,现在从该校大量学生中,用随机抽样的方法每次抽取1人,共抽取3次,记被抽取的3人中的“读书谜”的人数为X,若每次抽取的结果是相互独立的,求X的分布列,期望E(X)和方差D(X)附:K2=n=a+b+c+d17.(10分)计划在某水库建一座至多安装3台发电机的水电站,过去50年的水文资料显示,水年入流量X(年入流量:一年内上游来水与库区降水之和,单位:亿立方米)都在40以上,其中,不足80的年份有10年,不低于80且不超过120的年份有35年,超过120的年份有5年,将年入流量在以上三段的频率作为相应段的概率,并假设各年的年入流量相互独立.(1)求未来4年中,至多有1年的年入流量超过120的概率.(2)水电站希望安装的发电机尽可能运行,但每年发电机最多可运行台数受年入流量X 限制,并有如下关系:若某台发电机运行,则该台年利润为1000万元;若某台发电机未运行,则该台年亏损160万元,欲使水电站年总利润的均值达到最大,应安装发电机多少台?18.(10分)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t )和年利润z (单位:千元)的影响,对近8年的年宣传费x i 和年销售量y i (i =1,2,…,8)数据作了初步处理,得到如图的散点图及一些统计量的值.表中w i =i ,=w i .(1)根据散点图判断,y =a +bx 与y =c +d哪一个适宜作为年销售量y 关于年宣传费x的回归方程类型?(给出判断即可,不必说明理由)(2)根据(1)的判断结果及表中数据,建立y 关于x 的回归方程;(3)已知这种产品的年利润z 与x ,y 的关系为z =0.2y ﹣x .根据(2)的结果回答下列问题:①年宣传费x =49时,年销售量及年利润的预报值是多少? ②年宣传费x 为何值时,年利润的预报值最大?附:对于一组数据(u1,v1),(u2,v2),…,(u n,v n),其回归直线v=α+βu的斜率和截距的最小二乘估计分别为:.19.(10分)已知函数f(x)=x(a+lnx)的图象在点(e,f(e))(e为自然对数的底数)处的切线的斜率为3.(Ⅰ)求实数a的值;(Ⅱ)若k为整数时,k(x﹣1)<f(x)对任意x>1恒成立,求k的最大值.2015-2016学年甘肃省兰州一中高二(下)期末数学试卷(理科)参考答案与试题解析一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.【解答】解:用系数R2的值判断模型的拟合效果,R2越大,模型的拟合效果越好,而用相关系数r的值判断模型的拟合效果时,|r|越大,模型的拟合效果越好,由此可知相关指数R2的值越大,说明残差平方和越小.故选:A.2.【解答】解:根据题意,记K、A1、A2正常工作分别为事件A、B、C;则P(A)=0.9;A1、A2至少有一个正常工作的概率为1﹣P()P()=1﹣0.2×0.2=0.96;则系统正常工作的概率为0.9×0.96=0.864;故选:B.3.【解答】解:由题意P(﹣3<ξ<3)=68.26%,P(﹣6<ξ<6)=95.44%,所以P(3<ξ<6)=(95.44%﹣68.26%)=13.59%.故选:B.4.【解答】解:曲线,可得=2sinθ﹣2cosθ,可得ρ2=2ρsinθ﹣2ρcosθ,它的普通方程为:x2+y2=2y﹣2.圆的圆心坐标(,1),经过圆的圆心与原点的直线的倾斜角为:,在极坐标系中,曲线关于直线θ=对称.故选:B.5.【解答】解:由题意,可得∵直线y=kx+1与圆x2+y2+kx+my﹣4=0交于M,N两点,且M,N关于直线x+2y=0对称,∴直线x+2y=0是线段MN的中垂线,得k•(﹣)=﹣1,解之得k=2,所以圆方程为x2+y2+2x+my﹣4=0,圆心坐标为,将代入x+2y=0,解得m=﹣1,得k+m=1.故选:B.6.【解答】解:令二项式中的x为1得到展开式的各项系数和为M=4n,二项式系数和为N=2n,由M﹣N=56,得n=3,∴其展开式的通项为令3﹣=0得r=2代入通项解得常数项为15.故选:B.7.【解答】解:a m=S m﹣S m﹣1=2,a m+1=S m+1﹣S m=3,所以公差d=a m+1﹣a m=1,S m==0,m﹣1>0,m>1,因此m不能为0,得a1=﹣2,所以a m=﹣2+(m﹣1)•1=2,解得m=5,另解:等差数列{a n}的前n项和为S n,即有数列{}成等差数列,则,,成等差数列,可得2•=+,即有0=+,解得m=5.又一解:由等差数列的求和公式可得(m﹣1)(a1+a m﹣1)=﹣2,m(a1+a m)=0,(m+1)(a1+a m+1)=3,可得a1=﹣a m,﹣2a m+a m+1+a m+1=+=0,解得m=5.故选:C.8.【解答】解:函数==﹣,沿x轴向右平移a个单位(a>0),可得y=,∵图象关于y轴对称,∴∴sin2x cos2a=0∴2a=kπ(k∈Z)∵a>0∴a的最小值为.故选:D.9.【解答】解:由题意建立如图所示的坐标系,可得A(0,0),B(,0),C(0,t),∵,∴P(1,4),∴=(﹣1,﹣4),=(﹣1,t﹣4),∴=﹣4(﹣4)﹣(t﹣1)=17﹣(4t+),由基本不等式可得+4t≥2=4,∴17﹣(4t+)≤17﹣4=13,当且仅当4t=即t=时取等号,∴的最大值为13,故选:A.10.【解答】解:∵AO1=R1,C1O2=R2,O1O2=R1+R2,∴(+1)(R1+R2)=,R1+R2=,球O1和O2的表面积之和为4π(R12+R22)≥4π•2()2=2π(R1+R2)2=3(2﹣)π.故选:A.二、填空题(本大题共5小题,每小题4分,共20分)11.【解答】解:∵ξ~B(10,0.4),∴Eξ=10×0.4=4,Dξ=10×0.4×0.6=2.4,∵2ξ+η=8,∴Eη=E(8﹣2ξ)=8﹣8=0,Dη=D(8﹣2ξ)=4×2.4=9.6,故答案为:0;9.6.12.【解答】解:对于曲线C1:ρ=2cosθ,两边都乘以ρ得:ρ2=2ρcosθ,∵ρ2=x2+y2,且ρcosθ=x∴曲线C的普通方程是x2+y2﹣2x=0,表示以(1,0)为圆心、半径为1的圆;对于曲线C2:,可得它是经过原点且倾斜角为的直线,∴曲线C2的普通方程为y=x,即x﹣y=0因此点(1,0)到直线x﹣y=0的距离为:d==设AB长为m,则有(m)2+d2=r2,即m2+=1,解之得m=(舍负)故答案为:13.【解答】解:设事件A表示开关第一次闭合后出现红灯闪烁,B表示开关第二次闭合后出现红灯闪烁,则P(A)=,P(AB)=,∴在第一次闭合后出现红灯闪烁的条件下,第二次出现红灯闪烁的概率是:P(B|A)===.故答案为:.14.【解答】解:在(1﹣2x)2016=a0+a1x+a2x2+…+a2016x2016(x∈R)中,令x=0,可得a0=1,令x=,可得a0++++…+=0,故,+++…+=﹣1,故答案为:﹣1.15.【解答】解:由题意知,本题需要分步计数1,2,3中必有某一个数字重复使用2次.第一步确定谁被使用2次,有3种方法;第二步把这2个相等的数放在四位数不相邻的两个位置上,也有3种方法;第三步将余下的2个数放在四位数余下的2个位置上,有2种方法.故共可组成3×3×2=18个不同的四位数.故答案为:18三、解答题(本大题共4小题,每小题10分,共40分.解答应写出文字说明、证明过程或演算步骤)16.【解答】解:(1)完成下面的2×2列联表如下…(3分)≈8.249VB8.249>6.635,故有99%的把握认为“读书迷”与性别有关…(6分)(2)视频率为概率.则从该校学生中任意抽取1名学生恰为读书迷的概率为.由题意可知X~B(3,),P(x=i)=(i=0,1,2,3)…(8分)从而分布列为.…(10分)E(x)=np=,D(x)=np(1﹣p)=…(12分)17.【解答】解:(1)依题意,p1=P(40<X<80)==0.2,p2=P(80≤X≤120)==0.7,p3=P(X>120)==0.1.由二项分布得,在未来4年中至多有1年的年入流量超过120的概率为p=(1﹣p3)4+(1﹣p3)3p3=0.94+4×0.93×0.1=0.9477.…(5分)(2)记水电站年总利润为Y(单位:万元).①安装1台发电机的情形.由于水库年入流量总大于40,故一台发电机运行的概率为1,对应的年利润Y=1000,E (Y)=1000×1=1000.…(7分)②安装2台发电机的情形.依题意,当40<X<80时,一台发电机运行,此时Y=1000﹣160=840,因此P(Y=840)=P(40<X<80)=p1=0.2;当X≥80时,两台发电机运行,此时Y=1000×2=2 000,因此P(Y=2 000)=P(X≥80)=p2+p3=0.8.由此得Y的分布列如下:所以,E(Y)=840×0.2+2 000×0.8=1768.…(9分)③安装3台发电机的情形.依题意,当40<X<80时,一台发电机运行,此时Y=1000﹣320=680,因此P(Y=680)=P(40<X<80)=p1=0.2;当80≤X≤120时,两台发电机运行,此时Y=1000×2﹣160=1840,因此P(Y=1840)=P(80≤X≤120)=p2=0.7;当X>120时,三台发电机运行,此时Y=1000×3=3 000,因此P(Y=3 000)=P(X>120)=p3=0.1.由此得Y的分布列如下:所以,E(Y)=680×0.2+1840×0.7+3 000×0.1=1724.…(11分)综上,欲使水电站年总利润的均值达到最大,应安装发电机2台…(12分)18.【解答】解:(1)由散点图可以判断,y=c+d适宜作为年销售量y关于年宣传费x的回归方程类型.(2)令w=,先建立y关于w的线性回归方程.由于d==68,c=﹣d=100.6,所以y关于w的线性回归方程为y=100.6+68w,因此y关于w的线性回归方程为y=100.6+68.(3)①由(2)知,当x=49时,年销量y的预报值y=100.6+68•=576.6,年利润z的预报值z=576.6×0.2﹣49=66.32.②根据(2)的结果知,年利润z的预报值z=0.2(100.6+68)﹣x=﹣x+13.6+20.12.所以当==6.8,即x=46.24时,z取得最大值.故年宣传费为46.24千元时,年利润的预报值最大.19.【解答】解:(Ⅰ)求导数可得f′(x)=a+lnx+1,∵函数f(x)=ax+xlnx的图象在点x=e(e为自然对数的底数)处的切线斜率为3,∴f′(e)=3,∴a+lne+1=3,∴a=1(4分)(Ⅱ)k(x﹣1)<f(x)对任意x>1恒成立,∴k<对任意x>1恒成立,由(1)知,f(x)=x+xlnx,令g(x)==,则g′(x)=,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(5分)令h(x)=x﹣lnx﹣2(x>1),则h′(x)=>0,所以函数h(x)在(1,+∞)上单调递增.…(7分)因为h(3)=1﹣ln3<0,h(4)=2﹣2ln2>0,所以方程h(x)=0在(1,+∞)上存在唯一实根x0,且满足x0∈(3,4).当1<x<x0时,h(x)<0,即g'(x)<0,当x>x0时,h(x)>0,即g'(x)>0,…(9分)所以函数g(x)==在(1,x0)上单调递减,在(x0,+∞)上单调递增.所以g(x)min=g(x0)=x0.因为x0>3,所以x>1时,k<3恒成立故整数k的最大值是3.…(12分)。
兰州一中2015-2016年高二数学(文)第一学期期中考试试题及答案

兰州一中2015-2016-1学期高二年级期中考试试题数 学(文科)说明:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分100分,考试时间100分钟.答案写在答题卡上,交卷时只交答题卡.第Ⅰ卷(选择题,共36分)一、 选择题(本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将答案写在答题卡上..........) 1.不等式111-≥-x 的解集为 ( )A .(-∞,0]∪(1,+∞)B .[0,+∞)C .[0,1)∪(1,+∞)D .(-∞,0]∪[1,+∞)2.在等差数列{}n a 中,已知21=a ,1332=+a a ,则654a a a ++等于 ( ) A .40 B .42 C .43 D .453.已知各项为正数的等比数列{}n a 中,5321=a a a ,10987=a a a ,则654a a a 等于( )A .5 2B .7C .6D .4 24.ABC ∆中内角C B A ,,的对边分别为c b a ,,.若bc b a 322=-,B C sin 32sin =,则A = ( ) A .π65B .π32 C .3π D .6π 5.等差数列{}n a 中,10a >,310S S =,则当n S 取最大值时,n 的值为 ( ) A .6 B .7 C .6或7 D .不存在6.已知a ,b 为非零实数,若b a >且0>ab ,则下列不等式成立的是 ( ) A .22b a > B .b a a b > C .b a ab 22> D .2211ab b a < 7.下列命题中正确的是 ( ) A .函数xx y 1+=的最小值为2. B .函数2322++=x x y 的最小值为2.C .函数)0(432>--=x xx y 的最小值为342-. D .函数)0(432>--=x xx y 的最大值为342-. 8.在ABC ∆中,若2222sin sin b C c B +2cos cos bc B C =,则ABC ∆是 ( )A .等边三角形B .等腰三角形C .等腰直角三角形D .直角三角形 9.如图所示,位于A 处的信息中心获悉:在其正东方向相距40海里的B 处有一艘渔船遇险,在原地等待营救.信息中心立即把消息告知在其南偏西30°,相距20海里的C 处的乙船,现乙船朝北偏东θ的方向即沿直线CB 前往B 处救援,则θcos 等于 ( )A .721 B .1421C .14213 D .282110.已知点O 为直角坐标系原点,P ,Q 的坐标均满足不等式组⎪⎩⎪⎨⎧≥-≤+-≤-+0102202534x y x y x ,则POQ ∠cos 取最小值时的POQ ∠的大小为 ( ) A .6π B .4π C .3π D .2π11.在ABC ∆中,角C B A ,,所对的边分别为c b a ,,,若2222c b a =+,则C cos 的最小值为 ( )A .23 B .22 C .21 D .21- 12.已知2)1()(=-+x f x f ,)1()1()1()0(f nn f n f f a n +-+++= *)(N n ∈,则数列{}n a 的通项公式为 ( )A .1-=n a nB .n a n =C .1+=n a nD .2n a n =第II 卷(非选择题)二、填空题(每小题4分,共16分,将答案写在答题卡上..........) 13.若不等式022>+-bx ax 的解集为⎭⎬⎫⎩⎨⎧<<-3121|x x ,则=+b a . 14.如果实数x ,y 满足约束条件⎪⎩⎪⎨⎧-≥≥+-≤++10101y y x y x ,那么目标函数y x z -=2的最小值为 .15.有两个等差数列{a n },{b n },其前n 项和分别为S n ,T n ,若327++=n n T S n n ,则55b a = .. 16.在等比数列{}n a 中,若,81510987=+++a a a a 8998-=⋅a a ,则=+++109871111a a a a . 兰州一中2015-2016-1学期高二年级期中(文科)数学试题答 题 卡第I 卷(选择题)第II 卷(非选择题)二、填空题(每小题4分,共16分)13. 14. 15. 16.三、 解答题(本大题共5小题,共48分)17.(本小题8分)解关于x 的不等式0)1(2>--+a a x x ,)(R a ∈.18.(本小题8分)(1)若0>x ,0>y ,1=+y x ,求证:411≥+yx .(3分) (2)设x ,y 为实数,若122=++xy y x ,求y x +的最大值.(5分)19.(本小题10分)ABC ∆中,角C B A ,,所对的边分别为c b a ,,.已知3=a ,36cos =A ,2π+=A B .(1)求b 的值; (2)求ABC ∆的面积. 20.(本小题10分)已知单调递增的等比数列{}n a 满足28432=++a a a ,且23+a 是2a ,4a 的等差中项.(1)求数列{}n a 的通项公式;(2)若n n n a a b 21log =,数列{}n b 的前n 项和为n S ,求n S .21.(本小题12分)已知数列{}n a 满足11=a ,nn a a 4111-=+,其中*N n ∈. (1)设122-=n n a b ,求证:数列{}n b 是等差数列,并求出{}n a 的通项公式;(2)设14+=n a c nn ,数列{}2+n n c c 的前n 项和为n T ,证明3<n T .谢谢大家。
【焦点】甘肃省兰州学年高二上学期期末考试数学文试题Word版含答案

【关键字】焦点兰州一中2016-2017-1学期期末考试试题高二数学(文)说明:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分100分,考试时间100分钟.答案写在答题卡上,交卷时只交答题卡.第Ⅰ卷(选择题)一、选择题(本大题共10 小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将答案写在答题卡上.)1. 命题p: 对 x R,x3-x2+1≤0,则p是()A.不存在x R,x3-x2+1≤0B. x R,x3-x2+1≥0C. x R,x3-x2+1>0D.对 x R,x3-x2+1>02. 抛物线y2=2px上横坐标为6的点到焦点的距离是10,则焦点到准线距离是()A.4B.8C.16D.323. 下列求导数运算正确的是()A. B. (logx )'=C. D.4. 若a、b为实数, 且a+b=2, 则3a+3b的最小值为()A.6 B.18 C.2 D.25. 椭圆+y2=1的焦点为F1、F2,经过F1作垂直于x轴的直线与椭圆的一个交点为P,则| |等于()A. B. C. D.46.2x2-5x-3<0的一个必要不充分条件是()A.-<x<3 B.-<x<0 C.-3<x<D.-1<x<67.过双曲线左焦点F1的弦AB长为6,则(F2为右焦点)的周长是()A.28 B.22 C.14 D.128.已知双曲线 (a>0,b>0)的一条渐近线平行于直线l:y=2x+10,双曲线的一个焦点在直线l上,则双曲线的方程为()A. B. C. D.9. 椭圆上一点A关于原点的对称点为B,F为其右焦点,若,设,且,则该椭圆离心率的取值范围为()A. B. C. D.10. 已知点P在曲线上,α为曲线在点P处的切线的倾斜角,则α的取值范围是()A.[0,) B.[,) C.(,] D.[,π)第Ⅱ卷(非选择题)2、选择题(本大题共4小题,每小题4分,共16分,将答案写在答题卡上.)11.一个物体运动的方程为s=at3+3t2+2t,其中s的单位是米,t的单位是米/秒,若该物体在4秒时的瞬时速度是50米/秒,则= .12. 已知满足,则z=2x-y的最小值为.13. 已知是直线被椭圆所截得的线段的中点,直线的方程为.14.设双曲线=1(0<b<a)的半焦距为c,直线l经过双曲线的右顶点和虚轴的上端点.已知原点到直线l的距离为c,则双曲线的离心率为.兰州一中2016-2017-1学期期末考试答题卡高二数学(文)一、选择题(本大题共10 小题,每小题4分,共40分)题号 1 2 3 4 5 6 7 8 9 10答案2、填空题(每小题4分,共16分)11.; 12.;13.; 14. .三、解答题(本大题共5 小题,共44分)15.(本小题8分)己知a,b,c都是正数,且a,b,c成等比数列.求证:a2+b2+c2>(a-b+c)2.16.(本小题8分)已知命题p:函数y=x2+mx+1在(-1,+∞)上单调递增,命题q:对函数y=-4x2+4(2- m)x-1, y≤0恒成立.若p∨q为真,p∧q为假,求m的取值范围.17.(本小题8分)已知曲线C1:y=ax2上点P处的切线为l1,曲线C2:y=bx3上点A(1,b)处的切线为l2,且l1⊥l2,垂足M(2,2),求a、b的值.18.(本小题10分)已知抛物线C :y2=2px(p>0)过点A(1,-2). (1) 求抛物线C 的方程,并求其准线方程;(2) 若平行于OA(O 为坐标原点)的直线l 与抛物线C 相交于两点,且直线OA 与l 的距离等于,求直线l 的方程.19. (本小题10分)已知定点1(F ,动点B是圆222:(12F x y += (F 2为圆心)上一点,线段F 1B 的垂直平分线交BF 2于P . (1)求动点P 的轨迹方程;(2)若直线y =kx +2(k ≠0)与P 点的轨迹交于C 、D 两点.且以CD 为直径的圆过坐标原点,求k 的值.兰州一中2016-2017-1学期期末考试参考答案高二数学(文)一、选择题(本大题共10 小题,每小题4分,共40分)二、填空题(每小题4分,共16分)11.12; 12.-125; 13.082=-+y x ; 14三、解答题(本大题共5 小题,共44分) 15.(8分)证明:∵a ,b ,c 成等比数列,∴b 2=ac ∵a ,b ,c 都是正数,c a ca acb +<+≤=<∴20 ∴a +c >b , ……………………………4分∴a 2+b 2+c 2-(a -b +c )2=2(ab +bc -ca )=2(ab +bc - b 2)=2b (a +c -b )>0 ∴ a 2+b 2+c 2>(a -b +c )2. ……………………………8分 16.(8分)解:若函数y =x 2+mx∴m ≥2,即p :m ≥2 ……………………………2分 若函数y =-4x 2+4(2- m )x -1≤0恒成立, 则△=16(m -2)2-16≤0,解得1≤m ≤3,即q :1≤m ≤3 ……………………………4分 ∵p ∨q 为真,p ∧q 为假,∴p 、q 一真一假当p 真q 假时,由213m m m ≥⎧⎨<>⎩或 解得:m >3 ……………………………6分当p 假q 真时,由213m m <⎧⎨≤≤⎩解得:1≤m <2综上,m 的取值范围是{m |m >3或1≤m <2} …………………………8分 17.(8分)解:设P (t ,at 2),则l 1斜率k 1=2at ∴l 1:y -at 2=2at (x -t )l 2斜率k 2=3bx 2|x=1=3b ∴ l 2:y -b =3b (x -1) …………………………3分 ∵ l 1与l 2交于点M (2,2),∴ 222(2)23(21)at at t b b ⎧-=-⎨-=-⎩ ∴ 242012at at b ⎧-+=⎪⎨=⎪⎩ ① …………………………5分 又l 1⊥l 2 ∴ k 1·k 2=-1 ∴at =-13② …………………………7分由①②得t =10,a =-130…………………………8分 18.(10分)解:(1)将(1,-2)代入y 2=2px ,得(-2)2=2p ·1, 所以p =2.故抛物线方程为y 2=4x ,准线为x =-1. ……………………………3分 (2)设直线l 的方程为y =-2x +t ,由⎩⎪⎨⎪⎧y =-2x +t y 2=4x 得y 2+2y -2t =0. ……………………………5分 因为直线l 与抛物线C 有公共点,所以Δ=4+8t ≥0,解得t ≥-12. ……………………………7分由直线OA 与l 的距离d =55可得|t |5=15,解得t =±1.因为-1∉[-12,+∞),1∈[-12,+∞),所以直线l 的程为2x +y -1=0. ……………………………10分19.(10分)解:(1)由题意1PF PB =且2PB PF +=,12PF PF ∴+=22>∴P 点轨迹是以12,F F 为焦点的椭圆.设其标准方程为22221x y a b+=(0)a b >>2a ∴=a =又∴=2c 2221b ac =-=,∴P 点轨迹方程为2213x y +=. ……………………………4分(2)假设存在这样的k ,由222330y kx x y =+⎧⎨+-=⎩得22(13)1290k x kx +++=.由22(12)36(13)0k k ∆=-+>得21k >.设1122(,),(,)C x y D x y ,则1221221213913k x x k x x k ⎧+=-⎪⎪+⎨⎪=⎪+⎩①, (6)分若以CD 为直径的圆过坐标原点,则有12120x x y y +=,而212121212(2)(2)2()4y y kx kx k x x k x x =++=+++,∴212121212(1)2()40x x y y k x x k x x +=++++= ②,将①式代入②式整理可得2133k =,其值符合0∆>,故k =±.………10分此文档是由网络收集并进行重新排版整理.word 可编辑版本!。
2015兰州一中高二数学下期末试卷

2015兰州一中高二数学下期末试卷考试是紧张又充满挑战的,同学们一定要把握住分分钟的时间,复习好每门功课,下面是编辑老师为大家准备的兰州一中高二数学下期末试卷。
一、选择题(共12小题,每小题5分,每小题四个选项中只有一项符合要求。
)1.的值为()A.B.C.D.2.已知集合,则=()A.B.C.D.3.命题r:如果则且.若命题r的否命题为p,命题r的否定为q,则()A.P真q假B.P假q真C.p,q都真D.p,q都假4.若函数是奇函数,则的值为()A.1B.2C.3D.45.已知直线和平面,则的一个必要条件是()(A),(B),(C),(D)与成等角6.将函数的图象向左平移个单位,再向下平移个单位,得到函数的图象,则的解析式为()A.B.C.D.7.设非零向量错误!未找到引用源。
、错误!未找到引用源。
、错误!未找到引用源。
满足|错误!未找到引用源。
|=|错误!未找到引用源。
|=|错误!未找到引用源。
|,错误!未找到引用源。
+错误!未找到引用源。
=错误!未找到引用源。
,则向量错误!未找到引用源。
、错误!未找到引用源。
间的夹角为()A.错误!未找到引用源。
B.错误!未找到引用源。
C.错误!未找到引用源。
D.错误!未找到引用源。
8.设函数,曲线在点处的切线方程为,则曲线在点处切线的斜率为()A.B.C.D.9.设,,,(e是自然对数的底数),则()A.B.C.D.10.现有四个函数:①;②;③;④的图象(部分)如下:则按照从左到右图象对应的函数序号安排正确的一组是()①④②③B.①④③②C.④①②③D.③④②①11.在数列中,已知,则等于()(A)(B)(C)(D)12.对于函数,若存在区间,使得,则称函数为和谐函数,区间为函数的一个和谐区间.给出下列4个函数:①;②;③;④.其中存在唯一和谐区间的和谐函数为()A.①②③B.②③④C.①③D.②③精心整理,仅供学习参考。
甘肃省兰州市第一中学2016-2017学年高二下学期期末考试数学(文)试题Word版含解析

兰州一中2016-2017学年2学期期末考试试题高二数学(文)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,全卷满分150分,考试时间120分钟第I卷(共60分)一、选择题:本大题共12小题,每小题5分,共20分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 复数的实部与虚部之和为()A. B. C. D.【答案】B【解析】,复数的实部和虚部之和是,故选B.2. 已知等比数列满足,则()A. 64B. 81C. 128D. 243【答案】A【解析】试题分析:∵,∴,∴,∴.考点:等比数列的通项公式.3. 已知,则的最小值是 ( )A. 6B. 5C.D.【答案】C【解析】试题分析:,考点:基本不等式4. 图像上相邻的最高点和最低点之间的距离是()A. B. C. 2 D.【答案】A【解析】函数的周期,相邻最高点和最低点的横坐标间的距离为,根据勾股定理最高点和最低点之间的距离为,故选A.5. 参数方程(为参数)所表示的曲线是()A. 一条射线B. 两条射线C. 一条直线D. 两条直线【答案】B【解析】或,所以表示的曲线是两条射线.故选B.考点:参数方程.6. 如图所给的程序运行结果为,那么判断框中应填入的关于的条件是()A. ?B. ?C. ?D. ?【答案】D【解析】由题意可知输出结果为第1次循环,第2次循环,第3次循环,第4次循环,第5次循环,此时满足输出结果,退出循环,所以判断框中的条件为.故选7. 已知关于x的不等式ax2-x+b≥0的解集为[-2,1],则关于x的不等式bx2-x+a≤0的解集为()A. [-1,2]B. [-1,]C. [-,1]D. [-1,-]【答案】C【解析】由题意得为方程的根,且,所以,因此不等式bx2-x+a≤0为 ,选C.8. 圆的圆心极坐标是()A. B. C. D.【答案】A【解析】略9. 要得到函数的图象,只要将函数的图象()A. 向左平移单位B. 向右平移单位C. 向右平移单位D. 向左平移单位【答案】C【解析】分析:根据平移的性质,2x2x,根据平移法则“左加右减”可知向右平移个单位.解答:解:∵y=sin2x y=sin(2x)故选:C10. 若,,,,则()A. B. C. D.【答案】D【解析】因为,所以且,因为所以,又,所以,故故选D.点睛:本题主要考查了三角函数求值,属于基础题,在本题中,将所求的拆成是关键。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
兰州一中2015-2016-1学期高二年级期末考试
数学试卷(文科)
说明:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
满分100分,考试时间100分钟。
请将所有试题的答案写在答题卡上,交卷时只交答题卡。
第Ⅰ卷(选择题,共48分)
一、选择题(本大题共10小题,每小题4分,共48分)
1. 下列说法正确的是 ( ) A .命题“若2
1x >,则1x >”的否命题为“若2
1x >,则1x ≤”
B .命题“2
001x ,x ∃∈>R ”的否定是“2
1x ,x ∀∈>R ”
C .命题“若x y =,则cos cos x y =”的逆否命题为假命题
D .命题“若x y =,则cos cos x y =”的逆命题为假命题 2. 设函数()f x 在1x =处可导,则0
(1)(1)
lim 2x f x f x
∆→+∆--∆等于 ( )
A .(1)f ' B. 1
(1)2
f '-
C .2(1)f '-
D .(1)f '- 3. 已知命题p :若x y >,则x y -<-;命题q :若x y >,则22x y >.在命题①p q ∧; ②p q ∨;③ ()p q ⌝∧;④()p q ⌝∨中,真命题是
( )
A .①③
B .①④
C .②③
D .②④
4. 已知函数
()()ln ,0,f x ax x x =∈+∞ ,其中a 为实数,()f x '为()f x 的导函数,若
()13f '= ,则a 的值为 ( )
A .4 B. 3 C .2 D .1
5. “0a ≤”是“函数()(1)f x ax x =-在区间(0,)+∞内单调递增”的 ( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件
6. 已知函数3
()1f x ax x =++的图象在点(1,(1))f 的切线过点(2,7),则a 的值为( )
A .1 B. 2 C .3 D .4
7. 过双曲线2
2
13
y x -=的右焦点且与x 轴垂直的直线,
交该双曲线的两条渐近线于A ,B 两点,则AB = ( )
A B. C .6 D . 8. 已知1F 、2F 为双曲线
C :222x y -=的左、右焦点,点P 在C 上,12||2||PF PF =,则12cos F PF ∠为 ( )
A.
14 B. 35 C. 34 D. 4
5
9. 若动圆C 过定点(4,0)A ,且在y 轴上截得弦MN 的长为8,则动圆圆心C 的轨迹方程
是 ( )
A.
221412
x y -= B. 22
1(2)412x y x -=> C. 28y x = D. 28(0)y x x =≠
10. 过点(1,1)M 作斜率为12-的直线与椭圆C : 22
221(0)x y a b a b
+=>>相交于A ,B 两
点,若M 是线段AB 的中点,则椭圆C 的离心率等于 ( )
A.
12 B. 2 C. D. 23 11. 设曲线1
1
x y x +=
-在点(3,2)处的切线与直线10ax y ++=垂直,则a = ( ) A .2- B. 12-
C .1
2
D .2 12.设椭圆C :22
221(0)x y a b a b
+=>>的左右焦点分别为1F ,2F ,过点1F 的直线与
C 交于点P ,Q . 若212||||PF F F =,且113||4||PF QF =,则
b
a
的值为 ( )
A .
35 B .57 C D
第Ⅱ卷(非选择题,共52分)
二、填空题(本大题共4小题,每小题4分,共16分)
13. 若抛物线22(0)y px p =>的准线经过双曲线221x y -=的一个焦点,则
p = .
14. 设函数()f x 在(0,)+∞内可导,且()x x f e x e =+,则(1)f '= __________. 15.有甲、乙、丙、丁四位歌手参加比赛,其中只有一位获奖,有人走访了四位歌手,甲说“是乙或丙获奖”,乙说“甲、丙都未获奖”,丙说”我获奖了”,丁说“是乙获奖”。
四位歌手的话只有两位是真的,则获奖的歌手是_____.
16.已知抛物线C :28y x =的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的
一个交点,若4FP FQ =
,则||QF = .
三、解答题(本大题共4小题,共36分) 17. (本小题满分8分)
给定两个命题p :对任意实数x 都有2
10ax ax ++>恒成立;q :关于x 的方程
20x x a -+=有实数根.如果p q ∧为假命题,p q ∨为真命题,求实数a 的取值范围.
18.(本题满分8分) 设函数()b
f x ax x
=-
,曲线()y f x =在点(1,(1))f 处的切线方程为340x y --=. (Ⅰ) 求()f x 的解析式;
(Ⅱ) 证明:曲线()f x 上任一点处的切线与直线0x =和直线y x =所围成的三角形面积为定值.
19.(本小题满分10分)
如图,已知四边形ABCD 内接于抛物线2x y =,点 (3,9)C ,AC 平行于x 轴,BD 平行于该抛物线在点C 处的切线,90BAD ∠=
. (Ⅰ)求直线BD 的方程;
(Ⅱ)求四边形ABCD 的面积.
20.(本小题满分10分)
已知椭圆22221(0)x y a b a b +=>>
的离心率e =
,焦距为(Ⅰ)求椭圆的方程;
(Ⅱ)若直线2y kx =+与椭圆交于,C D 两点.问是否存在常数k ,使得以CD 为 直径的圆过坐标原点O ,若存在,求出k 的值;若不存在,请说明理由.
高二数学答题卡(文科)
二、填空题(每小题4分,共16分)
13._____________ 14.___________ 15. ___________ 16._____________ 三、解答题(本大题共4小题,共36分) 17.(本小题满分8分)
给定两个命题p :对任意实数x 都有2
10ax ax ++>恒成立;q :关于x 的方程
20x x a -+=有实数根.如果p q ∧为假命题,p q ∨为真命题,求实数a 的取值范围.
18.(本题满分8分) 设函数()b
f x ax x
=-
,曲线()y f x =在点(1,(1))f 处的切线方程为340x y --=. (Ⅰ) 求()f x 的解析式;
(Ⅱ) 证明:曲线()f x 上任一点处的切线与直线0x =和直线y x =所围成的三角形面积为定值.
如图,已知四边形ABCD 内接于抛物线2x y =,点
(3,9)C ,AC 平行于x 轴,BD 平行于该抛物线在点C 处
的切线,90BAD ∠=
. (Ⅰ)求直线BD 的方程;
(Ⅱ)求四边形ABCD 的面积.
已知椭圆22221(0)x y a b a b +=>>的离心率3
e =,焦距为(Ⅰ)求椭圆的方程;
(Ⅱ)若直线2y kx =+与椭圆交于,C D 两点.问是否存在常数k ,使得以CD 为 直径的圆过坐标原点O ,若存在,求出k 的值;若不存在,请说明理由.。