2019大学物理教学资料——相对论.ppt
大学物理教程讲义第十章狭义相对论基础ppt课件

如图10.1所示,设两个惯性参考 系S和S′,在这两个惯性系中分别建 立直角坐标系,取它们的坐标轴对应 平行,然后在两个参考系中分别放置 一钟表用来计时。则在参考系S中的空 间和时间坐标为x,y,z,t,在参考系 S′中的空间和时间坐标为 x′,y′,z′,t′,我们将时空坐标称 为事件,即在某一时刻发生在某一点 的事件。
12
10.2 爱因斯坦的两个基本假设 洛伦兹变换
2.光速不变原理
在所有惯性系中,真空中的光速具有相同的量值。也就 是说,真空中的光速与光源和观测者的运动状态无关。光速 不变原理是由联立求解麦克斯韦方程组得到的,并为迈克尔
。也就是说,在自然界中任意物质的传 播速度(或相互作用的传播速度)是不能超过光速的。
6
10.1 伽利略相对性原理 牛顿力学时空观
3.空间间隔的测量是绝对的
7
10.2 爱因斯坦的两个基本假设 洛伦兹变换
10.2.1 狭义相对论的理论与实验基础
1.麦克斯韦方程组与伽利略变换的不相容
19世纪末,麦克斯韦系统总结了前人在电磁学方面的成就,并 加以发展,得出了麦克斯韦方程组,预言了电磁波的存在,并且认 为光就是电磁波,从而用统一的方法描述了电、磁和光的现象。于 是人们就可以利用这些电磁学和光学现象来确定飞船的速度。爱因 斯坦放弃了伽利略变换和以太的概念,在洛伦兹变换和光速不变的 基础上提出了狭义相对论。
8
10.2 爱因斯坦的两个基本假设 洛伦兹变换
2.
是为了测量地球在以太中 的速度而做的一个实验, 是在1887年由迈克尔逊与 莫雷合作,在美国的克利 夫兰进行的。 实验装置 如图10.2所示。
图10.2
9
10.2 爱因斯坦的两个基本假设 洛伦兹变换
大学物理,相对论6-3 狭义相对论的基本原理 洛伦兹变换

伽利略变换与狭义相对论的基本原理不符。
6
第6章 相对论 6.3 狭义相对论的基本原理 洛仑兹变换 和光速不变紧密联系在一起的是:在某一惯性系 中同时发生的两个事件,在相对于此惯性系运动的另 一惯性系中观察,并不一定是同时发生的。
说明同时具有相对性,时间的量度是相对的。
长度的测量是和同时性概念密切相关。
(3)即在低速情况下可以转化为伽利略变换。
10
6.3 狭义相对论的基本原理 二 洛伦兹变换
洛仑兹变换
第6章 相对论
设有两个惯性系 S 系和 S’ 系,各坐标轴相互 平行。 S’ 系相对S系以 u的速度沿 ox 轴运动。 设: t
t' 0
时,
o, o ' 重合。
事件 P 的时空坐标为:
s
o z
7
6.3 狭义相对论的基本原理 明确几点:
洛仑兹变换
第6章 相对论
Hale Waihona Puke 1)第一条原理是对力学相对性原理的推广。 否定了绝对静止参照系的存在。
它表明不论在哪个惯性系中做物理实验(不仅 仅是力学实验),都不能确定该惯性系是静止的、 还是在作匀速直线运动。即对运动的描述只有相 对意义,绝对静止的参考系是不存在的。 2)第二条原理实际上是对实验结果的总结。 它表明:在任何惯性系中测得的真空中的光速都相 等。说明光速与观察者及光源的运动状态无关。
x
x ut 1 (u / c )
t xu / c 2 1 (u / c )
2
2
1 106 0.75 3 108 0.02 1 0.75
2
5.29 10 m
6
t
0.0265 s
大学物理相对论ppt课件

vy 0
vz 0
5
6-3 狭义相对论的时空观
一、同时的相对性
事件1
S 系
( x1, t1)
事件2 ( x2 , t2 )
两事件同时发生
t1 t2 t t2 t1 0
S系
( x1 , t1 ) ( x2 , t2 )
? t t2 t1
6
6-3 狭义相对论的时空观
一、同时的相对性
S
以爱因斯坦火车为例
3600
4.5
y
33
6-3 狭义相对论的时空观
例8:半人马星座a星是距太阳最近的恒星,它距地
球 S 4.3 ,1设0有16 m一宇宙飞船自地球飞到该星,飞船
对地速度v=0.99c,地球上的钟测得多少年?若以 飞船上的钟计算,又为多少年? 解:以飞船上的钟计算:
t t t 1t
t 1 0.9992 4.5 0.(2 年)
两端坐标之差就是物体长度。
原长 棒相对观察者静止时测得的它的长度
(也称静长或固有长度)。
棒静止在S'系中 l0是静长
S系测得棒的长度值是什么呢?
动长(测量长度) 13
6-3 狭义相对论的时空观
二.长度的相对性
运动的棒变短
事件1:测棒的左端
S S
u
事件2:测棒的右端 由洛仑兹变换
x x ut
1 u2 c2
解:1、若不考虑相对论效应,则有
lp v 0 0.75 3108 2.6108 5.85(m)
2、若考虑相对论效应,则有
0
2.6 108 1 0.752
3.9108(s)
l v 0.75 3108 3.9108 8.78(m)
大学物理相对论

大学物理相对论目录相对论基本概念狭义相对性原理光速不变原理质能关系030201等效原理广义协变原理引力场方程相对论与经典物理关系相对论是经典物理的延伸和发展,解决了经典物理在高速和强引力场下的困境。
相对论和经典物理在低速和弱引力场下是一致的,但在极端条件下存在显著差异。
相对论揭示了时间和空间的相对性,以及质量和能量的等价性,这些概念在经典物理中是没有的。
狭义相对论基本原理洛伦兹变换同时性相对性在一个惯性参考系中同时发生的两个事件,在另同时性相对性是狭义相对论的基本原理之一,与长度收缩和时间膨胀010203广义相对论基本原理等效原理弱等效原理强等效原理引力场与以适当加速度运动的参考系是等价的。
弯曲时空概念时空弯曲测地线爱因斯坦场方程场方程形式$R_{munu} -frac{1}{2}g_{munu}R + Lambda g_{munu} = frac{8piG}{c^4}T_{munu}$,其中$R_{munu}$ 是里奇张量,$g_{munu}$ 是度规张量,$R$ 是标量曲率,$Lambda$ 是宇宙学常数,$G$ 是万有引力常数,$c$ 是光速,$T_{munu}$ 是能量-动量张量。
场方程的物理意义描述了物质如何影响时空的几何结构,以及时空几何结构如何影响物质的运动。
狭义相对论在物理学中应用质能关系及核能计算核反应能量计算质能方程在核反应中,质量亏损对应的能量释放遵循质能方程,可计算核反应释放的能量。
核裂变与核聚变1 2 3放射性衰变粒子衰变动力学衰变产物的检测与分析粒子衰变过程分析高速运动物体观测效应长度收缩效应时间膨胀效应质速关系及质能变化广义相对论在物理学中应用宇宙微波背景辐射广义相对论预测了宇宙微波背景辐射的存在,这是宇宙大爆炸后遗留下来的热辐射,为宇宙大爆炸理论提供了有力证据。
宇宙大爆炸理论广义相对论为宇宙大爆炸理论提供了理论框架,解释了宇宙的起源、膨胀和演化。
暗物质与暗能量广义相对论在解释宇宙大尺度结构形成和宇宙加速膨胀时,提出了暗物质和暗能量的概念,这些物质和能量对于理解宇宙的演化至关重要。
大学物理狭义相对论基础全部内容ppt课件

c29979214 .25m 8s-1
.
33
▲ 揭示出真空的对称性质:对于光的传播而言, 真空各向同性,所有惯性系彼此等价。
▲ c 是自然界的极限速率
1962年 贝托齐实验
贝托齐实验结果
速率极限:指能量和信息传播速率的极限。
.
34
二.洛仑兹变换
1.坐标变换
S系P x,y,z,t 寻找 对同一客观事件 P,
行星的自转或公转;单摆;晶体振动;分子、原 子能级跃迁辐射……
国际单位:“秒”
与铯133原子基态两个超精细能级之间跃迁相对应的 辐射周期的9192631700倍(精确度 1012~1013)
校钟操作:
O
A
B
l
l
.
14
由此在一个惯性系中的不同地点建立统一的时间坐标:
y
对不同惯性系
伽利略变换中我们默认了
S系 P x ,y ,z,t
两个惯性系中相应的 坐标值之间的关系。
S系
y
o z
S 系
y
up
o z
当 tt时0 ,
由 o( o发出)光信号,
x 光信号到达 P :
x
S: P(x, y,z,t)
S: P(x, y,z,t)
.
35
S y S y′
u • P (x, y, z,t)
在 S, S中,
r
r P(x,y,z,t) 真空中光速均为 c
以分子运动为基础的微观理论(统计物理学)
.
4
物理学家感到自豪而满足,两个事例:
在已经基本建成的科学大厦中,后辈物理学家只要 做一些零碎的修补工作就行了。也就是在测量数据的 小数点后面添加几位有效数字而已。
大学物理:第11章-相对论1-洛伦兹时空变换和速度合成

力学定律:F ma 推论:a在所有惯性系中保持不变 数学上:伽利略变换
1 伽利略变换:
正变换
x' x ut y' y z' z t' t
逆变换
x x'ut' y y' z z'
t t'
y S y' S'
1905年,爱因斯坦发表了具有划时代意义的论文 《论动体的电动力学》,提出了爱因斯坦相对性原理 和光速不变原理,作为狭义相对论的两条基本假设。
1、伽利略变换的困难
1).电磁场方程组不服从伽利略变换 伽利略变换需要修正?
电磁学基本规律不遵从相对性原理? 修正电磁学
2). 伽利略修正导致一些实验无法观测的新现象 伽利略变换不适于光或电磁波的运动(高速运动)。
az az
在两个惯性系中
a a
2、伽利略变换与绝对时空概念
t t' 得: t t'
即:在S系和S’系中的观察者对任意两事件之间的时 间间隔进行测量,测量结果与参照系无关。
在牛顿力学中,时间是绝对的。
同一根棒在不同参考系中的长度:
L x2 x1
L' x'2 x'1
由伽利略变换得: x2 x1 x于力学定理
速度与参考系有关,相对的
狭义相对 光速, 是绝对的 论力学 时间测量 长度测量 与参考系有关,相对的 质量测量
惯性系等价适用于一切物理定理
2、洛伦兹变换:
相对论的基本原理出发,推导洛仑兹变换 为简明扼要,只考虑沿x方向有相对运动
(1) 时空均匀性,线性变换,一次方程
大学物理第6章狭义相对论ppt课件
既然同时性是相对的,那么早与晚的时间顺序
是否也是相对的呢?即一个参考系早发生的事件,
在另一个参考系看来会晚发生呢?
是可能的。但具有因果关系的事件的时序是不
会颠倒的。
小结
时空与物质的运动是相互联系的; 空间距 离、时间间隔、同时性也是相对的,它们随物 体与观察者的相对运动状态而改变。 这就是狭义相对论的时空观。
x 2,y 2,u0.5c S
2
2
y
S(棒): 棒只在运动方向变长。
x x , y y
1 u2 / c2
o
固有长度:
lo (x)2(y)2=1.08m z
S y u
y
45°
x
o
x
x
z
补充例:π介子静止寿命为2.5×10-8s,实验时测得 其速率为0.99c,在衰变前可运行距离52m 问:实验结果与理论分析是否一致
K :t(tuc2x)0, 解得: u=0.6c
xx1u2/c24106m
或 x( xu t)4106m
例题6.4.3 S系:两事件发生在同一地点, 且第二事件比第一事件晚发生t=2s;而S: 观测到第二事件比第一事件晚发生t =3s。 在S系中测得发生这两事件的地点之间的距离x是多 少?
解:能否用长度收缩公式? 不行。
或者说:运动的时钟走得慢些(钟慢)。 时间膨胀(钟慢)是相对性效应,与钟表的具体运 转无关。
3.同时的相对性
设A、B两事件同时发生在S系的不同地点, 即
S : xx2 x1 0,tt2 t1 0
S:
tt2t1(tuc 2x)
ux c2 0
可见,在S系看来同时发生的事件,在S系看来
就不是同时发生的。所以同时性是相对的。
大学物理教程(上册)_相对论(2)
同时异地事件
问题:在某一惯性系中的同步钟,在另一相对其运 动的惯性系中是否仍然是同步的?
必然不同时
在S中看来
s
o u
x
s
o
x
u 由洛仑兹变换:t t 2 x ; x 0 t t c
在 s 中看来
s
o
x
若 S 系中 在
s
t t 2 t1 0 即事件1先发生
系中时序是否变化? 时序变化 :
u t ( t 2 x ) 0 c u t 2 x c x c 2 c t u
时序不变 :
u t ( t 2 x ) 0 c u t 2 x c x c 2 t u
日常生活经验:在一个惯性系中同时发生的两个 事件,在其它惯性系中看来,也是同时发生的。 “同时”概念与参考系选择无关。
爱因斯坦认为: 同时性概念是因参考系而异的,在 一个惯性系中认为同时发生的两个事件,在另一惯性 系中看来,不一定同时发生。同时性具有相对性。
虽然彭加勒才华横溢,洛伦兹学识渊博。但他们 都不敢迈出决定性的革命的一步,去重新检验我们 的同时性概念。这个概念或许不只是从我们的父辈 那儿学来的,而简直就像经过漫长的进化过程遗传 到我们的基因中的一样。 ---杨振宁
讨论1:“对时”
在同一惯性系中的“对时”:即在同一惯性系中建立 起统一的时间坐标, 校钟操作:
在由中点o发出的光信 号抵达的瞬间,对准 A,B处钟的读数。
A
l l
O
B
y
每个惯性系中的观察者 都认为本系内各处的钟 是已经校对同步的。
z
o
x
定义“同时”概 念 A,B处事件发出的 如果由
大学物理课件相对论1
大学物理课件相对论1一、教学内容本节课的教学内容选自人教版《大学物理》课件,主要涉及相对论的基本原理和概念。
具体包括爱因斯坦的相对论原理、时间膨胀、长度收缩、质能方程等。
二、教学目标1. 让学生理解相对论的基本原理,了解相对论对现代物理学的发展意义。
2. 使学生掌握时间膨胀、长度收缩等相对论效应的计算方法。
3. 培养学生运用相对论理论解决实际问题的能力。
三、教学难点与重点重点:相对论的基本原理、时间膨胀、长度收缩、质能方程。
难点:相对论效应的计算方法,以及如何运用相对论理论解决实际问题。
四、教具与学具准备教具:PPT课件、黑板、粉笔。
学具:笔记本、三角板、计算器。
五、教学过程1. 实践情景引入:通过介绍相对论在日常生活中的应用,如全球定位系统(GPS),引发学生对相对论的兴趣。
2. 知识讲解:讲解相对论的基本原理,时间膨胀、长度收缩、质能方程等概念。
3. 例题讲解:举例子说明相对论效应的计算方法,如一个宇航员在太空船上的时间与地球上的时间的关系。
4. 随堂练习:让学生运用相对论效应计算方法,解决实际问题,如太空船在高速飞行时的长度收缩。
5. 课堂互动:鼓励学生提问,解答学生对相对论的疑问。
六、板书设计板书相对论板书内容:1. 相对论原理2. 时间膨胀3. 长度收缩4. 质能方程七、作业设计1. 解释相对论的基本原理,并说明其在现代物理学中的重要性。
答案:相对论是现代物理学的基石,它改变了我们对时间、空间和物质的认识,为粒子物理学、宇宙学等领域的发展提供了理论基础。
2. 计算一个宇航员在太空船上的时间与地球上的时间的关系。
答案:根据相对论原理,宇航员在太空船上的时间会比地球上的时间慢,具体慢多少需要根据相对论效应的计算方法来确定。
3. 运用相对论效应计算方法,解决太空船在高速飞行时的长度收缩问题。
答案:根据相对论效应的计算方法,太空船在高速飞行时,其长度会沿飞行方向收缩,具体收缩多少需要根据相对论效应的计算公式来确定。
[课件]大学物理第3章 相对论基础PPT
教学基本内容、基本公式 1. 狭义相对论的基本原理
光速不变原理:对真空中的任何惯性参考系,光沿任意方向的传播速度都是c. 相对性原理:所有物理规律在任何不同的惯性参考中形式相同。
2. 狭义相对论的时空观
爱因斯坦认为,时间和长度的测量是相对的,即时间和长度的测量要受到 测量对象和观察者之间的相对运动的影响,运动要影响测量.这反映出空间、 时间与物质的运动有着不可分割的联系。 在数学上跟相对论时空观相对应的时空坐标变换式为洛仑兹变换。
2 u 2 t1 2 5 1 ( 0 . 6 ) 4 s c
t
8
解答三
y
y
飞 船
t x / v 飞船: x x x 0 . 6 c 5 0 . 8 c 5 7 c 地: 2 1 t 0
u
t1
v
t1 t 3
狭义相对论的时空观爱因斯坦认为时间和长度的测量是相对的即时间和长度的测量要受到测量对象和观察者之间的相对运动的影响运动要影响测量
大学物理第3 章 相对论基 础
第3章 相对论基础
基本要求
理解经典力学的相对性原理,伽利略变换。理解狭义相对论基本原理。洛 仑兹变换。理解狭义相对论时空现(同时的相对性、运动物体长度缩短、 时间膨胀)。理解质量和速度的关系,质量和能量的关系。会计算有关简 单问题。
讨论
6
例: 一飞船和慧星相对于地面分别以0.6c和0.8c速度相向运动, 在地面上观察,5s后两者将相撞,问在飞船上观察,二者将经历 多长时间间隔后相撞? 解答一: 两者相撞的时间间隔Δ t = 5s是运动着的对象(飞船和慧 星)发生碰撞的时间间隔,因此是运动时.在飞船上观察的碰 撞时间间隔t是以速度v = 0.6c运动的系统的静止时,根据时间 膨胀公式 t t 1(v/ c)2 可得时间间隔为
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相对论---关于时空观及时空与物质关系的理论 (所谓经典力学遇到障碍就是经典力学的 时空观出现了问题,相对论从根本上改变 了经典的时空观。)
相对论有狭义相对论、广义相对论之分:
狭义相对论 (special relativity) 关于惯性系时空观的理论; 广义相对论 (General relativity) 关于一般参照系及引力的理论;
c 1
0 0
1 (4 10 7 )(8.85 1012 )
9
2.998 108 m/s
真空中的光速始终是一个常数,与参考系无关。 在实验上也得出了相同的结果。
设光源固定在地上, 在地上测得光速为c, 在匀速直线运动的小 车上测得光速也是c! 这和我们的“速度与参考系有关”及 “伽利略速度变换”的概念完全不同: 所以麦克斯韦电磁场方程组并不具有伽利略变换 下形式不变的特点,对不同惯性系不是形式不变。
L c-u
11
1887年,体现上面思想的迈克耳孙─莫雷精确 实验却得到了“零”结果!
Δ t 0; u 0
地球就是“绝对静止”的参考系? 显然不是。 有人认为“以太”( ether )是“绝对静止”的 参 考系,但是以太的性质太不可思议了。 “以太” 不可能存在。 种种解释遭到失败。
12
爱因斯坦的观点: 物质世界的规律应该是统一的、和谐的。 麦克斯韦 方程组也应对所有惯性系成立、 形式不变。 “真空中的光速始终是一个常数,与参考系无关” 是个实验事实, 应该接受。 应该对伽利略变换 关系进行修正!
狭义相对论基础
(Special Relativity)
1
19世纪末叶,牛顿定律在各个领域里都取得 了很大的成功。当时的许多物理学家都沉醉 于这些成绩和胜利之中。他们认为物理学已 经发展到头了。 “在已经基本建成的科学大厦中, 后辈的物理学家只要做一些零碎的 修补工作就行了。” --开尔文--
2
这两朵乌云是指什么呢? “但是,在物理学晴朗天空的远处,还有 两朵令人不安的乌云,----” 迈克尔逊热辐射实验 莫雷实验 后来的事实证明,正是这两朵乌云发展为一 埸革命的风暴,乌云落地化为一埸春雨,浇 灌着两朵鲜花。
t t ' t t' (3)同时是绝对的 如果 t 0 , 就有 t ' 0
7
(2)经典时空中时间的量度是绝对的
v ' v ui
a' a
(4)经典时空中速度满足速度叠加原理 (5)不同惯性系下,描写同一质点的加速度相同 (6)不同惯性系下,力学规律相同 在经典力学中认为质量与速度无关,而且同一物体 在不同惯性系中受力是相同的: m m' , F F ' 则如果:
6
z
由时空间隔的绝对性,有:
v x v x u v v u v y v y — 伽利略速度变换 vz vz
u const.
讨论
dv dv a a dt dt
(1)经典时空中长度的量度是绝对的 x1 x1 'ut , x2 x2 'ut x2 x1 x2 ' x1 '
5
y
y
ut
u
P(x , y , z , t )
(x, y, z, t ) u ui const.
.
x ∥ x,y ∥ y,z ∥ z,
O
O
且O 与 O 重合时,
x x
t 0 , t 0 。
z
x x ut y y — 伽利略变换 z z (Galilean transformation) t t 将伽利略变换式双方对时间求导,得:
10
c
u
但是实验证明麦克斯韦电磁场方程组是正确的。 人们想了种种办法来解释出现的矛盾, 但是总也不能成功。 有人想找到麦克斯韦电磁场方程组对 “绝对静止”参考系的形式。 企图找到“绝对静止”参考系的实验: u u
u 设地球在“绝对静止”参考系中的速度为
c+u
,
t t B t A l l B A l l cu cu u 设 u << c , 则 t 2l 。 2 c
13
1905年,爱因斯坦(26岁)在一篇 《论动体的电动力学》论文中,大胆地提出了两个观点: (1) 爱因斯坦相对性原理:物理规律 (力、电磁…)对所有惯性系都是一样的。 力学相对性原理 整个物理学的相对性原理.
不存在任何特殊的惯性系。 (2) 光速不变原理:任何惯性系中,光在 真空中的速率都为c. 这就意味着伽里略变换应该修改, 意味着牛顿相对性原理应该修改, 意味着牛顿的时空观应该修改 !!!
15
狭义相对论的两条基本原理 1)相对性原理
对于描述一切物理过程(包括物体位置变动、电 磁以及原子过程)的规律,所有惯性系都是等价 的。
3
普朗克量子力学的诞生
相对论问世
高速领域 微观领域
相对论 量子力学
经典力学
4
牛顿相对性原理与伽利略变换
牛顿相对性原理(力学相对性原理):
一切力学规律在不同的惯性系中应有相同的形式。 牛顿定律对任何惯性系成立,形式都是 F ma . 而由它推出的动量定理、角动量定理、 动能定理在任何惯性系的形式,也都是一样的。 牛顿相对性原理源于牛顿的时空观。 时间和空间的测量不依赖于惯性参考系而不同。 牛顿的时空观可通过以下坐标和时间变换来体现:
F ma
就有: F ' m' a '
表明伽利略变换和力学相对性原理是一致的 。 用力学实验无法判定一个惯性系的运动状态。
伽利略变换与牛顿相对性原理是一回事, 是绝对时空观的必然结果。
8
爱因斯坦相对性原理和光速不变
人们认为牛顿力学的绝对时空观是“天经地义”的, 但是在19个世纪下半叶,出现了问题。 19世纪下半叶,得到了电磁学方面的基本规律 即麦克斯韦电磁场方程组。 人们发现,麦克斯韦电磁场方程组并不具有 伽利略变换下形式不变的特点。 例如,麦克斯韦电磁场方程组中有真空中 的电磁波速(光速)c: