电压基准

合集下载

深入浅出常用元器件系列——电压基准

深入浅出常用元器件系列——电压基准

深入浅出常用元器件系列——电压基准因为数字、微控制器的飞快进展,本来无数由完成的任务变为由数模混合电路来完成。

模拟信号经过放大、滤波等预处理后送入转为数字信号,由或举行信号处理;由单片机、DSP的计算数字结果经由转化为模拟量对执行器举行控制。

在上述信号链路中一个十分重要的环节就是A/D转换和D/A转换,这是衔接模拟世界与数字世界的桥梁。

在模拟信号与数字信号互相转换的过程中,基准芯片起到举足轻重的作用,它为模拟信号的量化工作提供标准。

工程师越来越多地用法不同规格的基准电压芯片。

但是,无数人刚开头接触基准电压芯片时感到一筹莫展,甚至有些工程师也只关怀基准电压芯片的精度(其实是初始精度)这一指标。

下面我们一起来揭开基准电压芯片的奥秘面纱。

基准电压芯片的分类从电路拓扑结构来分,基准电压芯片可分为串联稳压型和并联稳压型两种。

从内部结构和稳压原理来看,可分为齐纳型(包括基于齐纳二极管的集成基准电压源)和带隙式(band-gap)两类。

最容易的稳压芯片就是齐纳稳压二极管,它也是典型的并联稳压结构——负载与基准电压芯片为并联衔接。

一般的齐纳二极管型的基准电源源具有初始精度不太好,噪声较大等缺点,在当前的电路设计中已经很少作为基准电压源用法。

但经过特别补偿、采纳深埋工艺的齐纳管型基准源,具有很好噪声指标、十分优异长久稳定性和温漂特性,在高端测量领域依旧不行替代。

例如LM399,其长久稳定性达20ppm/1000h,温漂低至0.3ppm/ ,而性能更好的LTZ1000长久稳定性达到惊人0.3ppm/1000h,温漂达到0.05ppm/ 。

这两款基准电压源虽已生产了几十年时光,但因为其无与伦比的性能指标,在对基准电压源要求严苛的高精度测量领域,如6位以上、高精度称重等,这两款芯片直到今日依旧不行替代。

第1页共2页。

三极管电压基准原理

三极管电压基准原理

三极管电压基准原理三极管电压基准原理在电子电路中,为了保证电路正常运行,经常需要稳定的参考电压源。

而三极管电压基准是一种常用的电路,能够提供相对稳定的基准电压。

本文将对三极管电压基准的原理进行详细介绍,并探讨其在电子领域中的广泛应用。

1. 三极管基本原理三极管是一种半导体器件,由发射极、基极和集电极三个区域组成。

它是目前广泛应用于电子电路中的一种器件,常用于放大、开关和稳压等电路中。

2. 三极管稳压原理三极管的稳压原理基于其特殊的伏安特性曲线。

在特定的工作点上,三极管的输入电流较小,输出电流较大。

当输入电流发生变化时,三极管能够通过内部偏置电流的反馈机制自动调整输出电流,从而实现稳定的输出电压。

3. 三极管电压基准电路的基本结构三极管电压基准电路由三极管以及一些辅助元器件组成。

该电路的基本结构遵循电路成分和连接原则,以达到稳定输出电压的目的。

4. 三极管电压基准电路的工作原理三极管电压基准电路的工作原理基于三极管的稳压特性。

通过合理选择电路参数和工作点,通过负反馈机制使得输出电压相对稳定,从而满足电子电路对参考电压源的需求。

5. 三极管电压基准电路的应用三极管电压基准电路在电子领域中具有广泛的应用。

它常用于温度补偿、精密测量仪器以及一些要求高精度的模拟电路中。

6. 个人观点和理解三极管电压基准原理的实现是电子电路设计中不可或缺的一部分。

它能够提供稳定的电压作为其他电路的参考,为电子设备的正常运行提供重要支持。

对于理解三极管和电路稳压原理也具有深远的意义。

在实际应用中,我们需要根据特定需求选择合适的三极管电压基准电路,并进行合理的调试和优化,以保证电路的稳定性和性能。

总结回顾:通过本文,我们详细介绍了三极管电压基准原理,并探讨了其在电子领域中的广泛应用。

三极管作为一种常用的半导体器件,其稳压特性使其成为稳定参考电压的理想选择。

在实际应用中,我们需要根据特定需求选择合适的三极管电压基准电路,并进行合理的调试和优化,以确保电路的稳定性和性能。

电压基准的特性及选用

电压基准的特性及选用

电压基准的特性及选用摘要从实际应用角度,介绍了电压基准的种类及特点,主要技术参数,选用电压基准的方法和注意事项。

关键词齐纳基准带隙基准 XFET基准初始精度温度系数一、电压基准及其应用领域电压基准可提供一个精度远比电压稳压器高的多的精确输出电压,作为某个电路系统中的参考比较电压,因而称其为基准。

电压基准在某些方面与电压稳压器类似,但二者的用途绝然不同。

电压稳压器除了向负载输出一个稳定电压外还要供给功率。

电压基准的主要用途是为系统或负载提供一个精确的参考电压,而其输出电流通常在几至几十个毫安。

电压基准的用途十分广泛,典型的应用常见于数据采集系统,用于为模数变换器或数模变换器提供一个基准参考电压。

另外,它还可用于各类开关或线性电压变换电路、仪器仪表电路和电池充电器中。

二、电压基准的主要参数1. 初始精度(Initial Accuracy)初始精度用于衡量一个电压基准输出电压的精确度或容限,即电压基准工作时,其输出电压偏离其正常值的大小。

通常,初始精度采用百分数表示,它并非是一个电压单位,故需换算才能获得电压偏离值的大小。

例如,一个标称电压为2.5V的基准,初始精度为±1%,则其电压精度范围为:5.2~5.2=1×±=±%.25.2V475V525.0025.2在厂商的数据手册中,初始电压精度通常是在不加载或在特定的负载电流条件下测量的。

对于电压基准而言,初始精度是一个最为重要的性能指标之一。

2. 温度系数(Temperature Coefficient)温度系数(简称TC)用于衡量一个电压基准,其输出电压因受环境温度变化而偏离正常值的改变程度,它也是基准电压最重要的性能指标之一,通常用ppm/℃表示(ppm是英文part per million的缩写,1ppm表示百万分之一)。

例如,一个基准标称电压为10V,温度系数为10ppm/℃,则环境温度每变化1℃,其输出电压改变10V×10×10-6=100μV。

选择电压基准需要考虑哪些参数

选择电压基准需要考虑哪些参数

选择电压基准需要考虑哪些参数在模拟和混合信号电路中,以电压基准为标准测量其他信号。

电压基准的不准确及其变化会直接影响整个系统的准确度。

我们来看一下,选择电压基准时,准确度规格和其他标准是如何起作用的。

初始精度指的是,在给定温度(通常是25°C)时测得的输出电压的变化幅度。

尽管各个电压基准的初始输出电压可能有所不同,但是如果给定基准的初始输出电压是恒定的,就很容易校准。

温度漂移也许是评估电压基准性能时使用最为广泛的性能规格,因为温度漂移显示输出电压随温度的变化。

温度漂移由电路组件的瑕疵和非线性引起。

很多器件的温度漂移都以ppm/°C 为单位规定,是主要的误差源。

器件的温度漂移如果是一致的,就可以进行一定程度的校准。

关于温度漂移有一种常见的错误认识,那就是:它是线性的。

但是,不应该想当然地认为基准的漂移量在较小的温度范围内就会较小。

温度系数(TC)通常是用一种“箱形法”来规定,以表达整个工作温度范围内可能出现的误差情况。

它是通过划分整个温度范围内的最小-最大电压差,并除以总温度范围来计算的(图1)。

这些最小和最大电压值可能并不出现在极端温度下,因而形成了TC 远远大于针对整个规定温度范围计算之平均值的区域。

对于最谨慎调谐的基准(这通常可通过其非常低的温度漂移予以识别)而言尤其如此,在此类基准中,已经对线性漂移分量进行了补偿,留下的是一个残余非线性TC。

图1:电压基准温度特性温度漂移性能规格的最佳用途是,计算所规定温度范围内的最大总体误差。

在未规定温度范围的情况下计算误差,一般是不可取的,除非非常了解温度漂移特性。

长期稳定性衡量基准电压随时间推移的变化趋势,不受其他变量影响。

初始漂移大部分是由机械应力变化引起的,是由引线框架、芯片和模具所用化合物的膨胀率不同导致的。

这种应力效应往往产生很大的初始漂移,但漂移随时间推移很快减小。

初始漂移也和电路元。

温漂小的电压基准

温漂小的电压基准

在选择一个温漂小的电压基准时,需要考虑以下几个关键因素:温度稳定性:这是最重要的考虑因素。

理想情况下,您希望电压基准随温度变化非常小。

大多数高质量的电压基准都会提供具体的温漂数据,例如在-55°C至125°C的温度范围内的温漂是多少。

电源抑制比(PSRR):这是衡量电压基准在其工作电源电压变化时保持稳定性的能力。

高PSRR 意味着电压基准对电源电压变化的敏感性较低。

初始精度:这是指电压基准在室温下的精度。

大多数高质量的电压基准的初始精度都在±0.2%至±0.5%之间。

噪声和抖动:这可能会影响需要高精度电压的应用。

尺寸和功耗:对于便携式或电池供电的应用,这可能是重要的考虑因素。

简易的基准电压

简易的基准电压

基准电压是指在电子电路中作为参考的稳定电压。

简易的基准电压可以通过使用稳压二极管、稳压芯片或者电阻分压等方法来实现。

以下是一些常见的简易基准电压设计方案:
1. 稳压二极管:常见的Zener二极管可以用作基准电压。

选取适当的Zener 二极管并将其正向接入,当电路工作时,它会将其反向击穿,提供一个稳定的电压。

但需要注意,Zener二极管的稳定性受到温度和电流变化的影响。

2. 稳压芯片:可以使用集成稳压器芯片,如LM317、LM78XX等,这些芯片提供了稳定的输出电压,通常具有更好的稳定性和温度特性。

这些芯片通常具有调节引脚,可以通过外部电阻或电容来调整输出电压。

3. 电阻分压:可以使用电阻分压网络来提供基准电压。

通过选择合适的电阻比例,可以将输入电压分压到所需的基准电压水平。

但需要考虑电阻的温度漂移和负载变化对电压的影响。

4. 振荡电路:一些特定的振荡电路也可以提供稳定的基准电压,如电子振荡器。

这种方法可以提供高精度和稳定的基准电压,但通常需要更复杂的电路设计和调整。

选择合适的基准电压方案取决于具体的应用需求、精度要求以及成本和复杂度考虑。

对于一些简单的应用,稳压二极管或稳压芯片可能是比较合适的选择,而对于高精度要求的应用,则可能需要采用更复杂的电路设计。

基准电压的作用

基准电压的作用

基准电压的作用
基准电压是指在电路中作为参考点的电压值,它的作用非常重要。


下是基准电压的几个具体作用:
1. 稳定电路工作:基准电压可以提供一个稳定的参考点,确保整个电
路工作在稳定的状态下。

如果基准电压不稳定,整个电路可能会出现
故障或者失效。

2. 保证精度:许多电子设备需要高精度的测量和控制,例如模拟转换
器和数字信号处理器等。

基准电压可以提供一个可靠的参考点来确保
这些设备的精度和可靠性。

3. 节省能源:一些低功耗设备需要使用低功耗模式来节省能源。

基准
电压可以提供一个低功耗参考点,以确保设备在低功耗模式下正常工作。

4. 降噪:在某些情况下,基准电压可以用于降噪。

例如,在放大器中,如果使用了高质量的基准电压,则可以降低信号中的噪声,并提高信
号质量。

总之,基准电压在现代电子设备中扮演着至关重要的角色。

它可以提
供一个稳定的参考点,确保电路的正常工作,同时还可以提高设备的精度和可靠性,节省能源并降低噪声。

电压基准的特性及选用解析

电压基准的特性及选用解析

电压基准的特性及选用摘要从实际应用角度,介绍了电压基准的种类及特点,主要技术参数,选用电压基准的方法和注意事项。

关键词齐纳基准带隙基准 XFET基准初始精度温度系数一、电压基准及其应用领域电压基准可提供一个精度远比电压稳压器高的多的精确输出电压,作为某个电路系统中的参考比较电压,因而称其为基准。

电压基准在某些方面与电压稳压器类似,但二者的用途绝然不同。

电压稳压器除了向负载输出一个稳定电压外还要供给功率。

电压基准的主要用途是为系统或负载提供一个精确的参考电压,而其输出电流通常在几至几十个毫安。

电压基准的用途十分广泛,典型的应用常见于数据采集系统,用于为模数变换器或数模变换器提供一个基准参考电压。

另外,它还可用于各类开关或线性电压变换电路、仪器仪表电路和电池充电器中。

二、电压基准的主要参数1. 初始精度(Initial Accuracy初始精度用于衡量一个电压基准输出电压的精确度或容限,即电压基准工作时,其输出电压偏离其正常值的大小。

通常,初始精度采用百分数表示,它并非是一个电压单位,故需换算才能获得电压偏离值的大小。

例如,一个标称电压为2.5V的基准,初始精度为±1%,则其电压精度范围为:5.2~5.2=1×±=±%.25.2V475V525.0025.2在厂商的数据手册中,初始电压精度通常是在不加载或在特定的负载电流条件下测量的。

对于电压基准而言,初始精度是一个最为重要的性能指标之一。

2. 温度系数(Temperature Coefficient温度系数(简称TC用于衡量一个电压基准,其输出电压因受环境温度变化而偏离正常值的改变程度,它也是基准电压最重要的性能指标之一,通常用ppm/℃表示(ppm是英文part per million的缩写,1ppm表示百万分之一。

例如,一个基准标称电压为10V,温度系数为10ppm/℃,则环境温度每变化1℃,其输出电压改变10V×10×10-6=100μV。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电压基准芯片型号 芯片技术资料 MAX8069 MAX8069: 低电压基准DS4305DS4305K DS4305 DS4305K: 可编程电压基准 MAX1358MAX1359MAX1360MAX1358 MAX1359 MAX1360: 16位数据采集器 带有ADC 、DAC 、UPIO 、RTC 、电压监视器和温度传感器 DS4303DS4303K DS4303 DS4303K: 可编程电压基准AX6173 MAX6174 MAX6175 MAX6176 MAX6177 MAX6173 MAX6174MAX6175MAX6176MAX6177: 高精度电压基准,带有温度传感器DS3902 DS3902: 双路、非易失、可变电阻器,带有用户EEPROM MAX6143 MAX6143: 高精度电压基准,带有温度传感器MAX6037 MAX6037A MAX6037B MAX6037C MAX6037MAX6037AMAX6037BMAX6037C: 低功耗、固定或可调输出基准,SOT23封装 MAX6043 MAX6043: 精密的高压基准,SOT23封装MAX6029 MAX6029: 超低功耗、高精度串联型电压基准MAX6035 MAX6035: 高电源电压、精密电压基准,SOT23封装MAX6126 MAX6126: 超高精度、超低噪声、串联型电压基准MAX6133 MAX6133: 3ppm/°C 、低功耗、低压差电压基准MAX6129 MAX6129: 超低功耗、串联型电压基准LM4050LM4051LM4050 LM4051: 50ppm/°C 、精密的微功耗并联型电压基准,提供多种反向击穿电压 DS3903 DS3903: 三路、128抽头、非易失数字电位器MAX6034 MAX6034: 精密、微功耗、低压差、SC70串联型电压基准 MAX6033 MAX6033: 超高精度、SOT23封装、串联型电压基准MAX6138 MAX6138: 0.1%、25ppm 、SC70并联型电压基准,带有多种反向击穿电压 MAX5420 MAX5421 MAX5420MAX5421: 数字可编程精密分压器,用于PGAMAX5430 MAX5431 MAX5430MAX5431: ±15V 数字编程精密分压器,用于PGAMAX6018 MAX6018A MAX6018B MAX6018MAX6018AMAX6018B: 精密的、微功耗、1.8V 电源、低压差、SOT23封装电压基准MAX6833 MAX6834 MAX6835 MAX6836 MAX6837 MAX6838 MAX6839 MAX6840 MAX6833MAX6834MAX6835MAX6836MAX6837MAX6838MAX6839MAX6840: 超低电压、SC70电压检测器及微处理器复位电路 AX6161 MAX6161A MAX6161B MAX6162 MAX6162A MAX6162B MAX6163 MAX6163A MAX6163B MAX6164 MAX6164A MAX6164B MAX6165 MAX6165A MAX6165B MAX6166 MAX6166A MAX6166B MAX6167 MAX6167A MAX6167B MAX6168 MAX6161MAX6161AMAX6161BMAX6162MAX6162AMAX6162BMAX6163MAX6163AMAX6163BMAX6164MAX6164AMAX6164BMAX6165MAX6165AMAX6165BMAX6166MAX6166AMAX6166BMAX6167MAX6167AMAX6167BMAX6168: 精密的、微功耗、低压差、高输出电流、SO-8电压基准 MAX6023 MAX6023: 精密的、低功耗、低压差、UCSP 电压基准 MAX6220 MAX6220: 低噪声、精密的、+2.5V/+4.096V/+5V 电压基准 MAX6100 MAX6101 MAX6102 MAX6103 MAX6104 MAX6105 MAX6106 MAX6107 MAX6100MAX6101MAX6102MAX6103MAX6104MAX6105MAX6106MAX6107: 低成本、微功耗、低压差、高输出电流、SOT23封装的电压基准 MAX6006A MAX6006B MAX6006AMAX6006BMAX6007B MAX6008A MAX6008B MAX6009A MAX6009B MAX6007BMAX6008AMAX6008BMAX6009AMAX6009B: 1µA 、SOT23封装、精密的并联型电压基准 LM4040LM4040: 改进的、精密微功耗并联型电压基准,带有多种反向击穿电压 REF01REF02 REF01 REF02: +5V 、+10V 精密电压基准MAX6061 MAX6061A MAX6061B MAX6062 MAX6062A MAX6062B MAX6063 MAX6063A MAX6063B MAX6064 MAX6064A MAX6064B MAX6065 MAX6065A MAX6065B MAX6066 MAX6066A MAX6066B MAX6067 MAX6067A MAX6067B MAX6068 MAX6061MAX6061AMAX6061BMAX6062MAX6062AMAX6062BMAX6063MAX6063AMAX6063BMAX6064MAX6064AMAX6064BMAX6065MAX6065AMAX6065BMAX6066MAX6066AMAX6066BMAX6067MAX6067AMAX6067BMAX6068: 精密的、微功耗、低压差、高输出电流、SOT23封装电压基准 LM4041LM4041: 改进的、精密微功耗并联型电压基准 MX580MX580: 高精度、+2.5V 电压基准 ICL8069ICL8069: 低电压基准 MAX872MAX874MAX872 MAX874: 10µA 、低压差、精密电压基准 MAX873MAX875MAX876MAX873 MAX875 MAX876: 低功耗、低漂移、+2.5V/+5V/+10V 精密电压基准 MX581MX581: 高精度、10V 电压基准 MX584 MX584: 引脚可编程的精密电压基准MAX6806 MAX6807 MAX6806MAX6807MAX6808 MAX6808: 电压检测器MAX6190 MAX6191 MAX6192 MAX6193 MAX6194 MAX6195 MAX6198 MAX6190MAX6191MAX6192MAX6193MAX6194MAX6195MAX6198: 精密的、微功耗、低压差电压基准MAX6001 MAX6002 MAX6003 MAX6004 MAX6005 MAX6001MAX6002MAX6003MAX6004MAX6005: 低成本、低功耗、低压差、SOT23-3封装的电压基准 MAX6012 MAX6012A MAX6012B MAX6021 MAX6021A MAX6021B MAX6025 MAX6025A MAX6025B MAX6030 MAX6041 MAX6041A MAX6041B MAX6045 MAX6045A MAX6045B MAX6050 MAX6050A MAX6050B MAX6012MAX6012AMAX6012BMAX6021MAX6021AMAX6021BMAX6025MAX6025AMAX6025BMAX6030MAX6041MAX6041AMAX6041BMAX6045MAX6045AMAX6045BMAX6050MAX6050AMAX6050B: 精密的、低功耗、低压差、SOT23-3封装、电压基准 MAX6325 MAX6341 MAX6350 MAX6325MAX6341MAX6350: 1ppm/°C 、低噪声、+2.5V/+4.096V/+5V 电压基准 MAX6125 MAX6141 MAX6145 MAX6150 MAX6160 MAX6125MAX6141MAX6145MAX6150MAX6160: SOT23封装、低成本、低压差、三端电压基准 MAX6225 MAX6241 MAX6250 MAX6225MAX6241MAX6250: 低噪声、精密的、+2.5V/+4.096V/+5V 电压基准MAX6520 MAX6520: 50ppm/°C、SOT23、三端、1.2V电压基准MAX6120 MAX6120: 低成本、微功耗、精密的、三端、1.2V电压基准MAX674 MAX674: 精密的、+10V电压基准MAX675 MAX675: 精密的、5V电压基准,取代MAX673MAX672 MAX672: 此型号被MAX674取代电压基准•TI 德州仪器电压基准•Xicor公司电压基准•Intersil公司电压基准•Microchip 微芯电压基准•ON 安森美电压基准•Sipex 公司 Power电源管理器件电压基准TI 德州仪器电压基准 - - 更多...1.LM236D-2-5:2.5V基准电压源 400uA~10mA宽工作电流2.LM236DR-2-5:2.5V基准电压源 400uA~10mA宽工作电流3.LM236LP-2-5:2.5V基准电压源 400uA~10mA宽工作电流4.LM285D-1-2:微功耗电压基准. 10uA~20mA宽工作电流5.LM285D-2-5:微功耗电压基准. 10uA~20mA宽工作电流6.LM285LP-2-5:微功耗电压基准. 10uA~20mA宽工作电流7.LM336BD-2-5:2.5V基准电压源. 10uA~20mA宽工作电流8.LM336BLP-2-5:2.5V基准电压源9.LM385BD-1-2:1.2V精密电压基准. 15uA~20mA宽工作电流10.LM385BD-2-5:2.5V精密电压基准. 15uA~20mA宽工作电流11.LM385BLP-1-2:1.2V精密电压基准. 15uA~20mA宽工作电流12.LM385BLP-2-5:2.5V精密电压基准. 15uA~20mA宽工作电流13.LM385BPW-1-2:微功耗电压基准. 15uA~20mA宽工作电流14.LM385BPW-2-5:微功耗电压基准. 15uA~20mA宽工作电流15.LM385D-1-2:1.2V精密电压基准. 15uA~20mA宽工作电流16.LM385DR-1-2:1.2V精密电压基准. 15uA~20mA宽工作电流17.LM385DR-2-5:2.5V精密电压基准. 15uA~20mA宽工作电流18.LM385LP-2-5:2.5V精密电压基准. 15uA~20mA宽工作电流19.LM385PW-1-2:1.2V微功率基准电压源. 15uA~20mA宽工作电流20.LM385PW-2-5:2.5V微功率基准电压源. 15uA~20mA宽工作电流21.REF02AP:+5V精密电压基准22.REF02AU:+5V精密电压基准23.REF02BP:+5V精密电压基准24.REF02BU:+5V精密电压基准25.REF1004I-2.5:+2.5V精密电压基准26.REF102AP:10V精密电压基准27.REF102AU:10V精密电压基准28.REF102BP:10V精密电压基准29.REF200AU:双电流基准30.REF2912AIDBZT:1.2V电压基准31.REF2920AIDBZT:2V电压基准32.REF2925AIDBZT:2.5V电压基准33.REF2930AIDBZT:3V电压基准34.REF2933AIDBZT:3.3V电压基准35.REF2940AIDBZT:4V电压基准36.REF3012AIDBZT:1.25V,50ppm/℃,50uASOT23-3封装电压基准37.REF3020AIDBZT:2.048V,50ppm/℃,50uASOT23-3封装电压基准38.REF3025AIDBZT:2.5V,50ppm/℃,50uASOT23-3封装电压基准39.REF3033AIDBZT:3.3V,50ppm/℃,50uASOT23-3封装电压基准40.REF3040AIDBZT:4.096V,50ppm/℃,50uASOT23-3封装电压基准41.REF3120AIDBZT:20ppM(最大)100uA,SOT23封装电压基准42.REF3133AIDBZT:20ppm/℃, 100uA, SOT23-3封装3.3V电压基准43.TL1431CD:精密可编程输出电压基准44.TL1431CPW:精密可编程输出电压基准45.LM336BLP-2-5:2.5V基准电压源46.LM385-1.2V:1.2V精密电压基准. 15uA~20mA宽工作电流Xicor公司电压基准1.X60003CIG3-50:Xicor 公司电压基准2.X60003DIG3-50:Xicor 公司电压基准3.X60008BIS8-25:Xicor 公司电压基准4.X60008BIS8-41:Xicor 公司电压基准5.X60008BIS8-50:Xicor 公司电压基准6.X60008CIS8-25:Xicor 公司电压基准7.X60008CIS8-41:Xicor 公司电压基准8.X60008CIS8-50:Xicor 公司电压基准9.X60008DIS8-25:Xicor 公司电压基准10.X60008DIS8-41:Xicor 公司电压基准11.X60008DIS8-50:Xicor 公司电压基准12.X60008EIS8-50:Xicor 公司电压基准Intersil公司电压基准1.电压基准(Intersil)2.ISL60002CIB825:Intersil 公司电压基准3.ISL60002CIH325:Intersil 公司电压基准4.ISL60002DIB825:Intersil 公司电压基准5.ISL60002DIH325:Intersil 公司电压基准6.X60003CIG3-50T1:Intersil 公司电压基准7.X60003DIG3-50T1:Intersil 公司电压基准Microchip 微芯电压基准1.电压基准:2.MCP1525-I/TT:2.5V电压基准3.MCP1525T-I/TT:2.5V电压基准4.MCP1541-I/TT:4.096V电压基准5.MCP1541T-I/TT:4.096V电压基准ON 安森美电压基准1.电压基准:2.LM285D-1.2G:1.2V电压基准3.LM285D-2.5G:2.5V电压基准4.LM285D-2.5R2G:2.5V电压基准5.LM285Z-2.5G:2.5V电压基准6.LM385BD-1.2G:1.2V电压基准7.LM385BD-2.5G:2.5V电压基准8.LM385BD-2.5R2G:2.5V电压基准9.LM385BZ-1.2G:1.2V电压基准10.LM385BZ-2.5G:2.5V电压基准11.LM385D-1.2G:1.2V电压基准12.LM385D-1.2R2G:1.2V电压基准13.LM385D-2.5G:1.2V电压基准14.MC1403BP1G:低电压参考源15.MC1403D:低电压参考源16.MC1403DG:低电压参考源17.MC1403P1:低电压参考源18.MC1403P1G:低电压参考源19.NCP100SNT1:精密电压基准20.NCP100SNT1G:精密电压基准21.NCV1009D:2.5V电压基准22.NCV1009DG:2.5V电压基准23.NCV1009DR2G:2.5V电压基准24.NCV1009ZG:2.5V电压基准25.TL431ACDG:可编程精密参考源26.TL431ACDR2G:可编程精密参考源27.TL431ACLPG:可编程精密参考源28.TL431AIDG:可编程精密参考源29.TL431AIDMR2G:可编程精密参考源30.TL431AIDR2G:可编程精密参考源31.TL431AILPG:可编程精密参考源32.TL431BCDG:可编程精密参考源33.TL431BCDMR2G:可编程精密参考源34.TL431BCLPG:可编程精密参考源35.TL431BIDG:可编程精密参考源36.TL431BIDMR2G:可编程精密参考源37.TL431BIDR2G:可编程精密参考源38.TL431BILPG:可编程精密参考源39.TL431BVDG:可编程精密参考源40.TL431BVDR2G:可编程精密参考源41.TL431BVLPG:可编程精密参考源42.TL431CDG:可编程精密参考源43.TL431CLPG:可编程精密参考源44.TL431CLPRAG:可编程精密参考源45.TL431CPG:可编程精密参考源46.TL431IDG:可编程精密参考源47.TL431ILPG:可编程精密参考源48.TLV431ALPG:低电压精密可调参考源49.TLV431ALPRAG:低电压精密可调参考源50.TLV431ALPRPG:低电压精密可调参考源51.TLV431ASN1T1G:低电压精密可调参考源52.TLV431ASNT1G:低电压精密可调参考源53.TLV431BLPG:低电压精密可调参考源54.TLV431BLPRAG:低电压精密可调参考源55.TLV431BSN1T1G:低电压精密可调参考源56.TLV431BSNT1G:低电压精密可调参考源Sipex 半导体公司 Power电源管理器件电压基准- - 更多...1.SPX1004AN-1.2:1.2伏/2.5伏微功耗电压基准SPX1004N-2.5:2.5伏微功耗电压基准2.SPX1431S:精准可调分流调节器3.SPX2431AM:精准可调分流调节器SPX2431AM-L/TR:SPX2431AM-L/TRSPX2431M-L:SPX2431M-L4.SPX385AM-L-5-0:微功耗电压基准SPX385AN-1.2:SPX385AN-1.25.SPX431AM5:精准可调分流调节器SPX431AN-L/TR:SPX431AN-L/TRSPX431BM1/TR:SPX431BM1/TRSPX431BM1-L/TR:SPX431BM1-L/TRSPX431CS:SPX431CSSPX431LCN-L/TR:SPX431LCN-L/TR6.SPX432AM/TR:1.24V精准可调分流调节器SPX432AM-L/TR:SPX432AM-L/TR。

相关文档
最新文档