用计算器求一个正数的算术平方根(第二课时)

合集下载

2022-2023学年七年级数学下册课件之平方根 第二课时(人教版)

2022-2023学年七年级数学下册课件之平方根 第二课时(人教版)
设大正方形的边长为x dm,则x2 = 2. 由算术平方根的意义可知x= 2 ,
所以大正方形的边长是 2 dm.
探究2 2 有多大? 因为 12 = 1,22=4,所以1< 2 <2; 因为 1. 42 = 1. 96,1. 52=2. 25,所以 1.4< 2 <1.5; 因为 1.412 = 1.988 1,1.422 = 2.016 4, 所以 1.41< 2 <1.42; 因为 1. 4142 = 1. 999 396,1. 4152=2. 002 225, 所以 1.414< 2 <1.415; ……
6.1 平 方 根
第2课时
你能计算 5.89 吗?
知识点 1 估算
探究1 能否用两个面积为1 dm2的小正方形拼成一个面积为 2 dm2的大正方形?
如图,把两个小正方形分别沿对角线剪开,将所得的4 个直角三角形拼在一起,就得到一个面积为2 dm2的 大正方形. 你知道这个大正方形的边长是多少吗?
总结
估算 a (a≥0)时,可以采用夹逼法,首先确定 a 的 整数部分,根据算术平方根的定义,有m2<a<n2,其中 m,n 是连续的非负整数,则m< a <n,则 a 的整数部 分为m;同理可得 a 的小数部分,如此进行下去,可得
的近似值.
1 比较下列各组数的大小:
(1) 8与 10 ;
(2) 65与8 ;
则这个正数的算术平方根的小数点就向右(或 向左)移动一位; (3) 0.0125 ≈0.112.
已知 23 ≈4.80, 230 ≈15.17,则 0.002 3 的值约为( B )
A.0.480
B.0.048 0
C.0.151 7
D.1.517

七年级数学下册 第六章 实数 6.1 算术平方根 用计算器求一个正数的算术平方根

七年级数学下册 第六章 实数 6.1 算术平方根 用计算器求一个正数的算术平方根

纸片裁出符合要求的纸片吗?
2021/12/11
第十五页,共十七页。
活动(huó dòng)5
归纳小结深 本节课你有哪些(nǎxiē)收获? 化新知
师生共同回顾本节课所学内容,并请学生回答以下问题: (1)利用逼近法来求算术平方根的近似值的依据是什么? (2)利用计算器可以求出任意正数的算术平方根或近似值吗? (3)被开方数扩大(或缩小)与它的算术平方根扩大(或缩小)的规律是? (4)怎样的数是无限(wúxiàn)不循环小数?
规定:0的算术平方根是0,即 0 0.
根号
(ɡēn hào)
a
被Hale Waihona Puke 方数2021/12/11a的算术平方根 第二页,共十七页。
活动1
梳理(shūlǐ) 旧知
铺垫新知
请用算术(suànshù)平方根定义填表格
a
4
(a˃0) 2 5
1
1.9 2.2 65
4
9
16
a
2
5 1 1.4 1.5 2 3 4
若 ab0 ab0.
体验 估算 (tǐyàn)
1.(2016年天津中考)估计 19 的值在( C )
A. 2和3之间
B. 3和4之间
C. 4和5之间
D.5和6之间
2.(2012天津中考)估计 61 的值在(B )
A. 2到3之间
B. 3到4之间
C. 4到5之间
D. 5到6之间
2021/12/11
第十页,共十七页。
活动4 初步应用 巩固新知
2021/12/11
第七页,共十七页。
活动3 问题探究学
习(xuéxí)新知用计算器求下列(xiàliè)各式的值:

6.1.2 用计算器求算术平方根及其大小比较(第二课时)(教学设计)七年级数学下册(人教版)

6.1.2 用计算器求算术平方根及其大小比较(第二课时)(教学设计)七年级数学下册(人教版)

6.1.2 用计算器求算术平方根及其大小比较教学设计一、内容和内容解析1.内容本节课是人教版《义务教育教科书•数学》七年级下册(以下统称“教材”)第六章“实数”6.1.2 用计算器求算术平方根及其大小比较,内容包括:用计算器求算术平方根、算术平方根的估算及大小比较.2.内容解析本节课的内容是义务教育课程标准(实验教科书人民教育出版社)七年级数学下册第六章第一节第课时《用计算器求算术平方根及其大小比较》.本节课主要是前面学习的算术平方根的延续.夹值法应用为后面学习实数做知识准备,为解得估算作铺垫,提供知识积累.基于以上分析,确定本节课的教学重点为:掌握算术平方根的估算及大小比较.二、目标和目标解析1.目标(1)会用计算器求算术平方根.(2)掌握算术平方根的估算及大小比较.2.目标解析会用计算器求一个数的算术平方根;理解被开方数扩大(或缩小)与它的算术平方根扩大(或缩小)的规律.能用夹值法求一个数的算术平方根的近似值.通过求一个数的算术平方根的近似值,初步了解开方开不尽的数的无限不循环性,理解用近似值表示无限不循环小数的实际意义.三、教学问题诊断分析学生对算术平方根已经有了初步的认识,但运用不够灵活;学生也经历过一些探索,但还不够系统、全面,教师在具体课堂中应把握好这些特点.基于以上学情分析,确定本节课的教学难点为:会估算一个数的算术平方根的大致范围,掌握估算的方法,形成估算的意识.四、教学过程设计自学导航求下列各数的算术平方根,并用“<”分别把被开方数和算术平方根连接起来.1,4,9,16,25.解:1=1,4=2,9=3,16=4,25=5.比较结果:1<4<9<16<25,1<4<9<16<25.被开方数越大,对应的算术平方根也越大. 若a>b>0,则a>b>0.合作探究探究:能否用两个面积为1dm2的小正方形拼成一个面积为2dm2的大正方形?你知道这个大正方形的边长是多少吗?设大正方形的边长为x,则x2=2,由算术平方根的意义可知x=2,所以大正方形的边长是2dm.小正方形的对角线的长是多少呢?2有多大呢?因为 12=1,22=4,所以 1<2<2因为 1.42=1.96,1.52=2.25,所以 1.4<2<1.5因为 1.412=1.9881,1.422=2.0164,所以 1.41<2<1.42因为 1.4142=1.999396,1.4152=2.002225,所以 1.414<2<1.415……事实上,2=1.414213562373…,它是一个无限不循环小数.(无限不循环小数是指小数位数无限,且小数部分不循环的小数.)π也是一个无限不循小数.实际上,许多正有理数的算术平方根(例如3,5,7等)都是无限不循小数.考点解析考点1:用计算器求一个正数的算术平方根大多数计算器都有键,用它可以求出一个正有理数的算术平方根(或其近似值).例1.用计算器求下列各式的值:(1) 3136 (2) 2 (精确到0.001)解:(1)依次按键3136=,显示:56,∴3136=56(2)依次按键2=,显示:1.4142135623731,∴2≈1.414注:计算器上显示的1.4142135623731是2的近似值.【迁移应用】1.用计算器求下列各式的值:(1)√260.8≈________(精确到0.01); (2)√6≈________(精确到0.001).2.依次按键225,显示的结果是( )A.±15B.15C.-15D.253.用计算器求下列各式的值:(1)√4225; (2)-√4.3265(精确到0.01).解:(1) √4226=65; (2) -√2≈-2.08.考点2:估算算术平方根例2.√24的值在( )A.2和3之间B.3和4之间C.4和5之间D.5和6之间 解析:因为16<24<25,所以√16<√24<√25,即4<√24<5.故√24的值在4和5之间.【迁移应用】1.估计√54-4的值在( )A.6到7之间B.5到6之间C.4到5之间D.3到4之间2.已知a ,b 是两个连续整数,且a<√20<b ,则a+b=_____.3.与√3最接近的整数是_____.4.满足√2<x<√10的整数x 有_____个.考点3:估算算术平方根例3.比较下列各组数的大小:(1)√82与9; (2)√3−12与12; (3)-√5+1与-√22. 解:(1)因为92=81,所以√81=9.因为82>81,所以√82>√81,即√82>9.(2)因为1<√3<2,所以0<√3-1<1,所以√3−12<12. (3)-√5+1≈-2.236+1=-1.236,-√22≈-1.414÷2=-0.707.因为-1.236<-0.707,所以-√5+1<-√22.【迁移应用】1.比较大小:√3+15____35.2.比较下列各组数的大小:(1)√12与√14; (2) √24−12与32. 解:(1)因为12<14,所以√12<√14.(2)因为4<√24<5,所以3<√24-1<4,所以√24−12>32. 考点4:估算算术平方根例4.用两个面积为200cm 2的小正方形拼成一个大正方形.(1)大正方形的边长是_______;(2)若沿着大正方形边的方向裁出一个长方形,能否使裁出的长方形纸片的长、宽之比为5:4,且面积为360cm 2?解:(2)设长方形纸片的长为5xcm ,则宽为4xcm.根据题意,得5x·4x=360,所以x=√18.所以长方形纸片的长为5√18cm.因为18>16,所以√18>√16,即5√18>4.由上可知5√18>20,所以沿着大正方形边的方向裁出一个长方形,不能使裁出的长方形纸片的长、宽之比为5:4,且面积为360cm 2【迁移应用】1.小丽想用一张面积为36cm 2的正方形纸片(如图所示),沿着边的方向裁出一张面积为20cm 2的长方形纸片,且它的长是宽的2倍.你认为小丽能用这张纸片裁出符合要求的纸片吗?为什么?解:不能.理由如下:因为正方形的面积为36cm2,所以边长为√36=6(cm).设长方形的宽为xcm,则长为2xcm.根据题意,得2x·x=2×2=20,即x2=10,所以x=√10,所以长方形的长为2√10cm.因为10>9,所以√10>3.由上可知2√10>6,即长方形的长大于正方形的边长,所以不能裁出符合要求的长方形纸片.2.国际比赛的足球场的长在100m到110m之间,宽在64m到75m之间.如图,为了迎接某次奥运会,某地建设了一个长方形的足球场,其长是宽的1.5倍,面积是7560m2,请你判断这个足球场能否用作国际比赛,并说明理由.解:这个足球场能用作国际比赛.理由如下:设足球场的宽为xm,则足球场的长为1.5xm.由题意,得1.5x2= 7560,所以x2=5040.所以x=√5040.因为702=4900,712=5041,所以70<√5040<71,所以105<1.5×√5040<106.5.所以符合要求.所以这个足球场能用作国际比赛.合作探究探究:(1)利用计算器计算下表中的算术平方根,并将计算结果填在表中,你发现了什么规律?你能说出其中的道理吗?规律:_________________________________________________________________________ (2) 用计算器计算3≈______(精确到0.001),并利用你在(1)中发现的规律说03.0≈______,300≈______,30000≈______的近似值.你能根据3的值说出30是多少吗?考点解析考点5:算术平方根的规律探究例5.【从特殊到一般的思想】(1)利用计算器计算,将结果填入表中,你发现了什么规律?(2)用计算器计算√5≈_______(精确到0.001),并用上述规律直接写出:√0.05≈______;√500≈ ______;√50000≈ ______.发现规律:被开方数的小数点向左(或向右)移动2位,它的算术平方根的小数点相应地向左(或向右)移动1位.【迁移应用】1.已知√15≈3.873,则√150000≈_______;若√a≈0.3873,则a≈_____.2.(1)利用计算器计算:①√11−2=_____;②√1111−22=_____;③√111111−222=_______.。

平方根-第二课时-用计算器求算术平方根及大小比较课件 2022—2023学年人教版数学七年级下册

平方根-第二课时-用计算器求算术平方根及大小比较课件 2022—2023学年人教版数学七年级下册
的近似值. 你能根据 3 的值直接得到 30 是多少吗?
解: 3 ≈ .
0.03 ≈ .
300 ≈ .
30000 ≈173.2
由 3不能说出 30的值,因为不符合规律。
解决问题
• 小丽想用一块面积为400cm2的正方形纸片,
• 沿着边的方向裁出一块面积为300cm2的长方
因为62 =36, 72 =49,
所以6< 45 <7
所以 45的整数部分是6,
小数部分是 45 -6
即时练习
• 已知 7+7的小数部分是a,7- 7的小数部分是b,
• 求a+b的值。
解:∵22 =4,32 =9
∴2< 7<3
∴ 9< 7+7<10, 4<7- 7<5
∴ 7+7的整数部分是9,小数部分是 7+7-9= 7-2

⋯⋯
即时练习
1.估计 41的值在( D )
A.3到4之间
B. 4到5之间
C.5到6之间
D. 6到7之间
2.已知a,b是两个连续整数,且a< 23< b,
则a+b=
9
.
3.与 14-2最接近的自然数是
2 。
新知探究
我们知道 45是一个无限循环小数,那么它的
整数部分是多少?小数部分是多少呢?
对 45估算:
100个1
50个2

Hale Waihona Puke 巩固练习• 5.已知m是 45-3的整数部分,n是 23+1的
• 小数部分,求m+n- 23的值。

解:因为6 < 45 < 7,4 < 23 < 5

用计算器求一个数的算术平方根

用计算器求一个数的算术平方根

1 填空找规律.

(1)利用计算器分别求: 0.5 ≈________, 5 ≈________, 50 ≈________, 500 ≈________.
(2)由(1)的结果,我们发现所得的结果与被开方数间

规律______________________________________ . (3)运0.0用5 (2)中的规律,直接50写00出结果:
4.四周一片( ),听不到一点声响。 5.越是在紧张时刻,越要保持头脑的( )。
八、句子工厂。
1.世界上有多少人能亲睹她的风采呢? (陈述 句)
_________________________________ ______ ______ ______ ______ ______ ______ ______ 2.达·芬奇的“蒙娜丽莎”是全人类文 化宝库 中一颗 璀璨的 明珠。 (缩写 句子) ___________________________________ ______ ______ ______ ______ ______ ______ ____ 3.我在她面前只停留了短短的几分钟。 她已经 成了我 灵魂的 一部分 。(用 关联词 连成一 句话) __________________________________ ______ ______ ______ ______ ______ ______ _____
例3 观察下列式子,并填空:
0.314 0.5604, 3.14 1.772,
31.4 5.604; 314 17.72;
7.16 2.676,
___7_1_6_____ 26.76.
总结
对于此类规律探究题要从两个方向进行比较;第一, 把被开方数进行比较;第二,把它们的结果进行比较,从 中发现规律.从已知中发现:被开方数的小数点不断向右 移动,并且每次移动两位,其算术平方根的小数点也不断 向右移动,并且每次移动一位,于是猜测出小数点的移动 规律. 讨论:如果我们从被开方数及算术平方根的大小变化情况 去比较,它们又有什么样的变化规律?

用计算器求算术平方根及其大小比较 (2)

用计算器求算术平方根及其大小比较 (2)

(2) 6 +1 与 1.5. 2
方法总结:比较数的大小,先估计其算术平方根的近似值 例 3.小丽想用一块面积为 400cm2 的正方形纸片,沿着边的方向裁出一块面积为 300cm2 的长方形纸片,使它的长宽之比为 3∶2.她不知能否裁得出来,正在发愁.你能帮小丽出 她能用这块纸片裁出符合要求的纸片吗?
课堂探究
一、要点探究 探究点 1:算术平方根的估算及大小比较
问题 1: 2 有多大呢? 你是怎样判断出 2 大于 1 而小于 2 的?
问题 2:什么叫无限不循环小数?你能举出无限不循环小数的例子 吗?
3.探究点 2 新 知讲授 (见幻灯片 13-15)
典例精析
例 1.估算 19 -2 的值 ( )
A.在 1 和 2 之间
二、自学自测
1.估算 88 的大小应是( )
A.在 9.1~9.2 之间
B.在 9.2~9.3 之间
C.在 9.3~9.4 之间
D.在 9.4~9.5 之间
三、我的疑惑
__________________________________________________________ __________________________________________________________ __________________________________
第六章 实数
教学备注
6.1 平方根
第 2 课时 用计算器求算术平方根及大小比较
学习目标:1.会用计算器求算术平方根. 2.掌握算术平方根的估算及大小比较. 重点:用计算器求算术平方根. 难点:算术平方根的估算及大小比较.
教学备注 配套 PPT 讲授 2.探究点 1 新 知讲授 (见幻灯片 7-12)

用计算器求算术平方根(第2课时)

6.1平方根第2课时用计算器求一个正数的算术平方根教学目标知识与技能能用夹值法求一个数的算术平方根的近似值,会用计算器.教学重点夹值法估计一个数的算术平方根的大小.教学难点夹值法估计一个数的算术平方根的大小.教学过程一、情景导入师:怎样用两个面积为1的小正方形拼成一个面积为2的大正方形?运用多媒体,展示课件:怎样用两个面积为1的小正方形拼成一个面积为2的大正方形?学生活动:小组合作操作、观察、交流.二、新课教授师:将两个小正方形沿对角线剪开,得到几个直角三角形?生:4个.师:大正方形的面积多大?生:大正方形的面积为2.师:这个大正方形的边长如何求?学生活动:尝试独立完成.教师活动:启发,适时点拨.师生共同归纳:设大正方形的边长为x,则x2=2,由算术平方根的意义可知:x= 2.∴大正方形的边长为 2.师:小正方形的对角线的长为多少?生:小正方形的对角线长为 2.师:很好,2有多大呢?学生活动:小组合作交流.教师活动:启发,适时点拨.师生共同归纳:∵12=1,22=4,∴1<2<2.∵1.42=1.96,1.52=2.25,∴1.4<2<1.5.∵1.412=1.9881,1.422=2.0164,∴1.41<2<1.42.∵1.4142=1.999396,1.4152=2.002225,∴1.414<2<1.415.……如此进行下去,可以得到2的更精确的近似值.事实上,2=1.41421356……它是一个无限不循环小数,无限不循环小数是指小数位数无限,且小数部分不循环的小数.师:你能举出几个例子吗?生:能,如:3、5、7等.师:如何用计算器求出一个正有理数的算术平方根(或其近似值).学生活动:尝试独立完成例2.师:请同学们用计算器求出引言中的第一宇宙速度、第二宇宙速度.学生活动:用计算器小组合作完成.第一宇宙速度:v1≈7.9×103m/s;第二宇宙速度:v2≈1.1×104m/s.展示课件:1.利用计算器计算,并将计算结果填在表中,你发现了什么规律?你能说出其中的道理吗?2.用计算器计算3(精确到0.001),并利用你发现的规律说出0.03,300,30000的近似值,你能根据3的值说出30是多少吗?师:你能说出其中的规律吗?学生活动:小组讨论交流.师生共同归纳:求算术平方根时,被开方数的小数点要两位两位地移动,当被开方数向左(右)每移动两位时,它的算术平方根相应地向左(右)移动一位.新知应用:师:我们一起来做题:展示课件.运用多媒体.【例】小丽想用一块面积为400 cm2的正方形纸片,沿着边的方向裁出一块面积为300 cm2的长方形纸片,使它的长宽之比为3∶2.她不知能否裁得出来,正在发愁.小明见了说:“别发愁,一定能用一块面积大的纸片裁出一块面积小的纸片.”你同意小明的说法吗?小丽能用这块纸片裁出符合要求的纸片吗?解:设长方形纸片的长为3x cm,宽为2x cm.根据边长与面积的关系得3x·2x=300,6x2=300,x2=50,x=50.因此长方形纸片的长为350 cm.因为50>49,所以50>7.由上可知350>21,即长方形纸片的长应该大于21 cm.因为400=20,所以正方形纸片的边长只有20 cm.这样,长方形纸片的长将大于正方形纸片的边长.【答】不能同意小明的说法.小丽不能用这块正方形纸片裁出符合要求的长方形纸片.3、利用例题中比较大小的方法,通过估算比较下列各组数的大小:(1) 5与1.9;(2) 216与1.5.三、随堂练习课本第44页练习.四、课堂小结通过本节课的学习,你有哪些收获?与同伴交流.五、课堂小检测教学反思1.使每个学生都参与用计算器求一个正有理数的算术平方根,由于有的同学没有带计算器,所以没有很好地理解所学的知识.2.平方根变化的规律,须让学生通过计算、观察、发现、总结,最好是学生自己找出其中所蕴含的规律.感谢您的阅读,祝您生活愉快。

七下第六章实数6-1平方根第2课时用计算器求一个正数的算术平方根习题新版新人教版

A.43
B.44
C.45
D.46
)
知识点2
用计算器开方
4. [情境题 程序应用型]如图是一个简单的数值运算程序,当
输入x的值为16时,输出的数值为
3
.

5.[母题:教材P42例2]用计算器计算,若按键顺序为
4 ·5 - 0 ·5 ÷ 2 =,相应的算式是(
A. ×5-0×5÷2=
B.( ×5-0×5)÷2=
2.[中考·湖州]已知a,b是两个连续整数,a< -1<b,则
a,b分别是(
C
)
A.-2,-1
B.-1,0
C.0,1
D.1,2
【点拨】
因为1< <2,所以0< -1<1,所以a=0,b=1.
3.[中考·北京]已知432=1 849,442=1 936,452=2 025,462
=2 116.若n为整数且n< <n+1,则n的值为( B
可得 的近似值.
知识点1
算术平方根的估算
1. [2023⋅宁夏 母题⋅教材P61复习题T4]估计 的值应在
(
C )
A.3.5和4之间
B.4和4.5之间
C.4.5和5之间
【点拨】
D.5和5.5之间
∵4.52=20.25,52=25,20.25<23<25,∴4.5< <
5,即 在4.5和5之间,故选C.
成800平方米的长方形场地,且其长、宽的比为5∶2.
(1)求改建后的长方形场地的长和宽分别为多少米;
【解】(1)设改建后的长方形场地的长为5x米,则宽为
2x米,根据题意,得5x·2x=800,解得x= ,
所以长为5 米,宽为2 米.
答:改建后的长方形场地的长和宽分别为5 米、

人教版七年级数学下册《6.1第2课时用计算器求一个正数的算数平方根》同步练习(含答案)

第2课时数的估计及大小比较关键问答①用计算器计算一个正数的算术平方根的步骤是什么?②估算一个正数的算术平方根的大小时,常需要用到什么知识?③比较两个数的大小的方法有哪些?1.①用计算器计算44.86的值为(精确到0.01)()A.6.69 B.6.7 C.6.70 D.±6.702.②2017·天津估计38的值在()A.4和5之间B.5和6之间C.6和7之间D.7和8之间3.③比较大小:10__________11.命题点1用计算器求正数的算术平方根[热度:86%]4.2017·淄博运用科学计算器(如图6-1-1是其面板的部分截图)进行计算,按键顺序如下:图6-1-1( 3.5- 4.5)×3x2+4则计算器显示的结果是________.5.天气晴朗时,一个人能看到大海的最远距离s(单位:km)可用公式s2=16.88h来估计,其中h(单位:m)是眼睛离海平面的高度.如果一个人站在岸边观察,当眼睛离海平面的高度是1.5 m时,能看到多远(精确到0.01 km)?如果登上一个观望台,当眼睛离海平面的高度是35 m时,能看到多远(精确到0.01 km)?命题点2数的估算[热度:88%]6.④2018·台州估计7+1的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间解题突破④7介于哪两个连续整数之间?7.⑤17的整数部分是__________,小数部分是________.模型建立⑤若a(a>0)的整数部分为n,则其小数部分为a-n.8.规定用符号[x]表示一个数的整数部分,例如[3.69]=3,[3]=1,按此规定[13-1]=________.9.⑥如图6-1-2所示,在数轴上点A和点B之间表示整数的点有________个.图6-1-2⑥-2与7分别介于哪两个连续整数之间?10.⑦用“逐步逼近”的方法可以求出7的近似值.先阅读,再答题:因为22<7<32,所以2<7<3.第一步:取2+32=2.5,由2.52=6.25<7,得2.5<7<3. 第二步:取2.5+32=2.75,由2.752=7.5625>7,得2.5<7<2.75. 请你继续上面的步骤,写出第三步,并通过第三步的结论对7十分位上的数字作估计. 方法点拨⑦本题需先取数,再计算所取数的平方,最后比较大小.命题点 3 数的大小比较 [热度:92%]11.在数-5,0,3,2中,比3大的数是( )A .-5B .0C .3 D. 212.⑧2017·酒泉 估计5-12与0.5的大小关系:5-12________0.5(填“>”“<”或“=”). 方法点拨 ⑧作差法是比较两个数大小的一种常用方法.13.比较5-3与5-22的大小.命题点 4 算术平方根的应用 [热度:94%]14.工人师傅准备从一块面积为25平方分米的正方形工料上裁剪出一块面积为18平方分米的长方形的工件.(1)求正方形工料的边长;(2)若要求裁下来的长方形工件的长和宽的比为3∶2,则能用这块正方形工料裁剪出符合要求的长方形工件吗?15.⑨在地球引力的作用下,物体从某一高度落下,速度会越来越快,即地球引力会使下落的物体加速下落.在物理学中,把地球引力给下落物体带来的加速度称为重力加速度,用g 表示,g =9.8 m/s 2,物体自由下落的高度h (m)与物体下落的时间t (s)之间的函数关系是h =12gt 2.某人头顶上空490 m 处有一杀伤半径为50 m 的炸弹自由下落,此人发现后,立即以6 m/s 的速度逃离,那么此人能脱离危险吗?⑨炸弹落在地面上的时间是多少?在这个时间内,此人跑的路程是多少?16.⑩一个标有高度的圆柱形容器,加入一些水后观察水面高度如图6-1-3①所示,这时将一个直径为2 cm的圆柱形玻璃棒竖直插至容器底部,水面高度如图②所示,求容器的内口直径(圆柱的容积=底面圆面积×高).(精确到0.1 cm)图6-1-3解题突破⑩玻璃棒在水中部分的体积是多少?容器中插入玻璃棒后,水面以下部分的体积比原来多了多少?17.⑪用计算器计算:(1)9×9+19=__________;(2)99×99+199=__________;(3)999×999+1999=__________;(4)9999×9999+19999=__________.观察上面几题的结果,你能发现什么规律?用你发现的规律直接写出下题的结果:__________.方法点拨⑪利用计算器计算结果,观察9的个数与结果之间存在的规律.典题讲评与答案详析1.C 2.C 3.<4.-7 [解析] 根据按键顺序可得算式为(3.5-4.5)×32+4=(-1)×9+2=-9+2 =-7.5.解:把h =1.5代入s 2=16.88h ,得s 2=16.88×1.5=25.32,所以s ≈5.03. 即当眼睛离海平面的高度是1.5 m 时,能看到的最远距离约为5.03 km.把h =35代入s 2=16.88h ,得s 2=16.88×35=590.8,所以s ≈24.31.即当眼睛离海平面的高度是35 m 时,能看到的最远距离约为24.31 km.6.B [解析] 由于2<7<3,所以7+1的值在3和4之间.7.4 17-48.2 [解析]∵3<13<4,∴2<13-1<3,∴[13-1]=2.9.4 [解析] 由于-2<-2<-1,2<7<3,所以-2与7之间的整数有-1,0,1,2,所以A ,B 两点之间的整数点有4个.10.解:第三步:取2.5+2.752=2.625, 由2.6252=6.890625<7,得2.625<7<2.75, 所以7十分位上的数字可能是6或7.11.C12.> [解析]∵0.5=12,又5>2,∴5-1>1,即5-12>12. 13.解:∵4<5<9,∴2<5<3,∴5-3<0,5-22>0,∴5-3<5-22. 14.解:(1)5分米.(2)设长方形工件的长为3x (x >0)分米,宽为2x (x >0)分米.根据题意,得3x ·2x =18,解得x = 3.∴长方形工件的长为3 3分米,宽为2 3分米.∵3 3>5,∴不能用这块正方形工料裁剪出符合要求的长方形工件.15.解:能脱离危险.当h =490时,即490=12×9.8×t 2,解得t =10, 在这个时间内,此人跑的路程为6×10=60(m)>50 m ,所以此人能脱离危险.16.解:圆柱形玻璃棒的底面半径为2÷2=1(cm).设圆柱形容器的内口半径为r cm ,则有πr 2×(8-7)=π×12×8,πr 2=8π,r 2=8,r =8,所以圆柱形容器的内口直径为2×8=2 8≈5.7(cm).17.(1)10 (2)100 (3)1000【关键问答】①先按键,再输入这个正数,最后按=键.②一个正数越大,它的算术平方根越大;另外需记住正整数如2,3,5等的算术平方根.③正数大于0,0大于负数,正数大于负数,两个负数比较大小时,绝对值大的负数反而小.还可以用作差法、作商法等.。

平方根(第二课时)


知识回顾 问题探究 课堂小结 随堂检测
点击“互动训练” 选择“《平方根(2)》随堂检测”
∴1小.4数1<;自此2 <我1们.4将2.进•••入••有• 理数外的一个新的数域,也为我们后面学
如此习进实行数下做去铺,垫可.这以里得的到夹的值更法准常确用的来近估似计值一:些事正实数上的,算术平方根,
2 =1.41421356237309504887242097•••, 2需是要一重个视无. 限不循环小数,像这样的数还有很多,如 3 , 5, 7 等.
点拨:用算术平方根的意义来解方程,为我们提供了一种新的思
路;而边长 2 又让我们进一步去探究它到底有多大.
知识回顾 问题探究 课堂小结 随堂检测
探究一:算术平方根的概念.
重点知识★
活动2
2 到底有多大?
我们可以用夹值法进行粗略估计:
因为活1<动2一<4的,所结以论1:<被2开<方4数,大即1的<数2算<术2,平这方说明根也2 大的.值一
知识梳理
(4)当被开方数的小数点向右移动2位时,算术平方根 的小数点只向_右_移动_1__位;
当被开方数的小数点向左移动2位时,算术平方根的小数 点只向_左_移动
知识回顾 问题探究 课堂小结 随堂检测
重难点突破
(1)经历 2 的夹值法估计近似值,了解无限不循
环小数的特征.
(2)用个结论帮助我们估计一些 算术平方根,简化问题.
(2)算术平方根的双重非负性:
只有非负数才有算术平方根,如果 x= a 有意
义,那么 a≥0,x≥0.这就是算术平方根的双重非负性.
(3)49的算术平方根是7 , 1 6 的算术平方根是2,
0.09的算术平方根是0.3,(-4)²的算术平方根4.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

做一做:同学们,你能将手中两个相同的小正方形, 剪一剪,拼一拼,拼成一个大正方形吗? 如果小正方形的边长是1, 那么小正方形的面积是多少? 那么大正方形的面积是多少? 那么大正方形的边长是多少? 解:设大正方形的边长为x, 则 x2=2 1 1
x 2
答:大正方形的边长为
小正方形的对角线 的长是多少呢?
2.
2
( 2) 2
2
1.41 1.9881
2
1 2 2 无限不循环小数是指 2 2 小数位数无限,且小数部 1.4 1.96 1.5 2.25 分不循环的小数。 1.4 2 1.5 你有见过这种数吗? 2 2
1 1
2
2 4
2
1.414 1.999396
π 1.41 2 1.42
0.625
6.25 62.5
625
6250
62500 …
… 0.25 0.7906 2 .5 7.906 25 79.06 250

被开方数的小数点向右每移动2位,它的算术平 方根就向右移动一位;被开方数的小数点向左 每移动2位,它的算术平方根就向左移动一位.
被开方数的小数点向右每移动2位,它的算术平 方根就向右移动1位;被开方数的小数点向左 每移动2位,它的算术平方根就向左移动1位.
(2) 2 (2) (
2 2
7与6
7 ) 7,3 9 且7 9
7 3
2 7 6
试比较
1 2 1 0.5 2 2
5 1 与0.5 的大小 2
( 5) 2
2
2
52
5 1 2 1 2 2
5 1 即: 0.5 2
试比较
1 43 0.5 2 2
15 3 与0.5 的大小 2
( 15) 4
2
2
15 4
15 3 4 3 2 2
15 3 即: 0.5 2
• 第二课时
2.若5+ 7 的小数部分是a,5- 7 的小数 部分是b,则a+b的算术平方根为________ 1
用计算器计算下列各式的值 (1) 3136 (2) 2 (精确到0.001 )
C、7到8之间
D、8到9之间
3、试比较下列各组数的大小 (1) 4与 解:(1)
15
2
(2)
4 16, 15

2
140与12 已知非负数a、b
15
2
若a >b ,则a>b


4 15
(2)
( 140) 140,12 144
2
140 12
试比较下列各组数的大小
3136 56
2 1.414
计算器
你对正数a的算术平方根 怎样的认识呢?
a 的结果 有两种情况:
a 的结果有
当a是完全平方数时,是一个有限数;
当a不是完全平方数时, 是一个无限不循 环小数。
你肯定行!
探究
利用计算器计算,并将计算结果填在表中,你 发现了什么规律?你能说出其中的道理吗?
… 0.0625
平方
;
那么,知a求x,这种运算又叫做什么呢?
求一个数a的平方根的运算,叫开平方。 例: ±3的平方等于9,9的平方根是±3。
平方
开平方
所以,平方与开平方互为逆运算。
回顾 1、算术平方根的定义:
定义:一般地,如果一个正数x的平方等于a,即x2 = a, 那么这个正数x就叫做a的 算术平方根.
2、算术平方根的性质:
a 0
a0
双重非负性
练习
5 1、 25的算术平方根是________
2 2、(﹣2)2的算术平方根是________ 3、化简:
0.04 0 .2
解:设长方形纸片的长 为3xcm,宽为2 xcm. 3x 2 x 300 50 7 50 49 6 x 2 300
x 50 x 50
2
3 50 21
即长方形纸片的长应该大于21cm
因此长方形纸片的长为 3 50cm, 宽为2 50cm.
答 : 小丽不能用这块正方形 纸片 裁出符合要求的长方形 纸片.
思考:
如果一个数的平方等于9,这个数是什么?
发现:
2 3 =9
(-3)2=9
因此,如果一个数的平方等于 9,那么这个数是3或-3。 我们把9称为3或-3的平方,那么我们 把3或-3叫做9的什么呢?
概念:
如果一个数的平方等于a,那么这个数
叫做a的
平方根。
即:若x2=a,那么x叫做a平方根。 例如: 32=9;(-3)2=9; 3和-3是9的平方根; 简记为±3是9的平方根。
256 16 121 11
3
2
3
பைடு நூலகம்
1 3 2 4 2
练习
x 1 4、如果式子 有意义,则x满足的条件是 x 3 x 0且x 3 __________ _
5、如果 a 3 与 2b 2互为相反数,
2 3 则 3a b __________ __
3 6、若y x 1 1- x 4,则 x y ________
用符号表示平方根
正数a的算术平方根记作
a
它的另一个平方根记作
a
所以,正数a的平方根可表以示为: a 这样求一个正数的平方根,只要求 出它的算术平方根,在前面添上“±”, 就是它的平方根了。
例如: 81 =9,则81的平方根是±9, 即:± 81 =±9。
思考:
已知x2=a,若知x求a,这种运算叫
用计算器计算 (经果保留 3 4为有效数字),并利用 你发现的规律说出 0.03, 300, 30000 的近似值, 你能 根据 3的值说出 30是多少吗?
3 1.732 0.03 0.1732
300 17.32 30000 173.2
小丽想用一块面积为400c㎡的正方形纸板片,沿着边的 方向裁出一块面积为300c㎡的长方形纸板片,使它的长 宽之比为3:2.不知能否裁出来,正在发愁,小明见了说” 别发愁,一定能用一块面积大的纸片裁出一块面积小的 纸片”,你同意小明的说法吗?小丽能用这块纸片裁出符 合要求的纸片吗?
……
1.42 2.0164
2
1.414 2 1.415
2 1.41421356
1.415 2.002225
(无限不循环小数)
估算法:
1、估计 10 的值在( C ) A、1到2之间 C、3到4之间 B、2到3之间 D、4到5之间
2、估计 19 2 的值在( B ) A、5到6之间 B、6到7之间
相关文档
最新文档