正比例和反比例的意义练习及答案

合集下载

数学正比例和反比例试题答案及解析

数学正比例和反比例试题答案及解析

数学正比例和反比例试题答案及解析1.在对圆柱体的认识中,有侧面积、体积公式推导、体积公式,大家一起想一想其中有没有成比例关系的量.圆锥体呢?【解析】判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.解:因为 ch=圆柱的侧面积(一定),底面周长和高成反比例;圆柱的体积 V=sh(或πr2h),当体积一定时,底面积和高成反比例;圆锥的体积V=πr2h=sh,当体积一定时,底面积和高成反比例.点评:此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.2.判断题中的两种量是不是成比例,成什么比例,并说明理由.如果 m:6=8:n,那么m 和 n.【答案】成反比例.【解析】判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.解:因为m:6=8:n,则mn=6×8=48(一定),是乘积一定,那么m和n成反比例;点评:此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.3.判断两个量是否成正比例或反比例,说明理由:房间的面积一定,铺地砖的块数与每块地砖的面积.【答案】成反比例.【解析】判断铺地砖的块数与每块地砖的面积是否成比例,就看这两种量是否是对应的乘积(商)一定,如果是乘积(商)一定,就成反(正)比例,如果不是乘积(商)一定或乘积(商)不一定,就不成比例.解:因为:每块地砖的面积×块数=房间的总面积(一定),也就是每块地砖的面积和块数的乘积一定,符合反比例的意义,所以每块地砖的面积和块数成反比例.点评:两种相关联的量,一种量变化,另一种量随着变化,如果这两种量相对应的积一定,这两种量叫做成反比例的量,它们的关系叫成反比例的关系,用字母表示为yx=k(一定).4.判断变化的量是否成正比例,说明理由.圆的面积和半径.【答案】不成正比例.【解析】判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.解:因为圆的面积S=πr2,所以S:r2=π(一定),即圆的面积与半径的平方的比值一定,但圆的面积与半径的比值不是一定的,不符合正比例的意义,所以圆的面积和半径不成正比例.点评:此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.5.判断题中两种量是否成比例:每袋面粉的质量一定,面粉的总质量和袋数.理由:.【答案】正比例,面粉的总质量÷面粉的袋数=每袋面粉的质量(一定).【解析】判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.解:因为面粉的总质量÷面粉的袋数=每袋面粉的质量(一定),符合正比例的意义,所以每袋面粉的质量一定,面粉的总质量和袋数成正比例,点评:此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.6.判断变化的量是否成正比例,说明理由.一个因数一定,积和另一个数因数.【答案】成正比例.【解析】判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.解:因为积:另一个因数=一个因数(一定),是积和另一个因数对应的比值一定,所以积和另一个因数成正比例.点评:此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.7.判断两种量成什么比例,并说明理由:x=8y,x与y.【答案】成正比【解析】判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.解:成正比例;因为x=8y,x÷y=8(一定),x与y成正比例.点评:此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.8.先观察下表,再判断正方形周长和边长成正比例吗?为什么?正方形面积和边长成正比例吗?为什么?【答案】成正比例;不成正比例【解析】(1)判断正方形的周长和边长是否成正比例,就看它们是不是比值一定,若比值一定,则成,否则,就不成;(2)判断正方形的面积和边长是否成正比例,就看它们是不是比值一定,若比值一定,则成,否则,就不成.解:(1)因为===…==4(一定),是正方形的周长和边长相对应的两个数的比值一定,符合成正比例的意义,所以正方形的周长和边长成正比例;(2)≠…(不一定);是正方形的面积和边长相对应的两个数的比值不一定,不符合成正比例的意义,所以正方形的面积和边长不成正比例.点评:此题属于根据正、反比例的意义,辨识两种相关联的量是否成正比例,就看这两种量是否是对应的比值一定,再做出判断.9.买笔记本的数量和钱数的关系如下表:(1)将表格补充完整,根据表中的数据,在图中描点再顺次连接.(2)哪个量没变?数量和总价之间成什么比例?(3)从图中可以看出,如果买9本笔记本,需要多少元钱?【答案】单价不变,数量与总价之间成正比例,需要13.5元.【解析】①每本的价格是1.5元,由此可以完成上表,从而完成统计图;②根据数量和总价之间的变化关系得出数量与总价成正比例的特点;③代入数据即可计算得出.解:(1)根据题意可得,每本的价格为1.5元,由此可完成下表:根据表格中数据可在右图中描点连线,得出统计图如右图:(2)单价没有变,数量与总价之间成正比例.(3)9×1.5=13.5(元),答:单价不变,数量与总价之间成正比例,如果买9本笔记本,需要13.5元.点评:此题考查了绘制折线统计图的方法,以及成正比例关系的量的特点.10.一辆汽车每时行90千米.(1)填下表:时间/时123456(3)时间和路成什么比例?为什么?(4)利用图象估计一下,2.5时行多少千米?行400千米大约需要多长时间?成正比例;225千米.4.5小时.【解析】(1)根据速度×时间=路程,列式计算;(2)根据统计表中的数据,先在图中描出时间和路程所对应的点,再把它们按顺序连起来即可;(3)因为汽车在公路上行驶的速度一定,是路程和时间的比值一定,所以时间和路程成正比例;(4)图象是一条经过原点的直线,从图象中可看出汽车2.5小时行(180+45)千米;行驶400千米用(4+0.5)小时.解:(1)90×2=180(千米),90×3=270(千米),90×4=360(千米),90×5=450(千米),90×6=540(千米);(2)根据数据边线后如下图:(3)时间和路程成正比例;因为汽车在公路上行驶的速度一定,是路程和时间的比值一定,所以时间和路程成正比例.(4)看图象可知,2.5小时行的千米数:180+90÷2,=180+45,=225(千米);行400千米的时间:4+1÷2,=4+0.5,=4.5(小时);答:2.5小时行驶225千米.行400千米大约需要4.5小时.点评:此题考查根据统计表中的信息,绘制成正比例关系的两种量的图象,再根据观察图象得出汽车4.5小时行的千米数和行驶440千米用的时间.11.题中的两个量成不成比例?成什么比例?每块地砖的面积一定,地砖的块数和铺地的面积..【答案】正比例.【解析】判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.解:用同样大小的地砖铺地,铺地面积÷地砖的块数=每块地砖的面积(一定),即地砖的块数和铺地面积的比值一定,所以地砖的块数和铺地的面积成正比例;点评:此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.12.题中的两个量成不成比例?成什么比例?工作时间一定,加工每个零件所用时间和加工零件的个数..【答案】反比例.【解析】判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.解:因为加工零件的个数×加工一个零件所用的时间=工作时间(一定),符合反比例的意义,所以加工零件的个数和加工一个零件所用的时间成反比例;点评:此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.13.汽车行驶的时间和路程如下表.(1)完成表格,路程与时间成比例;(2)在图中描出表示路程和相应时间的点,然后把它们按顺序连起来.并估计一下行驶150km大约要用小时.【答案】(1)180,4,300,6.正比例.(2)2.5小时.【解析】(1)因为=60,=60,60是一定的数,代表速度,速度(一定),所以路程和时间成正比例,设要填的数为x,列出比例,求出x的值即可,同样求出其它要填的数;(2)时间:1小时,路程60千米;时间:2小时,路程120千米;时间:3小时,路程180千米;时间:4小时,路程240千米;时间:5小时,路程300千米;时间:6小时,路程360千米,描出表示路程和相应时间的点,然后把它们按顺序连起来.速度(一定),所以路程和时间成正比例,设行150千米用x小时,列并解比例即可.解:(1)因为=60,=60,因为60是一定的数,代表速度,速度(一定),所以路程和时间成正比例.设要填的数为x,=,x=180;答:3小时行180千米;设要填的数为y,=,60y=240,60y÷60=240÷60,y=4;答:行240千米需要4小时;设要填的数为a,=,a=300;答:5小时行300千米;设要填的数为b,=,60b=360,60b÷60=360÷60,b=6.答:行360千米需要6小时.(2)时间:1小时,路程60千米;时间:2小时,路程120千米;时间:3小时,路程180千米;时间:4小时,路程240千米;时间:5小时,路程300千米;时间:6小时,路程360千米,描出表示路程和相应时间的点,然后把它们按顺序连起来.因为速度一定,路程和时间成正比例,设大约要用x小时,=,60x=150,60x÷60=150÷60,x=2.5.答:大约要用2.5小时.点评:此题考查正比例的意义,即相关联的两个量,如果比值一定,这两个量成正比例关系.14.表中是普通客车硬座票价表.车票价格和所行里程成不成比例?为什么?里程(千米)票价(元)【答案】不成比例.【解析】判断两种相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.解:根据表格中的数据可以看出:车票价格和所行里程之间,既不是对应的乘积一定,它们的比值也不是定值,所以车票价格和所行里程不成比例.答:车票价格和所行里程不成比例.点评:此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,如果对应的比值和乘积都不一定时,这两个量不成比例.15.(2011•铁山港区模拟)直角三角形的两个锐角大小成反比例..【答案】×.【解析】判断直角三角形的两个锐角大小是否成反比例,就看它们是不是对应的乘积一定,若乘积一定,则成,否则,就不成.解:直角三角形的一个锐角度数+另一个锐角度数=90°(一定),是它们对应的“和”一定,不是乘积一定,所以直角三角形的两个锐角大小不成反比例;点评:本题考查成正、反比例的知识,判断时,就看两种量是对应的比值一定,是对应的乘积一定,还是其他的量一定,再做出解答.16.(2012•邗江区模拟)一辆汽车在高速公路上行驶的路程和时间如下表:(1)根据表中数据,在下图中描出时间和路程所对应的点,再把它们按顺序连起来.(2)是一定的量,时间和路程成比例.(3)根据图象判断5.5小时行千米.(4)甲、乙两地相距1375千米,照此速度需要行小时.【答案】(2)根据正比例的意义,速度一定(即比值一定),时间和路程成正比例;(3)110×5.5=605(千米);(4)1375÷110=12.5(小时);(2)速度、正;(3)605;(4)12.5.【解析】根据题意,速度一定,时间和路程成正比例;然后根据速度、时间、路程之间的关系列式解答.解:点评:此题考查了:折线统计图的绘制方法;成比例的量的判断;及根据时间、速度、路程三者之间的关系,解决实际问题.17.工作时间一定,完成每个零件所用的时间与完成零件的个数成反比例..【答案】正确.【解析】判断完成每个零件所用的时间与完成零件的个数是否成反比例,就看这两种量是否是对应的乘积一定,如果是乘积一定,就成反比例,如果不是乘积一定或乘积不一定,就不成反比例.据此进行判断.解:因为完成每个零件所用的时间×完成零件的个数=总工作时间(一定),是对应的乘积一定,所以完成每个零件所用的时间与完成零件的个数成反比例;点评:此题属于根据正、反比例的意义,辨识两种相关联的量是否成反比例,就看这两种量是否是对应的乘积一定,再做出判断.18.一幅地图的比例尺是,则在这幅地图上和成正比例.【答案】图上距离,实际距离.【解析】判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.解:因为:图上距离:实际距离=比例尺(一定),所以图上距离进而实际距离成正比例;点评:此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.19.要行的总路程一定,已经走过的路程和剩下的路程比例.【答案】不成.【解析】判断已经走过的路程和剩下的路程是否成比例,就看这两种量是否是对应的乘积(商)一定,如果是乘积(商)一定,就成反(正)比例,如果不是乘积(商)一定或乘积(商)不一定,就不成比例.解:因为:已经走过的路程+剩下的路程=总路程(一定),也就是已经走过的路程和剩下的路程的和一定,既不是乘积一定,也不是商一定,不符合正、反比例的意义,所以已经走过的路程和剩下的路程既不成反比例又不成正比例.点评:此题考查用正反比例的意义辨识成正比例的量与成反比例的量,关键是明确变量与定量之间的等量关系式.20.大米的总质量一定,卖出大米的质量和剩下大米的质量..【答案】不成比例.【解析】判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.解:卖出大米的质量+剩下大米的质量=大米的总质量(一定),是和一定,所以大米的总质量一定,卖出大米的质量和剩下大米的质量不成比例;点评:此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.21.被减数一定,减数和差成比例.(在横线里写上“正”“反”“不成”)【答案】不成.【解析】判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.解:减数+差=被减数(一定),是和一定,不是比值或乘积一定,所以不成比例;点评:此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.22.互成倒数的两个数..【答案】反比例.【解析】判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.解:因为乘积是1的两个数,叫做互为倒数,即互成倒数的两个数的乘积是1,即乘积一定,所以互成倒数的两个数成反比例;点评:此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.23.判断是否成比例,成什么比例:长方形的宽一定,它的面积和长..【答案】成正比例.【解析】判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.解:因为长方形的面积=长×宽,所以长方形的面积÷长=宽(一定),即长方形的面积与长的比值一定,符合正比例的意义,所以一个长方形的宽一定,它的面积和长成正比例;点评:此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.24.三(1)班的出勤率一定,全班人数和出勤人数.÷=因为和的一定,所以和正比例.【答案】正比例,出勤人数,全班人数,出勤率,出勤人数,全班人数,比值,出勤人数,全班人数.【解析】判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.解:因为出勤人数÷全班人数=出勤率(一定),即出勤人数和全班人数的比值一定,所以全班人数和出勤人数成正比例;点评:此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.25.根据规律判断比例关系,并填空.X与Y.A.成正比例B.成反比例.【答案】B.X与Y成反比例;【解析】判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.解:因为3×4=5×2.4=12,即y和x的乘积一定,所以x和y成反比例;12÷2=6,12÷12=1,12÷10=1.2;X 2 3 5 1 10 …Y 6 4 2.4 12 1.2 …点评:此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.26.正比例研究的是两种的量,一种量扩大,另一种量也随着;一种量缩小,另一种量也随着.它们扩大、缩小的规律是这两种相关联的量中的两个数的一定.【答案】相关联,扩大,缩小,相对应,比值.【解析】根据课本上给出的正比例的意义直接填出即可.解:正比例的意义是:正比例研究的是两种相关联的量,一种量扩大,另一种量也随着扩大;一种量缩小,另一种量也随着缩小.它们扩大、缩小的规律是这两种相关联的量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系.关系式是=k(一定).点评:此题考查正比例的意义.27.根据下表中的数据填空.王师傅加工一批零件的情况如下表:时间(小12345…①表中和是两种相关联的量,随着的变化而变化.②写出任意两组这两种量相对应的两个数的比:(:)和(:).它们的比值是,这两组比的比值.③表中相关联的两种量的关系是=,因为这两种量相对应的两个数的一定,所以它们成比例.【答案】时间,产量,产量,时间;25,1,50,2,相等,25,工作效率;比值,正.【解析】(1)根据表得出:表中时间和产量是两种相关联的量,产量随着时间的变化而变化.(2)写出任意两组这两种量相对应的两个数的比,再求出比值即可;(3)表中相关联的两种量的关系是=工作效率,因为这两种量相对应的两个数的比值一定,所以它们成正比例.解:(1)表中时间和产量是两种相关联的量,产量随着时间的变化而变化.(2)25:1和50:2,比值是25:1=25÷1=25,50:2=50÷2=25;(3)表中相关联的两种量的关系是=工作效率,因为这两种量相对应的两个数的比值一定,所以它们成正比例;点评:本题主要考查了正比例的意义.28.两种相关联的量在变化过程中总是不变的,这两种量就是成反比例的量.【答案】乘积.【解析】据成反比例的意义可得,成反比例的两个量在变化时的规律是它们的积不变,由此即可选择正确答案.解:两种相关联的量在变化过程中乘积总是不变的,这两种量就是成反比例的量;点评:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的乘积一定,这两种就叫做成反比例的量,它们的关系就是反比例关系.29.已知工作效率×工作时间=工作总量①如果工作总量一定,工作效率和工作时间成比例.②如果工作效率一定,工作总量和工作时间成比例.【答案】反,正.【解析】判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.解:①因为工作效率×工作时间=工作总量,如果工作总量一定,工作效率和工作时间成反比例;②因为工作总量÷工作时间=工作效率,如果工作效率一定,工作总量和工作时间成正比例.点评:此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.30. Y=8÷X,X和Y 成比例关系;圆的周长与直径成比例关系.【答案】反,正.【解析】判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.解:因为Y=8÷X,则XY=8(一定),所以X和Y成反比例关系;因为圆的周长÷直径=π(一定),所以圆的周长与直径成正比例关系;点评:此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.31.在一定的时间里,每分钟生产的零件和生产零件的总个数成正比..(判断对错)【答案】√.【解析】判断生产的总个数和每分钟生产的个数是否成比例,就看这两种量是否是对应的乘积(商)一定,如果是乘积(商)一定,就成反(正)比例,如果不是乘积(商)一定或乘积(商)不一定,就不成比例.解:因为:总个数÷每分钟生产的个数=时间(一定),也就是生产的总个数和每分钟生产的个数的商一定,符合正比例的意义,所以生产的总个数和每分钟生产的个数成正比例.点评:此题考查用正反比例的意义辨识成正比例的量与成反比例的量,关键是明确变量与定量之间的等量关系式.32.圆柱的高一定,圆柱的侧面积与底面直径成正比例..(判断对错)【答案】√.【解析】判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.解:因为圆柱的侧面积÷πd=h,则:圆柱的侧面积÷d=πh,因为高一定,所以πh一定,即圆柱的高一定,圆柱的侧面积与底面直径成正比例;点评:此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.33.,则x和y 成比例.【答案】正.【解析】判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.解:因为,则x:y=6(一定),所以x和y成正比例;。

西师大版六年级数学下册《第3单元正比例和反比例》课时练习

西师大版六年级数学下册《第3单元正比例和反比例》课时练习

西师大版六年级数学下册《第3单元正比例和反比例》课时练习比例的意义和性质基础训练1.填一填。

(1)表示两个比( )的式子叫做比例。

(2)在一个比例中,两个外项的积()的积,这叫做比例的基本性质。

(3)在一个比例中,如果两个外项互为倒数,则两个内项的积是( ),如果一个内项是,则另一个内项是()。

(4)如果8=4,那么a=()(5)如果A:7=9:B,那么AB=( )。

(6)解比例的依据是()。

2.下面哪几组中的两个比能组成比例,把组成的比例写出来。

(1)6:10和9:15(2)8:5和20/3:21(3)0.5:0.2和6/4:3/53.用下面的四个数据你能组成几个比例,请写出来。

小英说:我3分跳360下。

小丽说:我1.5分跳180下。

答案1. ⑴相等⑵等于两个内项⑶1 2/9 ⑷12 ⑸63 ⑹比例的基本性质2. ⑴能 6:10=9:15 ⑵不能⑶能 0.5:0.2=6/4:3/5 3~4略解比例1.解比例。

5/x=2/9 3/4:2/9=x:1/3 x:0.4=6:5 0.6:12=1.5:x2.根据条件列出比例并且解比例(1)两个外项是12和x,两个内项是1.5和8(2)用3、0.6、9和x组成比例,并解比例。

3.一台织布机5时织布32米,照这样计算,王阿姨还要织多少时?王阿姨说:我还剩51.2米布没织。

4.在8:15中,如果前项加上4,要使比值不变,后项要加上多少?如果后项乘3,要使比值不变,前项要加上多少?答案1. x= 22.5 x=9/8 x=0.48 x=302 .(1)12:1.5=8:x x=1 (2)略3. 51.2÷(32÷5)=8(时)4.. 7.5 16练习十一1、下面的比能否组成比例,说明理由,并把能组成比例的两个比组成比例式。

(1)(2)(3)2、下面各表中相对应的两个量能否不组成比例?如果能,把组成的比例写出来。

(1)一辆汽车行驶的路程和时间如下表。

人教版六年级下册《42_正比例和反比例的意义》小学数学-有答案-同步练习卷(2)

人教版六年级下册《42_正比例和反比例的意义》小学数学-有答案-同步练习卷(2)

人教版六年级下册《4.2 正比例和反比例的意义》小学数学-有答案-同步练习卷(2)1. 直接写出得数。

2. 判断下列各题中,两种量是否成正比例关系,请说明理由。

(1)订阅《中国少年报》的金额和份数。

________(2)人的年龄和体重。

________3. 李师傅要加工一批零件,如表是他每天加工零件的数量与相应可以完成工作时间。

(1)把表格填完整。

(2)李师傅每天加工零件数量与完成工作时间成反比例吗?为什么?填空题.如果用字母x、y表示两种相关联的量,用k表示积(一定),反比例的关系式是________.一个自然数(0除外)与它的倒数成________比例。

x和y的积是12,那么x、y成________比例,它们的关系式是________.判断下面各题中的两个量是否成反比例,并说明理由。

(1)订《少先队员》的份数和总价钱。

________(2)三角形的面积一定,底和高。

________(3)总人数一定,行数和每行人数。

________(4)总价一定,单价与数量。

________已知x和y是反比例关系,根据表中的条件,填写下表。

全年级总人数一定,每班人数与班数成________比例。

=y(x不为0),那么x和y成________比例。

如果24x每块砖的面积一定,铺地的面积和所需砖的块数成________比例。

判断题。

(对的在括号中画“√”,错的画“×”)被除数一定,商和除数成反比例。

________(判断对错)人的体重和年龄成正比例。

________(判断对错)糖水的含糖率一定,糖和水成反比例。

________(判断对错)正方形面积与边长成反比例。

________(判断对错)一批大米的总质量一定,每袋质量与袋数成反比例。

________(判断对错)铺地面积一定,每块砖的面积和块数成反比例。

________.参考答案与试题解析人教版六年级下册《4.2 正比例和反比例的意义》小学数学-有答案-同步练习卷(2)1.分数除法分数乘法【解析】根据分数加减乘除法的计算方法求解即可。

《第2章_正比例和反比例》小学数学-有答案-北师大版六年级(下)数学同步练习(41)

《第2章_正比例和反比例》小学数学-有答案-北师大版六年级(下)数学同步练习(41)

《第2章正比例和反比例》小学数学-有答案-北师大版六年级(下)数学同步练习(41)一、判断1. 圆的面积和半径成正比例。

________.(判断对错)2. 圆的面积和半径的平方成正比例。

________.(判断对错)3. 圆的面积和圆的周长的平方成正比例。

________(判断对错)4. 正方形的面积和边长成正比例。

________.(判断对错)5. 正方形的周长与它的边长成正比例。

________.(判断对错)6. 长方形的面积一定,长和宽成反比例。

________.(判断对错)7. 长方形的周长一定时,长和宽成反比例。

________.(判断对错)8. 三角形的面积一定,它的底和高成反比例。

________.(判断对错)9. 梯形的面积一定,它的上底和下底的和与高成反比例。

________.(判断对错)10. 圆的周长与半径成正比例。

________.(判断对错)11. 一个因数不变,积与另一个因数成正比例。

________.(判断对错)12. 长方形的长一定,宽和面积成正比例。

________.(判断对错)13. 大米的总量一定,吃掉的和剩下的成反比例。

________.14. 一个分数的分子一定,分母和分数值成反比例。

________.15. 铺地面积一定时,方砖边长与所需块数成反比例。

________.(判断对错)16. 除数一定,被除数和商成正比例。

________.(判断对错)17. 路程一定,速度和时间成正比例关系。

________.18. 一堆煤的总量不变,烧去的煤与剩下的煤成反比例。

________.(判断对错)19. 花生的出油率一定,花生的重量与榨出花生油的重量成正比例。

________.(判断对错)20. 平行四边形的面积一定,底与高成反比例。

________.(判断对错)二、判断下面每题中的两种量是不是成比例,成什么比例,并说明理由.判断题中的两种量是不是成比例,成什么比例,并说明理由。

人教版六年级数学下册练习:反比例的意义及相关联两种量的关系(B)(教师版)

人教版六年级数学下册练习:反比例的意义及相关联两种量的关系(B)(教师版)

4.2.2反比例的意义及相关联两种量的关系(B)1.用字母表示的正比例关系式是________,反比例式是________.【答案】k(一定)=yxxy=k(一定)【解析】【分析】成正比例关系的两种量,相对应的比值一定,反比例关系的两种量,相对应的乘积一定。

【详解】用字母表示正比例关系式是:k(一定)=yx;反比例关系是:xy=k(一定)故答案为:k(一定)=yx;xy=k(一定)【点睛】本题考查正反比例的意义以及用字母表示数,利用定义来写式子。

2.粮库要运一批稻米,每天运的吨数和需要的天数如下表:每天运的吨数7236241812…需要的天数12346…(1)每天运的吨数和需要的天数成( )比例。

(2)为什么?请在下面横线上简要的写一写。

________________【答案】反72×1=72(吨)、36×2=72(吨)、24×3=72(吨),每天运的吨数×天数=总吨数(一定)【解析】【分析】根据xy=k(一定),x和y成反比例关系,进行分析。

【详解】(1)每天运的吨数和需要的天数成反比例。

(2)72×1=72(吨)、36×2=72(吨)、24×3=72(吨),每天运的吨数×天数=总吨数(一定),所以每天运的吨数和需要的天数成反比例。

【点睛】关键是理解反比例的意义,积一定是反比例关系。

3.路程一定,速度和时间成( )比例,圆的半径和面积( )比例,单价一定,总价和数量成( )比例。

【答案】反不成正【解析】【分析】判断两种相关联的量成什么比例,就看这两种量是对应的比值一定,还是对应的乘积一定,如果是比值一定,就成正比例,如果是乘积一定,就成反比例。

【详解】①因为:速度×时间=路程(一定),所以速度和时间成反比例;①因为S=πr2,Sr=πr,圆周率是定值,r是个变量,所以圆的半径和面积不成比例;①因为:总价÷数量=单价(一定),所以总价和数量成正比例。

正比例和反比例-常考题型练习

正比例和反比例-常考题型练习

实际应用题型的常见陷阱与误区
单位不统一
在涉及不同单位的问题中,需要 注意单位是否统一,避免因为单
位不统一而导致的错误。
忽视实际情况
在解题过程中,需要注意实际情况 的限制条件,如物理定律、逻辑关 系等,避免得出不符合实际情况的 答案。
计算错误
在解题过程中,需要注意计算正确, 避免因为计算错误而导致答案错误。
答案解析
由于y与x成反比例,我们可以设y=k/x。将已知 条件代入得方程组:1/2=k/3和3=k/(1/2)。解 得k=3/2。因此,y关于x的函数解析式为 y=(3/2)/x。
高阶练习题及答案解析
题目
已知f(x)为一次函数,且 f[f(x)]=9x+5,求f(x)的解析式。
答案解析
设f(x)=kx+b(k≠0),则 f[f(x)]=k(kx+b)+b=k^2x+kb+b。 根据题意,有方程组:$k^2=9$ 和$kb+b=5$。解得k=3和b=2或 k=-3和b=-5。因此,f(x)的解析式 为f(x)=3x+2或f(x)=-3x-5。
80%
代数运算
在解题过程中,需要进行代数运 算,如乘法、除法、方程求解等 。
正反比例综合题型的常见陷阱与误区
混淆正反比例
在解题过程中,需要注意区分 正反比例,避免混淆。
忽视实际意义
在解题过程中,需要注意问题 的实际意义,避免得出不符合 实际情况的答案。
忽视单位换算
在解题过程中,需要注意单位 换算,避免出现单位不一致的 情况。
反比例的应用场景
总结词
反比例关系在日常生活和科学领域中有着广泛的应用,如物 理、化学、工程等。

正比例和反比例的意义知识点总结加典型例题

正比率和反比率的意义知识点一:正比率和反比率的意义( 1)正比率两种有关系的量,一种量变化,另一种量也跟着变化,假如这两种量中相对应的两个数的比值(也就是商)必定,这两种量变叫做成正比率的量,它们的关系叫做正比率关系。

用字母 x 和y表示两种有关系的量,用k 表示必定的量,那么正比率关系可以写成:yk必定x比如,总价跟着数目的变化而变化,总价和数目的比的比值(单价)是必定的,我们就说,总价和数目是成正比率的量。

工总=工效(必定)工总和工时是成正比率的量工时行程=速度(必定)因此行程与时间成正比率。

时间( 2)反比率两种有关系的量,一种量变化,另一种量也跟着变化,假如这两种量中相对应的两个数的积必定,这两种量就叫做成反比率的量,它们的关系叫做反比率关系。

用字母 x 和y表示两种有关系的量,用k表示必定的量,那么反比率关系可以写成:x ×y = k(必定)比如,长×宽=面积(必定)长和宽是成反比率的量每本的页数×装订的本数=纸的总页数(必定)每本的页数和装订的本数是成反比率的量知识点二:正比率和反比率有什么同样点和不一样点?( 1)同样点:正、反比率都是研究两种有关系的量之间的关系,即一种量变化,另一种量也跟着变化。

(2)不一样点:正比率是两种有关系的量中相对应的两个数的比值(商)必定;反比率是两种有关系的量中相对应的两个数的积必定。

正比率反比率同样点不同点知识点三:正比率和反比率的图像是一条什么线?( 1)正比率关系的图象是一条过原点的直线。

( 2)反比率关系的量是一条可是原点的曲线。

知识点四:正比率和反比率的判断(1)先判断两种量x和 y 能否是有关系的量,即一种量变化,另一种量也跟着变化。

()若切合y必定,则x和 y 成正比率;若切合x×y = k (必定),则x和2kxy 成反比率;不然,这两种量就不可比率关系。

【典型例题】题型一:依据图标填写信息例 1 :购置面粉的重量和钱数以下表,依据表填空。

六年级数学下册第06讲正比例和反比例-单元知识盘点+易错题专训()(苏教版)

第06讲正比例和反比例知识盘点一、正比例的意义1.两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就是成正比例的量,它们的关系就叫作成正比例关系。

2.如果用x和y表示两种相关联的量,用k表示它们的比值,则正比例关系可=k(一定)。

以表示为yy3.有些相关联的量,虽然也是一种量随着另一种量的变化而变化,但是它们相对应的数的比值不一定,它们就不成正比例。

4.正比例关系的判断方法。

(1)首先判断这两种量是不是相关联的量。

(2)再看这两种量相对应的两个数的比值是否一定。

比值一定,这两种量成正比例;反之,不成正比例。

5.正比例图像。

(1)表示成正比例的两种量中相对应的各点在同一条直线上,即正比例的图像是一条经过原点的直线。

(2)从图像中可以直观地看出两种量的变化情况。

(3)借助图像,可以由一个量的值找到对应的另一个量的值。

二、认识成反比例的量1.反比例的意义。

(1)两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就是成反比例的量,它们的关系就叫作成反比例关系。

(2)如果用x和y表示两种相关联的量,用k表示它们的积,则反比例关系可以表示为x×y=k(一定)。

2.反比例关系的判断方法。

(1)看这两种量是不是相关联的量。

(2)再看这两种量中相对应的两个数的积是否一定。

积一定,这两种量就成反比例,否则就不成反比例。

三、成反比例的两种量,也可以在方格纸上画图来表示例:速度/(千米/150 100 75 60 50时)时间/时 2 3 4 5 6(1)纵轴表示速度,单位是“千米/时”,每1小格表示25千米/时。

横轴表示时间,单位是“时”,每1小格表示1小时。

表格中的每一组数据都可以用一个点表示。

(2)画反比例图像时,先根据每一组数据描点,然后顺次连接,画的线要流畅。

典型精讲知识点一认识正比例的量1.下面说法中,不正确的有()句。

小升初数学总复习专题训练:正比例和反比例的意义、求比值和化简比、解比例

正比例和反比例的意义一、单选题1.每辆汽车载重量一定,汽车辆数和载重量总数()A. 成正比例B. 成反比例C. 不成比例D. 不成正比例2.下面题中的两种量成不成比例,成什么比例.()正方体的体积和棱长.A. 成正比例B. 成反比例C. 不成比例3.根据规律判断比例关系,并填空X与Y成那种比例A. 成正比例B. 成反比例C. 不成比例4.在下面四句叙述中,正确的是()①给一间教室铺地砖,每块地砖的面积和所需地砖的块数成反比例;②把45米长的绳子平均分成4段,每段占全长的15;③一个自然数不是奇数就是偶数,不是质数就是合数;④一个圆柱和圆锥体积相等,底面积也相等,圆柱的高为6cm,那圆锥的高一定是18cm.A. ①②B. ①③C. ②④D. ①④5.下题中的两种量成什么比例.一辆汽车的速度一定,行驶的时间和路程.()A. 成正比例B. 成反比例C. 不成比例6.小明从家里去学校,所需时间与所行速度()。

A. 成正比例B. 成反比例C. 不成比例7.每袋茶叶的重量一定,茶叶的总重量和袋数( )A. 成反比例B. 成正比例C. 不成比例D. 不成正比例8.正方形的面积和边长()A. 成正比例B. 成反比例C. 不成比例9.长方形的面积一定,长与宽成()A. 反比例B. 正比例C. 不成比例D. 无法判断10.大米的总量一定,吃掉的和剩下()A. 不成比例B. 成正比例11.班级数一定,每班人数和总人数( )A. 成反比例B. 成正比例C. 不成比例D. 不成正比例12.正方体的表面积和()成正比例.A. 棱长B. 底面积13.如果x= 14y,那么1x与y成()比例.A. 正B. 反C. 不成D. 无法确定14.下面每组中的两种量,不成正比例的是()。

A. 一个人的年龄和体重B. x÷y=0.2C. 2m=n15.圆的半径和周长( )A. 成正比例B. 成反比例C. 不成比例D. 不成正比例16.题中的两个量订阅《少年报》的份数和钱数.( )A. 成正比例B. 成反比例C. 不成比例17.平行四边形面积一定时,底和高成()A. 正比例B. 反比例C. 不能确定18. 下面的四句话中,正确的一句是()A. 任何等底等高的三角形都可以拼成一个平行四边形B. 路程一定,时间和速度成反比例关系C. 把0.78扩大到它的100倍是7800D. b(b>1)的所有因数都小于b19.题中的两个量()圆的半径和周长.A. 成正比例B. 成反比例C. 不成比例20.下面题中的两种量成什么比例?x∶3=y,x和y.( )A. 成正比例B. 成反比例C. 不成比例二、判断题21.判断对错.长方形的周长一定,长与宽成反比例.22.订阅《少年文艺》的份数与总钱数成反比例.23.大豆的出油率一定,那么大豆的数量和出油量成正比例。

人教版六年级下册《正比例和反比例》小学数学-有答案-同步练习卷(某校)

人教版六年级下册《正比例和反比例》小学数学-有答案-同步练习卷(某校)一、判断下面每组中的量是否成正比例,对的打“√”错的打“×”.1. 订阅《小学生天地》的份数和钱数成________比例。

2. 一个人的年龄和体重________比例。

3. 除数一定,被除数和商________比例。

4. 平行四边形的底一定,面积和高成________比例。

5. 三角形的面积一定,底和高不成比例。

________.(判断对错)=k,所以y和x成正比例。

________.(判断对错)6. 因为yx7. 圆的面积与半径成正比例关系。

________.(判断对错)8. 3x=5y,那么x和y成正比例关系。

________.(判断对错)9. 成正比例的两个量,一个量扩大,另一个也在扩大。

________.(判断对错)10. 一袋面粉,吃掉的和剩下的成反比例关系。

________.(判断对错)二、解答题(共10小题,满分0分)下表中的x和y成正比例,请把表格填写完整。

=20.请完成下表。

如果x和y成正比例,并且yx已知x和y成正比例关系,请完成下列表格。

已知x和y成反比例关系,请完成下表。

购买面粉的重量和钱数如下表,根据表填空。

(1)________和________是两种相关联的量,________随着________的变化而变化。

(2)与总价7.6元相对应的重量是________千克;与6千克相对应的总价是________元。

(3)总价与重量中相对应的两个数的比值所表示的意义是________.(4)因为比值一定,所以表中总价和重量叫做成________的量。

小英和妈妈的年龄变化情况如下,把表填写完整。

母女的年龄成正比例吗?为什么?甲、乙两辆车速度比是8:9,那么行驶相同的一段路,两辆车的时间比是多少?对应训练:甲、乙两车的速度比是8:9,那么在相同的时间里,两车所行使的路程比是多少?一列火车从甲地开往乙地,2小时行了280千米,从乙地开往丙地,5小时行了700千米。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

正比例和反比例的意义⑤⑥
1根据你的经验,判断下面各题中的两个量是否成正比例,是的打“√”,不是的打“×”。

(1)汽车行驶的路程和时间。

( ) (2)人的年龄和身高。

( )
(3)x与y的比值是1
5
,x与y。

( ) (4)被除数一定,除数和商。

( )
(5)做一项工程,工作效率与完成的时间。

( )
2根据下面的关系式,说出哪种量一定,哪两种量成正比例。

(1)总价=单价×数量。

(2)长方形面积=底×高。

( )一定,( )和( )成正比例。

( )一定,( )和( )成正比例。

(3)xy=z。

(4)铺地面积=方砖面积×方砖块数。

( )一定,( )和( )成正比例。

( )一定,( )和( )成正比例。

(5)路程=速度×时间。

( )一定,( )和( )成正比例。

3根据表中两种量相对应的比值,判断它们是不是成正比例,并说明理由。

(1)
(2)
4小英和妈妈的年龄变化情况如下,把表填写完整。

5已知ab=c,a、b都不为0。

先写两个正比例关系式,再填空。

______( )一定,( )和( )成正比例。

______( )一定,( )和( )成正比例。

6填空:
(1)每公顷的施肥量一定,施肥总量与公顷数成( )比例。

(2)要修的路程一定,每天修的路程与天数成( )比例。

(3)肥料总数一定,每平方米施肥量和平方米成( )比例。

(4)钱的总数一定,铅笔数量和单价成( )比例。

(5)制造一批零件的个数一定,制造一个零件的时间和需要的总时间成( )比例。

7下面常用的一些相关联的量成什么比例。

(1)速度×时间=路程。

速度一定,( )和( )成( )比例。

时间一定,( )和( )成( )比例。

路程一定,( )和( )成( )比例。

(2)单价×数量=总价。

单价一定,( )和( )成( )比例。

数量一定,( )和( )成( )比例。

总价一定,( )和( )成( )比例。

8选择正确答案的字母填入括号内。

A.成正比例B.成反比例C.不成比例
(1)平行四边形的底一定,高和面积。

( )
(2)积一定,一个因数与另一个数。

( )
(3)一本书的页数一定,已看的页数和没看的页数。

( )
(4)工作效率一定,工作总量和工作时间。

( )
9糖果厂包装一批糖果,每袋糖果的粒数和装的袋数如下表:
10判断下面的两种量成不成比例?成正比例画“○”,成反比例画“△”,不成比例画
“×”。

(1)每小时织布米数一定,织布的总时间和总米数。

( )
(2)一个人的年龄和他的体重。

( )
(3)生产总量一定,每天的生产量和生产天数。

( )
(4)正方形的边长和面积。

( )
(5)分母一定,分子和分数值。

( )
11填空:
(1)物品的总价一定,它的单价和数量成( )比例。

(2)每公顷的施肥量一定,施肥的公顷数和施肥总量成( )比例。

(3)要走的路程一定,已行路程与未行的路程( )比例。

(4)比的后项一定,前项和比值成( )比例。

(5)甲数是乙数的80%,甲数和乙数成( )比例。

(6)圆的半径和它的周长成( )比例。

12填一填。

(1)已知x和y成正比例关系,请完成下列表格。

(2)已知x和y成反比例关系,请完成下表。

13如果a
b·c
=1(b≠0,c≠0),那么,当a一定时,b和c成( )比例;当b一定时,a和c成( )比例;当c一定时,a和b成( )比例。

14判断(对的打“√”,错的打“×”)
(1)生产效率一定,生产的总量和生产的时间成反比例。

( )
(2)出米率一定,大米的重量和稻谷的重量成正比例。

( )
(3)汽车速度一定,行驶的路程和所用时间成反比例。

( )
(4)三角形的高一定,它的面积和底不成比例。

( )
(5)被减数一定,减数和差成反比例。

( )
1如果x和y成正比例,并且y
x
=20。

请完成下表。

2在下图中,描出上题中y与相对应的x的点(注意找几个关键点),然后连成线。

3一个比例的两个内项之积是1
8
,其中一个外项为20%,则另一个外项为多少?
4李平和同学星期六骑车去郊游,下图表示她骑车的路程和时间的关系。

(1)李平骑车行驶的路程和时间成正比例吗?为什么?
(2)利用图估计,李平20分钟大约行了多少千米?行20千米大约用了多少分钟?(答案保留整数)
5用同样的方砖铺地,方砖的边长一定,铺地面积与方砖块数成不成比例?为什么?。

相关文档
最新文档