学生华师大版七年级下册一元一次方程单元复习及练习
华师大版数学七下-第六章一元一次方程复习-超全!!!

华师大版·数学·七年级下第六单元 一元一次方程● 专题一:一元一次方程定义 ●一元……………………只有一个未知数 一次……………………最高次数为“1” 方程……………………等式A . X+1 (不是等式)B . X +Y=1 (含有2个未知数)C . 1+1=2 (不含有未知数)D . X 2+1=3 (最高次数不为1形式1)E . XY+12=34 (最高次数不为1,形式2)● 专题二:一元一次方程解法 ●去 分 母:如果乘进去后无法将分母化开的应先去分母。
去分母两边同乘以分母的最小公倍数,注意是方程中的各项都得乘,而且要特别注意有括号时的处理方法。
拆 括 号:同有理数解法与整式解法,拆括号要重点注意是否要变号。
移 项:整理完后开始移项,将式子化成未知数在方程一侧,常数在另一侧的形式,注意,如果移到等号另一边的时候,要记得变号。
合并同类项:同有理数解法与整式解法 除 系 数:系数化“1”,等号两边同除以系数或乘以系数的倒数。
检 验:基础较差的同学最好做这一步,将解出来的方程的根带入原方程,如果等号两边最后做出来答案一样的话,那就正确,否则错误。
Ⅰ.含有多层括号 考查重点:拆括号 Ⅱ.含有多个分数 考查重点:去分母 Ⅲ.小数作系数 考查重点:方程整体扩大/小数化分数/去分母 Ⅳ.百分数作系数 考查重点:方程整体扩大/小数化分数/去分母 Ⅴ.小数作分母 考查重点:去分母/单项通分 Ⅵ.繁分数 考察重点:去分母 Ⅶ.含有绝对值 考查重点:将绝对值看作一个整体/整体思维选择题:以下各项中,有哪个是一元一次方程? A B C D21=+x 42=+xx (是一元一次方程) 在分数项里含有未知数,别的项必须为常数 21=+x x x xx =+221 (不是一元一次方程)● 专题三:一元一次方程文字解答题 ●一元一次方程文字解答题介于计算题和应用题之间,难度中等。
和计算题一样, 它需要我们用心计算,但它没有式子;和应用题一样,它需要我们列式,但它的题目内容只停留在单纯的数学环境中,没有涉及到实际问题。
华东师大版七年级数学下册练习题:《一元一次方程》一课一练含单元测试题

6.1 从实际问题到方程1.下列各式中,是方程的是( )A .x 2-2x =0 B.23x -5 C .3+(-4)=-1 D .7x >52.小华想从下面各项中找一个解是x =2的方程,那么她会选择( )A .3x +6=0 B.23x =2 C .5-3x =1 D .3(x -1)=x +13.检验方程后面的数是不是它的解.2x +1=3x -1.(x =-1,x =2)4.超市店庆促销,某种书包原价每个x 元,第一次降价打“八折”,第二次降价每个又减10元,经两次降价后每个书包的售价为90元,则得到方程( )A .0.8x -10=90B .0.08x -10=90C .90-0.8x =10D .x -0.8x -10=905.列方程:(1)x 的2倍与3的差等于零;(2)y 比它的34多7;(3)x 的3倍加上5等于x 的7倍减去4.6.某工厂加强节能措施,去年下半年与上半年相比,月平均用电量减少2000度,全年用电15万度.若设上半年平均每月用电x 度,则所列方程正确的是( )A .6x +6(x -2000)=150000B .6x +6(x +2000)=150000C .6x +6(x -2000)=15D .6x +6(x +2000)=157.已知x =1是方程x +2a =-1的解,那么a 的值是( )A .-1B .0C .1D .28.若单项式3ac x +2与-7ac 2x -1是同类项,则可以得到关于x 的方程为______________.9.众所周知,中华诗词博大精深,集大量的情景情感于短短数十字之间,或豪放,或婉约,或思民生疾苦,或抒发己身豪情逸致,文化价值极高.而数学与古诗词更是有着密切的联系.古诗中,五言绝句是四句诗,每句都是五个字;七言绝句是四句诗,每句都是七个字.有一本诗集,其中五言绝句比七言绝句多13首,总字数却反而少了20个字(不计算标题字数).则七言绝句有多少首?设七言绝句有x 首,根据题意,可列方程为________.10.在一次植树活动中,甲班植树的株数比乙班多20%,乙班植树的株数比甲班的一半多10株,设乙班植树x株.(1)列两个不同的含x的代数式,分别表示甲班植树的株数;(2)根据题意列出含未知数x的方程;(3)检验乙班、甲班植树的株数是不是分别为25株和35株.详解详析1.A [解析] 考查方程的定义.2.D [解析] 把x=2分别代入选项中各方程,它只能使3(x-1)=x+1的左右两边成立,所以选D.3.解:把x=-1代入方程:左边=-2+1=-1,右边=-3-1=-4,左边≠右边,∴x=-1不是方程的解;把x=2代入方程:左边=4+1=5,右边=6-1=5,左边=右边,∴x=2是方程的解.4.A5.解:(1)2x-3=0. (2)y-34y=7.(3)3x+5=7x-4.6.A [解析] 设上半年平均每月用电x度,则下半年平均每月用电(x-2000)度,由题意,得6x+6(x-2000)=150000.故选A.7.A [解析] 把x=1代入方程,得1+2a=-1,解得a=-1.故选A.8.x+2=2x-1 [解析] ∵单项式3ac x+2与-7ac2x-1是同类项,∴x+2=2x-1.故答案为x+2=2x-1.9.28x-20(x+13)=20 [解析] 设七言绝句有x首,则五言绝句有(x+13)首.利用五言绝句与七言绝句总字数之间的关系可列方程为28x-20(x+13)=20.10.解:(1)根据甲班植树的株数比乙班多20%,得甲班植树的株数为(1+20%)x;根据乙班植树的株数比甲班的一半多10株,得甲班植树的株数为2(x-10).(2)由题意,得(1+20%)x=2(x-10).(3)把x=25分别代入方程的左边和右边,得左边=(1+20%)×25=30,右边=2×(25-10)=30.∵左边=右边,∴25是方程(1+20%)x=2(x-10)的解,∴乙班植树的株数是25株,从上面的检验过程可得甲班植树的株数是30株,而不是35株.6.2 七年级数学下册解一元一次方程同步练习一、选择题1.已知等式3a=2b+5,则下列等式中不一定成立的是()A.3a﹣5=2bB.3a+1=2b+6C.3ac=2bc+5D.a=2.将3x﹣7=2x变形正确的是()A.3x+2x=7 B.3x﹣2x=﹣7 C.3x+2x=﹣7 D.3x﹣2x=73.下列方程的变形正确的是()A.由,得: ; B.由,得:; C.由得 D.由得:;4.若x=-3是方程2(x-m)=6的解,则m 的值为( )A .6B .-6C .12D .-125.若7﹣2x 和5﹣x 的值互为相反数,则x 的值为( )A.4B.2C.﹣12D.﹣76.解方程时,为了去分母应将方程两边同时乘以( ) A.12 B.10 C.9 D.47.把方程3x +=3-去分母,正确的是 ( )A .B .C .D . 8.方程,可以化成( )A. B.C. D.9.某书上有一道解方程的题:,处在印刷时被油墨盖住了,查后面的答案知这个方程的解是x=-2,那么处应该是数字( ).A.7B.5C.2D.-210.已知方程的解满足,则的值是( ) A. B.C.或 D.任何数二、填空题 11.若关于x 的方程(k+2)x 2+4kx ﹣5k=0是一元一次方程,则k= ,方程的解x= .3137143y y ---=12.若“★”是新规定的某种运算符号,设a★b=ab+a﹣b,则2★n=﹣8,则n= .13.已知关于x的方程4x+2m=3x+1与方程3x+2m=6x+1的解相同,则方程的解为.14.若方程3x+2a=13和方程2x-4=2的解互为倒数,则a的值为 .15.已知关于x的方程2ax=(a+1)x+3的解是正整数,则正整数a=16.已知t满足方程,则的值为 .三、解答题17.解方程:4x-3(20-x)= 3 18.解方程:3(x﹣1)﹣2(x+2)=4x﹣1.19.解方程:. 20.解方程:21.聪聪在对方程①去分母时,错误的得到了方程2(x+3)﹣mx﹣1=3(5﹣x) ②,因而求得的解是x=2.5,试求m的值,并求方程的正确解.22.m为何值时,关于x的方程4x﹣m=2x+5的解比2(x﹣m)=3(x﹣2)﹣1的解小2.答案1.C2.D3.D.4.D5.B6.A7.A8.D9.B.10.C11.答案为:﹣2、1.25.12.答案为:-1013.答案为:014.答案为:a=6;15.答案为:2,4;16.答案为:2;17.x=9;18.解:去括号得:3x-3-2x-4=4x-1,移项得:x-4x=-1+7,合并得:-3x=6,解得:x=-2.19.去分母得:5(x﹣3)﹣3(2x+7)=15(x﹣1),去括号得:5x﹣15﹣6x﹣21=15x﹣15,移项合并得:﹣16x=21,解得:x=﹣.20.x=-0.2.21.解:把x=2.5代入方程②得:2(2.5+3)﹣2,5m﹣1=3(5﹣2.5),解得:m=1,把m=1代入方程①得:﹣=,去分母得:2(x+3)﹣x+1=3(5﹣x),去括号得:2x+6﹣x+1=15﹣3x,移项合并得:4x=8,解得:x=2,则方程的正确解为x=2.22.解:由4x﹣m=2x+5,得x=,由2(x﹣m)=3(x﹣2)﹣1,得x=﹣2m+7.∵关于x的方程4x﹣m=2x+5的解比2(x﹣m)=3(x﹣2)﹣1的解小2,∴+2=﹣2m+7,解得m=1.故当m=1时,关于x的方程4x﹣m=2x+5的解比2(x﹣m)=3(x﹣2)﹣1的解小2.华东师大版数学七年级下册第六章 6.3 实践与探索复习练习1. 一件标价为600元的上衣,按8折销售仍可获利20元,设这件上衣的成本价为x元,根据题意,下面所列的方程正确的是() A.600×0.8-x=20 B.600×8-x=20C.600×0.8=x-20 D.600×8=x-202.长方形的长是宽的3倍,如果宽增加了4 m而长减少了5 m,那么面积增加15 m2,设长方形原来的宽为x m,所列方程是() A.(x+4)(3x-5)+15=3x2B.(x+4)(3x-5)-15=3x2 C.(x-4)(3x+5)-15=3x2D.(x-4)(3x+5)+15=3x23.一家服装店将某种服装按进价提高50%后标价,又以八折销售,售价为360元,则每件服装获利()A.168元B.108元C.60元D.40元4. 小强父母想用一笔钱购买年利率为2.98%的3年期国库券作为小强3年后读高中的费用(约需8 000元),现在应买这种国库券约() A.7 775元B.7 362元C.7 769元D.7 344元5. 学校计划将120名学生平均分成若干个读书小组,若每个小组比原计划多1人,则要比原计划少分出6个小组,那么原计划要分成的小组数是()A.40B.30C.24D.206. 一个两位数的十位上的数字与个位上数字之和为8,把这个数减去36后,结果恰好成为十位数字与个位数字对调后组成的两位数,则这个两位数是()A.26 B.62 C.71 D.537. 某商店销售一批服装,每件售价150元,可获利润25%,求这种服装的成本价.设这种服装的成本价为x元,则得到的方程是() A.150-x=25%·x B.150-x=25%C.x=150×25% D.25%·x=1508. 已知关于x的方程kx2-2x+9=0的一个解是x=-1,则k的值是()A.-11B.11C.7D.-79. 下列各式中是方程的是()A.3x-2 B.7+(-5) C.3y-1=6 D.4×2-2=610. 下列判断正确的是()A.x=2是方程2x-1=x的解B.方程6x=3与方程6|x|=3的解相同C.由7x=5可得x=7 5D.x=1和x=-1都是方程x2-1=0的解11. 某企业存入银行甲、乙两种不同用途的存款共20万元,甲种存款的年利率为5.5%,乙种存款的年利率为4.5%,该企业一年可获利息9 500元,则存款数目为甲______元,乙______元.12. 小华的妈妈为爸爸买了一件上衣和一条裤子,共用306元.其中上衣按标价打七折,裤子按标价打八折,上衣的标价为300元,则裤子的标价为_____元13. 某商场今年五月份的销售额是200万元,比去年五月份销售额的2倍少40万元,那么去年五月份的销售额是______万元14. 某市政府切实为残疾人办实事,在区道路改造中为盲人修建一条盲道,根据规划设计和要求,每天施工500 m,该市工程队在实际施工时增加了施工人员,每天修建的盲道比原计划增加50%,结果提前2天完成,则盲道______m.15. 某数的3倍加上4等于10,设某数为x,那么可列出方程式:______________16. 已知父子俩的年龄之和为55岁,又知父亲的年龄比儿子的年龄的3倍少5岁,设儿子的年龄为x岁,可列方程为______________.17. 检验x=5是否为方程3x-2=2x+3的解.18. 甲、乙两人捐书给贫困山区,共捐54本,如果甲给乙一本,则乙是甲的2倍,问甲、乙各捐书多少本?19. 某一学生在做作业时,不慎将墨水打翻,使一道作业题只看到如下字样:“甲、乙两地相距40千米,摩托车的速度是每小时45千米,运货汽车的速度是每小时35千米,(以下内容被墨水覆盖)”请将这道题补充完整,并列方程解答20. 某同学在A,B两家超市发现他看中的英语学习机的单价相同,书包单价也相同,英语学习机和书包单价之和是452元,且英语学习机的单价比书包单价的4倍少8元(1)求该同学看中的英语学习机和书包的单价各是多少元?(2)某一天该同学上街,恰好赶上商家促销,超市A所有商品打7.5折销售;超市B全场购物满100元返购物券30元销售(不足100元不返券,购物券全场通用),但他只带了400元钱,如果他只在一家超市购买看中的英语学习机、书包,那么在哪一家购买更省钱?参考答案:1---10 ABCDB BAACD11. 5万15万12. 12013. 12014. 300015. 3x+4=1016. 3x-5+x=5517. 解:左边=3×5-2=13,右边=2×5+3=13.左边=右边,∴x=5是方程的解.18. 解:设甲捐x本,则乙捐了(54-x)本,由题意得:2(x-1)=54-x+1,解得x=19,所以甲捐了19本,乙捐了35本19. 解:可以把它补充成相遇问题,也可以补充成追击问题.方案很多,下面仅举两种方案供参考.方案1(相遇问题):补充“两车分别从甲、乙两地同时出发相向而行,经过几小时才能相遇?”设两车经过x小时才能相遇,依题意有(45+35)x=40.解得x=0.5. 答:经过0.5小时才能相遇.方案2(追击问题):补充“摩托车与汽车分别从甲、乙两地同时同向而行,经过几小时摩托车才能追上运货的汽车?”设经过x小时摩托车才能追上运货的汽车,依题意有45x=40+35x,解得x=4.答:经过4小时摩托车才能追上运货的汽车.20. 解:(1)设书包的单价为x元,则英语学习机的单价为(4x-8)元.根据题意,得4x-8+x=452,解得x=92.4x-8=4×92-8=360.答:该同学看中的英语学习机单价为360元,书包单价为92元.(2)在超市A购买英语学习机与书包各一件,需花费现金:452×75%=339(元);因为339<400,所以可以选择超市A购买.在超市B可先花费现金360元购买英语学习机,再利用得到的90元购物券,加上2元现金购买书包,总计共花费现金:360+2=362(元); 因为362<400,所以也可以选择在超市B购买但是,由于362>339,所以在超市A购买英语学习机与书包更省钱.第6章一元一次方程一、选择题(本大题共10小题,每小题3分,共30分;在每小题给出的四个选项中只有一项符合题意)1.下列方程中,是一元一次方程的是()A.x2+3=0B.x+3=y+2C.=4D.x=02.下列说法中不成立的是()A.若x=y,则x-a=y-aB.若x-y=0,则-x=-yC.若x=-y,则-x-5=y-5D.若-x=1,则x=-3.方程3x+2=2x-1的解为()A.x=-3B.x=-1C.x=1D.x=34.解方程=1-,去分母正确的是()A.3x=1-2x+2B.3x=1-2x-2C.3x=6-2x-2D.3x=6-2x+25.若关于x的方程3x+2a=12和方程2x-4=12的解相同,则a的值为()A.6B.8C.-6D.46.若的值比的值小1,则x的值为()A.B.-C.D.-7.对于非零的两个数a,b,规定a⊗b=3a-b,若(x+1)⊗2=5,则x的值为()A.1B.-1C.D.-28.已知关于x的方程(2a+b)x-1=0无解,那么ab的值是()A.负数B.正数C.非负数D.非正数9.某班组每天需生产50个零件才能在规定的时间内完成一批零件生产任务,实际上该班组每天比计划多生产了6个零件,结果比规定的时间提前3天并超额生产120个零件,若设该班组要生产的零件为x个,则可列方程为()A.-=3B.-=3C.-=3D.-=310.某个体商贩在一次买卖中同时卖出两件上衣,售价都是135元,若按成本计,其中一件盈利25%,另一件亏本25%,则在这次买卖中他()A.不赚不赔B.赚9元C.赔18元D.赚18元二、填空题(本大题共8小题,每小题4分,共32分)11.已知方程(m-2)x|m-1|+4=7是关于x的一元一次方程,则m=.12.当x=时,代数式与1-的值相等.13.如果当x=-2时,式子2x2+mx+4的值为18,那么当x=2时,这个式子的值为.14.如果2(x+3)的值与3(1-x)的值互为相反数,那么x=.15.若代数式3a4b2x与a4b3x-1能合并成一项,则x的值为.16.如果|x+8|=5,那么x=.17.如图6-Z-1是一块在电脑屏幕上出现的长方形色块图,由6个颜色不同的正方形组成,设中间最小的正方形的边长为1,则这个长方形色块图的面积为.图6-Z-1 18.一张试卷只有25道选择题,答对一题得4分,答错一题倒扣1分,某学生解答了全部试题共得70分,他答对了道题.三、解答题(本大题共4小题,共38分)19.(8分)解方程:(1)2(x-1)-3(2+x)=5;(2)2-=+1.20.(10分)阅读:解方程2.4-=y,有如下四种解法:解法A:24-=6y,第一步120-y+4=30y,第二步-31y=-124,第三步y=4.第四步解法B:2.4-=y,第一步12+10y-40=3y,第二步7y=28,第三步y=4.第四步解法C:24-=6y,第一步48+10y-40=12y,第二步8=2y,第三步y=4.第四步解法D:-=y,第一步12-10y+40=3y,第二步-13y=-52,第三步y=4.第四步阅读上面的解法,你认为哪些解法是正确的?解法错误的错在哪一步?21.(10分)某工厂原计划用26小时生产一批零件,后因每小时多生产5个,用24小时不但完成了任务,而且还比原计划多生产了60个,则原计划生产多少个零件?22.(10分)情景:图6-Z-2试根据图中的信息,解答下列问题:(1)购买6根跳绳需元,购买12根跳绳需元.(2)小红比小明多买2根跳绳,付款时小红反而比小明少付5元,你认为有这种可能吗?若有,请求出小红购买跳绳的根数;若没有,请说明理由.答案1. D2. D3. A4. D5. C6. B7. C8. D9. C10. C11. 0 12.-1 13. 6 14. 9 15. 1 16.-3或-13 17. 143 18. 1919.解:(1)去括号,得2x-2-6-3x=5.移项、合并同类项,得-x=13.系数化为1,得x=-13.(2)方程两边同乘以6,得12-(2x-1)=2(x+1)+6,12-2x+1=2x+2+6,4x=5,x=.20.解:只有解法D是正确的.解法A错在第一步,解法B错在第二步,解法C错在第二步.21.解:设原计划生产x个零件.由题意,得24+5=x+60,解得x=780.答:原计划生产780个零件.22.解:(1)150240(2)有这种可能.设小红购买了x根跳绳,根据题意,得25×0.8x=25(x-2)-5,解得x=11.所以小红购买了11根跳绳.。
华东师大版七年级数学下册第六章 一元一次方程练习(含答案)

A.x1=x2=1
B.x1=0,x2=1 1/6
知识像烛光,能照亮一个人,也能照亮无数的人。--培根
C.x1=x2=﹣1
D.x1=1,x2=﹣2
8.某车间有 26 名工人,每人每天可以生产 800 个螺钉或 1000 个螺母,1 个螺钉需要配 2 个螺母,为使每天生产的螺钉和螺母刚好配套.设安排 x 名工人生产螺钉,则下面所列方程 正确的是( )
合并同类项,得 7x = −7 .
系数化为 1,得 x = −1 .
∴ x = −1 是原方程的解.
16.解方程
(1) 5x − 2 = 3x + 9
(2) 2x +1 − 5x −1 = 1
3
6
17.某工厂计划生产一种新型豆浆机,每台豆浆机需 3 个 A 种零件和 5 个 B 种零件正好配 套。已知车间每天能生产 A 种零件 450 个或 B 种零件 300 个,现在要使在 21 天中所生产的 零件全部配套,那么应安排多少天生产 A 种零件,多少天生产 B 种零件?
A.1200π cm3
B.1300π cm3
C.1400π cm3
D.1500π cm3
二、填空题
11.方程(a﹣2)x|a|﹣1+3=0 是关于 x 的一元一次方程,则 a=_____.
12.当 x = _________时,代数式 1 (1+ 2x) 与代数式 2 (3x −1) 的值相等
7
7
2/6
A. 40%(1 + 80%)x = 48
B. 80%(1 + 40%)x − x = 48
C. x − 80%(1 + 40%)x = 48
D. 80%(1 − 40%)x − x = 48
华东师大版七年级数学(下)第六章 一元一次方程 单元综合练习(含答案)

华东师大版七年级数学(下)第六章 一元一次方程 单元综合练习(含答案)1.方程2x +3=7的解是( )A .x =5B .x =4C .x =3.5D .x =22.在解方程x -13+x =3x +12时,方程两边同时乘6,去分母后,正确的是( ) A .2x -1+6x =3(3x +1) B .2(x -1)+6x =3(3x +1)C .2(x -1)+x =3(3x +1)D .(x -1)+x =3(x +1)3.若2(a +3)的值与4互为相反数,则a 的值为( )A .-1B .-72C .-5 D.124.已知方程x -2y +3=8,则整式x -2y 的值为( )A .5B .10C .12D .155.某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套,设安排x 名工人生产螺钉,则下面所列方程正确的是( )A .2×1000(26-x )=800xB .1000(13-x )=800xC .1000(26-x )=2×800xD .1000(26-x )=800x6.在如图2018年6月份的月历表中,任意框出表中竖列上三个相邻的数,这三个数的和不可能是( )A .27B .51C .69D .727.书店举行购书优惠活动:①一次性购书不超过100元,不享受打折优惠;②一次性购书超过100元但不超过200元一律打九折;③一次性购书200元以上一律打七折.小丽在这次活动中,两次购书总共付款229.4元,第二次购书原价是第一次购书原价的3倍,那么小丽这两次购书原价的总和是________元.8.一件服装的标价为300元,打八折销售后可获利60元,则该件服装的成本价是________元.9.若代数式x -5与2x -1的值相等,则x 的值是________.10.王经理到襄阳出差带回襄阳特产——孔明菜若干袋,分给朋友们品尝.如果每人分5袋,还余3袋;如果每人分6袋,还差3袋,则王经理带回孔明菜________袋.11.甲、乙二人在环形跑道上同时同地出发,同向运动.若甲的速度是乙的速度的2倍,则甲运动2周,甲、乙第一次相遇;若甲的速度是乙的速度的3倍,则甲运动32周,甲、乙第一次相遇;若甲的速度是乙的速度的4倍,则甲运动43周,甲、乙第一次相遇……以此探究正常走时的时钟,时针和分针从0点(12点)同时出发,分针旋转________周,时针和分针第一次相遇.12.解方程:(1)5x +2=3(x +2); (2)x 6-30-x 4=5.13.小陈妈妈做儿童服装生意,在六一这一天上午的销售中,某规格童装每件以60元的价格卖出,盈利20%,求这种规格童装每件的进价.14.某停车场的收费标准如下:中型汽车的停车费为12元/辆,小型汽车的停车费为8元/辆.现在停车场共有50辆中、小型汽车,这些车共缴纳停车费480元,中、小型汽车各有多少辆?15.在红城中学举行的“我爱祖国”征文活动中,七年级和八年级共收到征文118篇,且七年级收到的征文篇数地八年级收到的征文篇数的一半还少2篇,求七年级收到的征文有多少篇.16.世界读书日,某书店举办“书香”图书展.已知《汉语成语大词典》和《中华上下五千年》两本书的标价总和为150元,《汉语成语大词典》按标价的50%出售,《中华上下五千年》按标价的60%出售,小明花80元买了这两本书,求这两本书的标价各是多少元.17.某运动员在一场篮球比赛中的技术统计如下表所示:注:表中出手投篮次数和投中次数均不包括罚球.根据以上信息,求本场比赛中该运动员投中2分球和3分球各几个.第六章章末练习答案详解1.D [解析] 2x +3=7,移项、合并得2x =4,解得x =2.故选D.2.B [解析] 方程两边同时乘以6,得2(x -1)+6x =3(3x +1).故选B.3.C [解析] ∵2(a +3)的值与4互为相反数,∴2(a +3)+4=0,∴a =-5.故选C. 4.A [解析] 根据等式的性质1,等式两边同时加上-3,可得x -2y =5.故选A. 5.C [解析] 本题的等量关系是:螺母的总个数是螺钉总个数的2倍.设安排x 名工人生产螺钉,则(26-x)人生产螺母,由题意得1000(26-x)=2×800x.故选C.6.D [解析] 设第一个数为x ,则第二个数为x +7,第三个数为x +14,则这三个数的和为x +x +7+x +14=3x +21=3(x +7).当x =16时,3(x +7)=69;当x =10时,3(x +7)=51;当x =2时,3(x +7)=27,可见任意圈出一竖列上相邻的三个数的和不可能是72.故选D.7.248元或296 [解析] 设第一次购书的原价为x 元,则第二次购书的原价为3x 元.依题意,得①当0<x ≤1003时,x +3x =229.4,解得x =57.35(舍去);②当1003<x ≤2003时,x +910×3x =229.4,解得x =62,此时两次购书原价总和为4x =4×62=248(元);③当2003<x ≤100时,x +710×3x =229.4,解得x =74,此时两次购书原价总和为4x =4×74=296(元).综上可知:小丽这两次购书原价的总和是248元或296元.8.180 [解析] 设该件服装的成本价是x 元,依题意得300×810-x =60,解得x =180.∴该件服装的成本价是180元.9.-4 [解析] 根据题意得x -5=2x -1,解得x =-4.10.3311.1211 [解析] 直接利用时针和分针第一次相遇,则时针比分针少转了一周,再利用分针转动一周60分钟,时针转动一周720分钟,进而得出等式求出答案.设分针旋转x 周后,时针和分针第一次相遇,则时针旋转了(x -1)周,根据题意可得60x =720(x -1),解得x =1211.12.解:(1)去括号,得5x +2=3x +6,移项、合并,得2x =4,解得x =2.(2)去分母,得2x -3(30-x)=60,去括号,得2x -90+3x =60,移项,得2x +3x =60+90,合并同类项,得5x =150,系数化为1,得x =30.13.解:设这种规格童装每件的进价为x 元.根据题意,得(1+20%)x =60,解方程,得x =50.答:这种规格童装每件的进价为50元.14.解:设中型汽车有x辆,则小型汽车有(50-x)辆,根据题意,得12x+8(50-x)=480,解得x=20,所以50-x=30.答:中型汽车有20辆,小型汽车有30辆.15.解:设八年级收到的征文有x篇,则七年级收到的征文有篇,依题意知+x=118,解得x=80,则118-80=38.答:七年级收到的征文有38篇.16.解:设《汉语成语大词典》的标价是x元,则《中华上下五千年》的标价是(150-x)元,根据题意得50%x+60%(150-x)=80,解得x=100,所以150-x=150-100=50.答:《汉语成语大词典》的标价是100元,《中华上下五千年》的标价是50元.17.解:设本场比赛中该运动员投中2分球x个,则投中3分球(22-x)个.依题意得10+2x+3(22-x)=60,解得x=16,所以22-x=22-16=6.答:本场比赛中该运动员投中2分球16个,3分球6个.。
华师大版七年级数学下册第6章一元一次方程单元达标测试题(Word版含答案)

华师大版七年级数学下册《第6章一元一次方程》单元达标测试题(附答案)一.选择题(共8小题,满分40分)1.已知x=﹣1是关于x的方程2x+3a=7的解,则a的值为()A.﹣5B.﹣3C.3D.52.已知方程,则式子11+2()的值为()A.B.C.D.3.在解关于x的方程=﹣2时,小冉在去分母的过程中,右边的“﹣2”漏乘了公分母6,因而求得方程的解为x=2,则方程正确的解是()A.x=﹣12B.x=﹣8C.x=8D.x=124.小明在某月的日历中圈出相邻的四个数,算出这4个数的和是42,那么这4个数在日历上的位置可能是()A.B.C.D.5.某车间有22名工人,每人每天可以生产600个螺钉或1000螺母.1个螺钉配两个螺母,为使每天生产的螺钉和螺母刚好配套,应安排生产螺钉和螺母的工人各多少名?设有x名工人生产螺钉,可列方程为()A.2×600x=1000(22﹣x)B.2×1000x=600(22﹣x)C.600x=2×1000(22﹣x)D.1000x=2×600(22﹣x)6.妞妞和馨月都有一个比自己大3岁的姐姐,若妞妞姐姐的年龄是馨月姐姐的3倍,且妞妞的年龄是磬月年龄的m倍,则所有满足要求的正整数m的值的和为()A.11B.15C.20D.247.整理一批图书,由一个人做要30小时完成,现在计划由一部分人先做2小时,再增加3人和他们一起做4小时,完成这项工作,假设每个人的工作效率相同,具体先安排x人工作,则可列方程为()A.B.C.D.8.某超市在“元旦”活动期间,推出如下购物优惠方案:①一次性购物在100元(不含100元)以内,不享受优惠;②一次性购物在100元(含100元)以上,350元(不含350元)以内,一律享受九折优惠;③一次性购物在350元(含350元)以上,一律享受八折优惠;小敏在该超市两次购物分别付了90元和270元,如果小敏把这两次购物改为一次性购物,则小敏至少需付款()元A.288B.296C.312D.320二.填空题(共8小题,满分40分)9.若x=2是关于x的方程3x﹣4=﹣a的解,则a2021的值为.10.|x﹣3|=5,则x=.11.在一本挂历上用正方形圈住四个数,这四个数的和为52,则这四个数中,最小的数为.12.两村相距35千米,甲、乙两人从两村出发,相向而行,甲每小时行5千米,乙每小时4千米,甲先出发1小时后,乙才出发,当他们相距9千米时,乙行驶了小时.13.如图,长方形ABCD是由4块小长方形拼成,其中②③两长方形的形状与大小完全相同,且长与宽的差为,则小长方形④与小长方形①的周长的差是.14.已知数轴上三点A、O、B对应的数分别为﹣6、0、10,点P、C、Q分别从点A、O、B 出发沿数轴向右运动,速度分别是每秒4个单位长度,每秒3个单位长度,每秒1个单位长度,设t秒时点C到点P,点Q的距离相等,则t的值为.15.在有理数范围内定义一个新的运算法则“*”;当a≥b时,a*b=a b;当a<b时,a*b=ab.根据这个法则,方程4*(4*x)=256的解是x=.16.某种商品每件的进价为80元,标价为120元,然后在广告上写“优惠酬宾,打折促销”,结果仍赚了20%,则该商品打了折.三.解答题(共6小题,满分40分)17.解方程:(1)4(x﹣1)﹣1=3(x﹣2)(2)﹣=1.18.已知关于y的方程﹣m=5(y﹣m)与方程4y﹣7=1+2y的解相同,求2m+1的解.19.定义一种新运算:m*n=mn+n,如4*3=4×3+3=15.请解决下列问题:(1)直接写出结果:2*(﹣3)=;1*(2*3)=.(2)若a<2,比较(a﹣3)*2与(a﹣3)*1的大小,并说明理由.(3)若关于x的方程2*(x﹣a)=x*5的解与方程x+3=b的解相同,求6a+4b的值.20.抗洪救灾小组在甲地段有28人,乙地段有15人,现在又调来29人,分配在甲乙两个地段,要求调配后甲地段人数是乙地段人数的2倍,求应调至甲地段和乙地段各多少人?21.某校七年级学生准备观看电影《长津湖》.由各班班长负责买票,每班人数都多于40人,票价每张30元,一班班长问售票员买团体票是否可以优惠,售票员说:40人以上的团体票有两种优惠方案可选择:方案一:全体人员打8折;方案二:打9折,有5人可以免票.(1)若一班有a(a>40)人,则方案一需付元钱,方案二需付元钱;(用含a的代数式表示)(2)若二班有41名学生,则他选择哪个方案更优惠?(3)一班班长思考一会儿说,我们班无论选择哪种方案要付的钱是一样的,你知道一班有多少人吗?22.某商店为迎接新年举行促销活动,促销活动有以下两种优惠方案:方案一:购买一件商品打八折,购买两件以上在商品总价打八折的基础上再打九折;方案二:购买一件商品打八五折,折后价格每满100元再送30元抵用券,可以用于抵扣其他商品的价格.(注:两种优惠只能选择其中一种参加)(1)小明想购买一件标价270元的衣服和一双标价450元的鞋子,请你帮助小明算一算选择哪种优惠方案更合算.(2)如果衣服和鞋子的标价都是在进价的基础上加价了50%,那么这两种优惠方案商店是赚了还是亏了?为什么?(3)如果小明已决定要购买标价为450元的鞋子,又想两种方案的优惠额相同,那么小明想购买的衣服的标价(低于450元)应调整为多少元?参考答案一.选择题(共8小题,满分40分)1.解:由题意将x=﹣1代入方程得:﹣2+3a=7,解得:a=3.故选:C.2.解:,去分母得:2﹣18(x﹣)=5,移项得:﹣18(x﹣)=3,系数化为1得:x﹣=﹣,∴11+2()=11+2×=.故选:B.3.解:把x=2代入2(2x﹣1)=3(x+a)﹣2得,2×(4﹣1)=3×(2+a)﹣2,6=6+3a﹣2,6﹣6+2=3a,a=,∴原方程为:=﹣2,去分母,得2(2x﹣1)=3(x+)﹣2×6,去括号,得4x﹣2=3x+2﹣12,移项,得4x﹣3x=2﹣12+2,把系数化为1,得x=﹣8.故选:B.4.解:设第一个数为x,根据已知:A、由题意得x+x+7+x+6+x+8=42,则x=5.25不是整数,故本选项不合题意.B、由题意得x+x+1+x+2+x+8=42,则x=7.75不是整数,故本选项不合题意.C、由题意得x+x+1+x+7+x+8=42,则x=6.5是整数,故本选项符合题意.D、由题意得x+x+1+x+6+x+7=42,则x=7是正整数,故本选项符合题意.故选:D.5.解:设安排x名工人生产螺钉,则(22﹣x)人生产螺母,由题意得:2×600x=1000(22﹣x),故选:A.6.解:设磬月的年龄是x岁,则妞妞的年龄是mx岁,根据题意得:mx+3=3(x+3),整理得:(m﹣3)x=6,则x=,∵m、x均为正整数,∴m﹣3=1,2,3,6,∴m=4,5,6,9,∴4+5+6+9=24.故选:D.7.解:假设每个人的工作效率相同,具体先安排x人工作,则:一个人做要30小时完成,现在计划由一部分人先做2小时,工作量为x,再增加3人和他们一起做4小时的工作量为(x+3),故可列式,故选:D.8.解:设第一次购物购买商品的价格为x元,第二次购物购买商品的价格为y元,当0<x<100时,x=90;当100≤x<350时,0.9x=90,解得:x=100;∵0.9y=270,∴y=300.∴0.8(x+y)=312或320.所以至少需要付312元.故选:C.二.填空题(共8小题,满分40分)9.解:把x=2代入方程3x﹣4=﹣a得:3×2﹣4=﹣a,解得:a=﹣1,所以a2021=(﹣1)2021=﹣1,故答案为:﹣1.10.解;根据|x﹣3|=5,∴x﹣3=5或x﹣3=﹣5,当x﹣3=5时,x=8;当x﹣3=﹣5时,x=﹣2.故答案为:8,﹣2.11.解:设这四个数中最小的数为x,则其他三个数分别为:x+1,x+7,x+8,由题意得x+x+1+x+7+x+8=52,解得x=9,答:这四个数中,最小的数为9.故答案为:9.12.解:设乙行了x小时.有两种情况:①两人没有相遇相距9千米,根据题意得到:5+(5+4)x=35﹣9,∴x=;②两人相遇后相距9千米,根据题意得到:5+x(5+4)x=35+9,∴x=;答:乙行了或小时.13.解:设BC的长为x,AB的长为y,长方形②的长为a,宽为(a﹣),由题意可得,④与①两块长方形的周长之差是:[2(a﹣)+2(x﹣a)]﹣{[x﹣(a﹣)]×2+2a]}=10.故答案是:10.14.解:t秒时,点P表示的数是﹣6+4t,点C表示的数是3t,点Q表示的数是10+t,∴PC=|(﹣6+4t)﹣3t|=|t﹣6|,QC=|10+t﹣3t|=|10﹣2t|,∵点C到点P,点Q的距离相等,∴|t﹣6|=|10﹣2t|,解得t=或4.故答案为:或4.15.解:由题意得①当x≤4时,4*(4*x)=4*(4x),当4≥4x时,4*(4x)=4=256,解得x=1.当4<4x时,4*(4x)=4x+1=256,解得x=3.②当x>4时,4*(4*x)=4*(4x)=16x=256,解得x=16.故答案为:1,3,16.16.解:设该商品打了x折,根据题意,得:120×﹣80=80×20%,解得x=8,答:该商品打了8折,故答案为:8.三.解答题(共6小题,满分40分)17.解:(1)去括号得:4x﹣4﹣1=3x﹣6,移项合并得:x=﹣1;(2)去分母得:4x+2﹣5x+1=6,移项合并得:﹣x=3,解得:x=﹣3.18.解:由4y﹣7=1+2y解得y=4,再由﹣m=5(y﹣m)与方程4y﹣7=1+2y的解相同,得2﹣m=5(4﹣m),解得m=,代入2m+1=10.19.解:(1)2*(﹣3)=2×(﹣3)+(﹣3)=﹣6+(﹣3)=﹣9;2*3=6+3=9,1*9=9+9=18;故答案为:﹣9;18;(2)(a﹣3)*2<(a﹣3)*1,理由如下:(a﹣3)*2=2a﹣6+2=2a﹣4,(a﹣3)*1=a﹣3+1=a﹣2,2a﹣4﹣(a﹣2)=2a﹣4﹣a+2=a﹣2,∵a<2,∴a﹣2<0,∴(a﹣3)*2<(a﹣3)*1;(3)方程2*(x﹣a)=x*5可变形为2x﹣2a+x﹣a=5x+5,解得x=,方程x+3=b的解为x=b﹣3,∵这两个方程的解相同,∴=b﹣3,∴3a+2b=1,∴6a+4b=2(3a+2b)=2.20.解:设应调至甲地段x人,则调至乙地段(29﹣x)人,根据题意得:28+x=2(15+29﹣x),解得:x=20,所以:29﹣x=9,答:应调至甲地段20人,则调至乙地段9人.21.解:(1)若一班有a(a>40)人,则方案一需付30a×0.8=24a元钱,方案二需付30(a﹣5)×0.9=27(a﹣5)元钱.故答案是:24a;27(a﹣5);(2)由题意可得,方案一的花费为:41×30×0.8=984(元),方案二的花费为:(41﹣5)×0.9×30=972(元),∵984>972,∴若二班有41名学生,则他该选选择方案二;(3)设一班有x人,根据题意得x×30×0.8=(x﹣5)×0.9×30,解得x=45.答:一班有45人.22.解:(1)方案一:(270+450)×80%×90%=518.4(元),方案二:买鞋子费用为450×85%=382.5(元),买衣服除去抵用券后费用为270﹣3×30=180(元),一共应付款:382.5+180=562.5(元),∵518.4<562.5,∴选择方案一更合算;(2)∵衣服和鞋子的标价都是在进价的基础上加价了50%,∴衣服和鞋子的进价是(270+450)÷(1+50%)=480(元),而518.4>480,562.5>480,∴这两种优惠方案商店都是赚了;(3)设小明想购买的衣服的标价(低于450元)应调整为x元,根据题意得:(450+x)×80%×90%=450×85%+x﹣3×30,解得x=112.5,答:小明想购买的衣服的标价(低于450元)应调整为112.5元.。
(完整版)华师大版七年级下册一元一次方程练习及答案解析

华师大版七年级下册一元一次方程练习题一.选择题(共10小题)1.(2012•铜仁地区)铜仁市对城区主干道进行绿化,计划把某一段公路的一侧全部栽上桂花树,要求路的两端各栽一棵,并且每两棵树的间隔相等.如果每隔5米栽1棵,则树苗缺21棵;如果每隔6米栽1棵,则树苗正好用完.设原有树苗x棵,则根据题意列出方程正确的是()A.5(x+21﹣1)=6(x﹣1)B.5(x+21)=6(x﹣1)C.5(x+21﹣1)=6x D.5(x+21)=6x 2.(2012•台湾)如图为制作果冻的食谱,傅妈妈想依此食谱内容制作六人份的果冻.若她加入50克砂糖后,不足砂糖可依比例换成糖浆,则她需再加几小匙糖浆?()A.15 B.18 C.21 D.243.某商品每件的标价是330元,按标价的八折销售时,仍可获利10%,则这种商品每件的进价为()A.240元B.250元C.280元D.300元4.(2011•铜仁地区)小明从家里骑自行车到学校,每小时骑15km,可早到10分钟,每小时骑12km就会迟到5分钟.问他家到学校的路程是多少km?设他家到学校的路程是xkm,则据题意列出的方程是()A.B.C.D.5.(2011•日照)某道路一侧原有路灯106盏,相邻两盏灯的距离为36米,现计划全部更换为新型的节能灯,且相邻两盏灯的距离变为70米,则需更换的新型节能灯有()A.54盏B.55盏C.56盏D.57盏6.(2010•枣庄)如图(1),把一个长为m,宽为n的长方形(m>n)沿虚线剪开,拼接成图(2),成为在一角去掉一个小正方形后的一个大正方形,则去掉的小正方形的边长为()A.B.m﹣n C.D.7.(2010•内江)某品牌服装折扣店将某件衣服按进价提高50%后标价,再打8折(标价的80%)销售,售价为240元.设这件衣服的进价为x元,根据题意,下面所列的方程正确的是()A.x•50%×80%=240 B.x•(1+50%)×80%=240 C.240×50%×80%=x D.x•(1+50%)=240×80% 8.元旦那天,6位朋友均匀地围坐在圆桌旁共度佳节.圆桌半径为60cm,每人离圆桌的距离均为10cm,现又来了两名客人,每人向后挪动了相同的距离,再左右调整位置,使8人都坐下,并且8人之间的距离与原来6人之间的距离(即在圆周上两人之间的圆弧的长)相等.设每人向后挪动的距离为x,根据题意,可列方程()A.B.C.2π(60+10)×6=2π(60+π)×8 D.2π(60﹣x)×8=2π(60+x)×69.(2007•陕西)中国人民银行宣布,从2007年6月5日起,上调人民币存款利率,一年定期存款利率上调到3.06%,某人于2007年6月5日存入定期为1年的人民币5000元(到期后银行将扣除20%的利息锐),设到期后银行应向储户支付现金x元,则所列方程正确的是()A.x﹣5000=5000×3.06% B.x+5000×20%=5000×(1+3.06%)C.x+5000×3.06%×20%=5000×3.06% D.x+5000×3.06%×20%=5000×(1+3.06%)10.(2006•武汉)越来越多的商品房空置是目前比较突出的问题,据国家有关部门统计:2006年第一季度全国商品房空置面积为1.23亿m2,比2005年第一季度增长23.8%,下列说法:①2005年第一季度全国商品房空置面积为亿m2;②2005年第一季度全国商品房空置面积为亿m2;③若按相同增长率计算,2007年第一季度全国商品房空置面积将达到1.23×(1+23.8%)亿m2;④如果2007年第一季度全国商品房空置面积比2006年第一季度减少23.8%,那么2007年第一季度全国商品空置面积与2005年第一季度相同.其中正确的是()A.①,④B.②,④C.②,③D.①,③二.填空题(共6小题)11.(2012•山西)图1是边长为30cm的正方形纸板,裁掉阴影部分后将其折叠成如图2所示的长方体盒子,已知该长方体的宽是高的2倍,则它的体积是_________cm3.12.(2012•眉山)某学校有80名学生,参加音乐、美术、体育三个课外小组(每人只参加一项),这80人中若有40%的人参加体育小组,35%的人参加美术小组,则参加音乐小组的有_________人.13.(2012•鄂尔多斯)某超市在“五一”活动期间,推出如下购物优惠方案:①一次性购物在100元(不含100元)以内,不享受优惠;②一次性购物在100元(含100元)以上,350元(不含350元)以内,一律享受九折优惠;③一次性购物在350元(含350元)以上,一律享受八折优惠.小敏在该超市两次购物分别付款60元和288元.如果小敏把这两次购物改为一次性购物,则应付款____元.14.(2011•昆明)某公司只生产普通汽车和新能源汽车,该公司在去年的汽车产量中,新能源汽车占总产量的10%,今年由于国家能源政策的导向和油价上涨的影响,计划将普通汽车的产量减少10%,为保持总产量与去年相等,那么今年新能源汽车的产量应增加的百分数为_________.15.(2011•德州)长为1,宽为a的矩形纸片(),如图那样折一下,剪下一个边长等于矩形宽度的正方形(称为第一次操作);再把剩下的矩形如图那样折一下,剪下一个边长等于此时矩形宽度的正方形(称为第二次操作);如此反复操作下去.若在第n此操作后,剩下的矩形为正方形,则操作终止.当n=3时,a的值为_________.16.(2007•桂林)如图是2004年6月份的日历,如图那样,用一个圈竖着圈住3个数,如果被圈的三个数的和为39,则这三个数中最大的一个为_________.三.解答题(共9小题)17.(2012•梧州)今年5月,在中国武汉举办了汤姆斯杯羽毛球团体赛.在27日的决赛中,中国队占胜韩国队夺得了冠军.某羽毛球协会组织一些会员到现场观看了该场比赛.已知该协会购买了每张300元和每张400元的两种门票共8张,总费用为2700元.请问该协会购买了这两种门票各多少张?18.(2012•无锡)某开发商进行商铺促销,广告上写着如下条款:投资者购买商铺后,必须由开发商代为租赁5年,5年期满后由开发商以比原商铺标价高20%的价格进行回购,投资者可在以下两种购铺方案中做出选择:方案一:投资者按商铺标价一次性付清铺款,每年可以获得的租金为商铺标价的10%.方案二:投资者按商铺标价的八五折一次性付清铺款,2年后每年可以获得的租金为商铺标价的10%,但要缴纳租金的10%作为管理费用.(1)请问:投资者选择哪种购铺方案,5年后所获得的投资收益率更高?为什么?(注:投资收益率=×100%)(2)对同一标价的商铺,甲选择了购铺方案一,乙选择了购铺方案二,那么5年后两人获得的收益将相差5万元.问:甲、乙两人各投资了多少万元?19.(2012•天津)某通讯公司推出了移动电话的两种计费方式(详情见下表).月使用费/元主叫限定时间/分主叫超时费/(元/分)被叫方式一58 150 0.25 免费方式二88 350 0.19 免费设一个月内使用移动电话主叫的时间为t分(t为正整数),请根据表中提供的信息回答下列问题:(Ⅰ)用含有t的式子填写下表:t≤150 150<t<350 t=350 t>350方式一计费/元 58 _________ 108 _________方式二计费/元 88 88 88 _________(Ⅱ)当t 为何值时,两种计费方式的费用相等?(Ⅲ)当330<t <360时,你认为选用哪种计费方式省钱(直接写出结果即可).20.(2011•连云港)根据我省“十二五”铁路规划,连云港至徐州客运专线项目建成后,连云港至徐州的最短客运时间将由现在的2小时18分缩短为36分钟,其速度每小时将提高260km .求提速后的火车速度.(精确到1km/h )21.(2012•淮安)某省公布的居民用电阶梯电价听证方案如下:第一档电量 第二档电量 第三档电量月用电量210度以下,每度价格0.52元 月用电量210度至350度,每度比第一档提价0.05元 月用电量350度以上,每度比第一档提价0.30元例:若某户月用电量400度,则需交电费为210×0.52+(350﹣210)×(0.52+0.05)+(400﹣350)×(0.52+0.30)=230(元)(1)如果按此方案计算,小华家5月份的电费为138.84元,请你求出小华家5月份的用电量;(2)以此方案请你回答:若小华家某月的电费为a 元,则小华家该月用电量属于第几档?22.(2008•郴州)我国政府从2007年起对职业中专在校学生给予生活补贴.每生每年补贴1500元.某市预计2008年职业中专在校生人数是2007年的1.2倍,且要在2007年的基础上增加投入600万元.2008年该市职业中专在校生有多少万人,补贴多少万元?23.(2007•宿迁)某公司在中国意杨之乡﹣﹣宿迁,收购了1600 m 3杨树,计划用20天完成这项任务,已知该公司每天能够精加工杨树50 m 3或者粗加工杨树100 m 3.则:(1)该公司应如何安排精加工、粗加工的天数,才能按期完成任务?(2)若每立方米杨树精加工、粗加工后的利润分别是500元、300元,则该公司加工后的木材可获利多少元?(结果保留两个有效数字)24.(2007•湖州)自选题:如图,正方形ABCD的周长为40米,甲、乙两人分别从A、B同时出发,沿正方形的边行走,甲按逆时针方向每分钟行55米,乙按顺时针方向每分钟行30米.(1)出发后_________分钟时,甲乙两人第一次在正方形的顶点处相遇;(2)如果用记号(a,b)表示两人行了a分钟,并相遇过b次,那么当两人出发后第一次处在正方形的两个相对顶点位置时,对应的记号应是_________.25.(2006•郴州)售货员:“快来买啦,特价鸡蛋,原价每箱14元,现价每箱12元,每箱有鸡蛋30个.”顾客甲:“我店里买了一些这种特价鸡蛋,花的钱比按原价买同样多鸡蛋花的钱的2倍少96元.”乙顾客:“我家买了相同箱数的特价的鸡蛋,结果18天后,剩下的20个鸡蛋全坏了.”请你根据上面的对话,解答下面的问题:(1)顾客乙买的两箱鸡蛋合算吗?说明理由.(2)请你求出顾客甲店里买了多少箱这种特价鸡蛋,假设这批特价鸡蛋的保质期还有18天,那么甲店里平均每天要消费多少个鸡蛋才不会浪费?华师大版七年级下册一元一次方程练习题参考答案与试题解析一.选择题(共10小题)1.(2012•铜仁地区)铜仁市对城区主干道进行绿化,计划把某一段公路的一侧全部栽上桂花树,要求路的两端各栽一棵,并且每两棵树的间隔相等.如果每隔5米栽1棵,则树苗缺21棵;如果每隔6米栽1棵,则树苗正好用完.设原有树苗x棵,则根据题意列出方程正确的是()A.5(x+21﹣1)=6(x﹣1)B.5(x+21)=6(x﹣1)C.5(x+21﹣1)=6x D.5(x+21)=6x考点:由实际问题抽象出一元一次方程.分析:设原有树苗x棵,根据首、尾两端均栽上树,每间隔5米栽一棵,则缺少21棵,可知这一段公路长为5(x+21﹣1);若每隔6米栽1棵,则树苗正好用完,可知这一段公路长又可以表示为6(x﹣1),根据公路的长度不变列出方程即可.解答:解:设原有树苗x棵,由题意得5(x+21﹣1)=6(x﹣1).故选A.点评:考查了由实际问题抽象出一元一次方程,本题是根据公路的长度不变列出的方程.“表示同一个量的不同式子相等”是列方程解应用题中的一个基本相等关系,也是列方程的一种基本方法.2.(2012•台湾)如图为制作果冻的食谱,傅妈妈想依此食谱内容制作六人份的果冻.若她加入50克砂糖后,不足砂糖可依比例换成糖浆,则她需再加几小匙糖浆?()A.15 B.18 C.21 D.24考点:一元一次方程的应用.分析:根据六人份需20×6=120克砂糖,尚需120﹣50=70克砂糖,再利用20克砂糖=6小匙糖浆,即可得出答案.解答:解:六人份需20×6=120克砂糖,尚需120﹣50=70克砂糖,又20克砂糖=6小匙糖浆,所求=70÷20×6=21(小匙).故选:C.点评:此题主要考查了实际生活问题的应用,根据标签上所标示的20克砂糖=6小匙糖浆得出答案是解题关键.3.(2012•牡丹江)某商品每件的标价是330元,按标价的八折销售时,仍可获利10%,则这种商品每件的进价为()A.240元B.250元C.280元D.300元考点:一元一次方程的应用.专题:应用题.分析:设这种商品每件的进价为x元,则根据按标价的八折销售时,仍可获利l0%,可得出方程,解出即可.解答:解:设这种商品每件的进价为x元,由题意得:330×0.8﹣x=10%x,解得:x=240,即这种商品每件的进价为240元.故选A.点评:此题考查了一元一次方程的应用,属于基础题,解答本题的关键是根据题意列出方程,难度一般.4.(2011•铜仁地区)小明从家里骑自行车到学校,每小时骑15km,可早到10分钟,每小时骑12km就会迟到5分钟.问他家到学校的路程是多少km?设他家到学校的路程是xkm,则据题意列出的方程是()A.B.C.D.考点:由实际问题抽象出一元一次方程.专题:探究型.分析:先设他家到学校的路程是xkm,再把10分钟、5分钟化为小时的形式,根据题意列出方程,选出符合条件的正确选项即可.解答:解:设他家到学校的路程是xkm,∵10分钟=小时,5分钟=小时,∴+=﹣.故选A.点评:本题考查的是由实际问题抽象出一元一次方程,解答此题的关键是把10分钟、5分钟化为小时的形式,这是此题的易错点.5.(2011•日照)某道路一侧原有路灯106盏,相邻两盏灯的距离为36米,现计划全部更换为新型的节能灯,且相邻两盏灯的距离变为70米,则需更换的新型节能灯有()A.54盏B.55盏C.56盏D.57盏考点:一元一次方程的应用.专题:优选方案问题.分析:可设需更换的新型节能灯有x盏,根据等量关系:两种安装路灯方式的道路总长相等,列出方程求解即可.解答:解:设需更换的新型节能灯有x盏,则70(x﹣1)=36×(106﹣1),70x=3850,x=55,则需更换的新型节能灯有55盏.故选B.点评:本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.注意根据实际问题采取进1的近似数.6.(2010•枣庄)如图(1),把一个长为m,宽为n的长方形(m>n)沿虚线剪开,拼接成图(2),成为在一角去掉一个小正方形后的一个大正方形,则去掉的小正方形的边长为()A.B.m﹣n C.D.考点:一元一次方程的应用.专题:几何图形问题.分析:此题的等量关系:大正方形的面积=原长方形的面积+小正方形的面积.特别注意剪拼前后的图形面积相等.解答:解:设去掉的小正方形的边长为x,则:(n+x)2=mn+x2,解得:x=.故选A.点评:本题考查同学们拼接剪切的动手能力,解决此类问题一定要联系方程来解决.7.(2010•内江)某品牌服装折扣店将某件衣服按进价提高50%后标价,再打8折(标价的80%)销售,售价为240元.设这件衣服的进价为x元,根据题意,下面所列的方程正确的是()A.x•50%×80%=240 B.x•(1+50%)×80%=240 C.240×50%×80%=x D.x•(1+50%)=240×80%考点:由实际问题抽象出一元一次方程.专题:销售问题.分析:等量关系为:标价×8折=240,把相关数值代入即可求得所求的方程.解答:解:这件衣服的标价为x•(1+50%),打8折后售价为x•(1+50%)×80%,可列方程为x•(1+50%)×80%=240,故选B.点评:根据实际售价找到相应的等量关系是解决问题的关键,注意应先算出这件衣服的标价.8.(2008•新疆)元旦那天,6位朋友均匀地围坐在圆桌旁共度佳节.圆桌半径为60cm,每人离圆桌的距离均为10cm,现又来了两名客人,每人向后挪动了相同的距离,再左右调整位置,使8人都坐下,并且8人之间的距离与原来6人之间的距离(即在圆周上两人之间的圆弧的长)相等.设每人向后挪动的距离为x,根据题意,可列方程()A.B.C.2π(60+10)×6=2π(60+π)×8 D.2π(60﹣x)×8=2π(60+x)×6考点:由实际问题抽象出一元一次方程.专题:几何图形问题.分析:首先理解题意找出题中存在的等量关系:8人之间的距离=原来6人之间的距离,根据等量关系列方程即可.解答:解:设每人向后挪动的距离为x,则这8个人之间的距离是:,6人之间的距离是:,根据等量关系列方程得:=.故选A.点评:列方程解应用题的关键是找出题目中的相等关系.9.(2007•陕西)中国人民银行宣布,从2007年6月5日起,上调人民币存款利率,一年定期存款利率上调到3.06%,某人于2007年6月5日存入定期为1年的人民币5000元(到期后银行将扣除20%的利息锐),设到期后银行应向储户支付现金x元,则所列方程正确的是()A.x﹣5000=5000×3.06% B.x+5000×20%=5000×(1+3.06%)C.x+5000×3.06%×20%=5000×3.06% D.x+5000×3.06%×20%=5000×(1+3.06%)考点:由实际问题抽象出一元一次方程.专题:应用题.分析:首先理解题意找出题中存在的等量关系:不扣除利息税的一年本息和=本金+利息=本金×(1+利率),根据此等式列方程即可.解答:解:设到期后银行应向储户支付现金x元,根据等式:不扣除利息税的一年本息和=本金+利息=本金×(1+利率),列方程得x+5000×3.06%×20%=5000×(1+3.06%).故选D.点评:注意本金、利息、利息税、利率之间的关系.10.(2006•武汉)越来越多的商品房空置是目前比较突出的问题,据国家有关部门统计:2006年第一季度全国商品房空置面积为1.23亿m2,比2005年第一季度增长23.8%,下列说法:①2005年第一季度全国商品房空置面积为亿m2;②2005年第一季度全国商品房空置面积为亿m2;③若按相同增长率计算,2007年第一季度全国商品房空置面积将达到1.23×(1+23.8%)亿m2;④如果2007年第一季度全国商品房空置面积比2006年第一季度减少23.8%,那么2007年第一季度全国商品空置面积与2005年第一季度相同.其中正确的是()A.①,④B.②,④C.②,③D.①,③考点:一元一次方程的应用.专题:增长率问题.分析:此题主要是套用有关增长率的公式:基数×(1+增长率)=增长后的面积,理解清题意,分析即可.解答:解:①若设2005年第一季度全国商品房空置面积是x亿m2.根据增长率的意义,得:x(1+23.8%)=1.23,则x=亿m2,正确;②由①知,错误;③根据增长率的意义,正确;④由于增长和降低的基数不相同,故2007年第一季度全国商品空置面积与2005年第一季度不相同,错误.故选D.点评:注意增长和降低的基数,能够根据增长率和降低率正确表示两个量之间的关系.二.填空题(共6小题)11.(2012•山西)图1是边长为30cm的正方形纸板,裁掉阴影部分后将其折叠成如图2所示的长方体盒子,已知该长方体的宽是高的2倍,则它的体积是1000cm3.考点:一元一次方程的应用.分析:设长方体的高为xcm,然后表示出其宽为30﹣4x,利用宽是高的2倍列出方程求得小长方体的高后计算其体积即可.解答:解:长方体的高为xcm,然后表示出其宽为30﹣4x,根据题意得:30﹣4x=2x解得:x=5故长方体的宽为10,长为20cm则长方体的体积为5×10×20=1000cm3.故答案为1000.点评:本题考查了一元一次方程的应用,解题的关键是找到等量关系并列出方程.12.(2012•眉山)某学校有80名学生,参加音乐、美术、体育三个课外小组(每人只参加一项),这80人中若有40%的人参加体育小组,35%的人参加美术小组,则参加音乐小组的有20人.考点:一元一次方程的应用.分析:设参加音乐小组的人数为x,则根据总数为80可得出方程,解出即可得出答案.解答:解:设参加音乐小组的人数为x,则由题意得:80×40%+80×35%+x=80,解得:x=20,即参加音乐小组的有20人.故答案为:20.点评:此题考查了一元一次方程的应用,解答本题可以利用方程求解,也可以运用代数式的知识求解,例如:先求出参加音乐小组的人数所占的比例,然后乘以80即可.13.(2012•鄂尔多斯)某超市在“五一”活动期间,推出如下购物优惠方案:①一次性购物在100元(不含100元)以内,不享受优惠;②一次性购物在100元(含100元)以上,350元(不含350元)以内,一律享受九折优惠;③一次性购物在350元(含350元)以上,一律享受八折优惠.小敏在该超市两次购物分别付款60元和288元.如果小敏把这两次购物改为一次性购物,则应付款304或336元.考点:一元一次方程的应用.分析:要求他一次性购买以上两次相同的商品,应付款多少元,就要先求出两次一共实际买了多少元,第一次购物显然没有超过100元,即是60元.第二次就有两种情况,一种是超过100元但不超过350元一律9折;一种是购物不低于350元一律8折,依这两种计算出它购买的实际款数,再按第三种方案计算即是他应付款数.解答:解:第一次购物显然没有超过100元,即在第二次消费60元的情况下,他的实质购物价值只能是60元.第二次购物消费288元,则可能有两种情况,这两种情况下付款方式不同(折扣率不同):第一种情况:他消费超过100元但不足350元,这时候他是按照9折付款的.设第二次实质购物价值为x元,那么依题意有x×0.9=288,解得:x=320.第二种情况:他消费不低于350元,这时候他是按照8折付款的.设第二次实质购物价值为a元,那么依题意有a×0.8=288,解得:a=360.即在第二次消费288元的情况下,他的实际购物价值可能是320元或360元.综上所述,他两次购物的实质价值为60+320=380或60+360=420,均超过了350元.因此均可以按照8折付款:380×0.8=304(元),420×0.8=336(元),故答案为:304元或336元.点评:此题主要考查了一元一次方程的应用,解题关键是第二次购物的288元可能有两种情况,需要讨论清楚.本题要注意不同情况的不同算法,要考虑到各种情况,不要丢掉任何一种.14.(2011•昆明)某公司只生产普通汽车和新能源汽车,该公司在去年的汽车产量中,新能源汽车占总产量的10%,今年由于国家能源政策的导向和油价上涨的影响,计划将普通汽车的产量减少10%,为保持总产量与去年相等,那么今年新能源汽车的产量应增加的百分数为90%.考点:一元一次方程的应用.分析:这是一道关于和差倍分问题的应用题,设今年新能源汽车的产量应增加的百分数为x%,解这道的关键是根据“为保持总产量与去年相等”,而去年的总量未知,可以设为参数a,就可以表示出去年普通汽车和新能源汽车的产量分别为90%a和10%a,而几年的普通汽车和新能源汽车的产量分别为90%a(1﹣10%)和10%a (1+x%).就可以根据等量关系列出方程.解答:解:设今年新能源汽车的产量应增加的百分数为x%,去年的总产量为a,由题意,得90%a(1﹣10%)+10%a(1+x%)=a,解得:x=90.故答案为:90%.点评:本题考查了一元一次方程的运用.要求学生能熟练地掌握例一元一次方程解应用题的步骤.解一元一次方程的关键是找到等量关系.15.(2011•德州)长为1,宽为a的矩形纸片(),如图那样折一下,剪下一个边长等于矩形宽度的正方形(称为第一次操作);再把剩下的矩形如图那样折一下,剪下一个边长等于此时矩形宽度的正方形(称为第二次操作);如此反复操作下去.若在第n此操作后,剩下的矩形为正方形,则操作终止.当n=3时,a的值为或.考点:一元一次方程的应用.专题:操作型.分析:根据操作步骤,可知每一次操作时所得正方形的边长都等于原矩形的宽.所以首先需要判断矩形相邻的两边中,哪一条边是矩形的宽.当<a<1时,矩形的长为1,宽为a,所以第一次操作时所得正方形的边长为a,剩下的矩形相邻的两边分别为1﹣a,a.由1﹣a<a可知,第二次操作时所得正方形的边长为1﹣a,剩下的矩形相邻的两边分别为1﹣a,a﹣(1﹣a)=2a﹣1.由于(1﹣a)﹣(2a﹣1)=2﹣3a,所以(1﹣a)与(2a﹣1)的大小关系不能确定,需要分情况进行讨论.又因为可以进行三次操作,故分两种情况:①1﹣a>2a﹣1;②1﹣a<2a﹣1.对于每一种情况,分别求出操作后剩下的矩形的两边,根据剩下的矩形为正方形,列出方程,求出a的值.解答:解:由题意,可知当<a<1时,第一次操作后剩下的矩形的长为a,宽为1﹣a,所以第二次操作时正方形的边长为1﹣a,第二次操作以后剩下的矩形的两边分别为1﹣a,2a﹣1.此时,分两种情况:①如果1﹣a>2a﹣1,即a<,那么第三次操作时正方形的边长为2a﹣1.∵经过第三次操作后所得的矩形是正方形,∴矩形的宽等于1﹣a,即2a﹣1=(1﹣a)﹣(2a﹣1),解得a=;②如果1﹣a<2a﹣1,即a>,那么第三次操作时正方形的边长为1﹣a.则1﹣a=(2a﹣1)﹣(1﹣a),解得a=.故答案为或.点评:本题考查了一元一次方程的应用,解题的关键是分两种情况:①1﹣a>2a﹣1;②1﹣a<2a﹣1.分别求出操作后剩下的矩形的两边.16.(2007•桂林)如图是2004年6月份的日历,如图那样,用一个圈竖着圈住3个数,如果被圈的三个数的和为39,则这三个数中最大的一个为20.考点:一元一次方程的应用.专题:数字问题.分析:设最大的一个数为x,则最小的数是(x﹣14),中间的数是(x﹣7),相等关系是:三个数的和为39,则可列出方程求解.解答:解:设最大的一个数为x,根据题意列方程得:(x﹣14)+(x﹣7)+x=39,解得x=20.点评:解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.需注意日历上竖列相邻的两个数相隔7.三.解答题(共9小题)17.(2012•梧州)今年5月,在中国武汉举办了汤姆斯杯羽毛球团体赛.在27日的决赛中,中国队占胜韩国队夺得了冠军.某羽毛球协会组织一些会员到现场观看了该场比赛.已知该协会购买了每张300元和每张400元的两种门票共8张,总费用为2700元.请问该协会购买了这两种门票各多少张?考点:一元一次方程的应用.分析:设每张300元的门票买了x张,则每张400元的门票买了(8﹣x)张,根据题意建立方程,求出方程的解就可以得出结论.解答:解:设每张300元的门票买了x张,则每张400元的门票买了(8﹣x)张,由题意,得300x+400(8﹣x)=2700,。
华师大版七年级下册数学第6章 一元一次方程含答案(推荐)

华师大版七年级下册数学第6章一元一次方程含答案一、单选题(共15题,共计45分)1、下列方程中,解为2的是()A.3x+6=0B.C.D.3-2x=12、下列方程中,解为x=4的方程是()A. =2B.4x=1C.x﹣1=4D. (x-1)=13、当k>0时,下列方程中没有实数根的是()A. B. C. D.4、已知是关于的方程的解,则的值是()A. B.1 C. D.35、下列各式中,是一元一次方程的是( )A.2x-3y=8B. x 2-4x=5C.y+7=3y-9D.xy-5=46、若关于x的方程是一元一次方程,则n的值为()A.2B.-2C.±2D.17、已知方程3x+a=2的解是5,则a的值是()A.﹣13B.﹣17C.13D.178、下列方程中,解为x=2的方程是()A.3x﹣2=3B.﹣x+6=2xC.4﹣2(x﹣1)=1D. x+1=09、若方程2x+1=3和方程2- =0的解相同,则a的值是()A.7B.5C.3D.010、下列各式中,属于一元一次方程的是()A. B. C.2y﹣1=3y﹣3 2 D.x 2+x=111、甲乙两班共有98人,若从甲班调3人到乙班,那么两班人数正好相等,设甲班原有人数是x人,可列出方程()A.98+x=x-3B.98-x=x-3C.(98-x)+3=xD.(98-x)+3=x-312、由,可得出与的关系是()A. B. C. D.13、下列不是一元一次方程的()A.5x+3=3x﹣7B.1+2x=3C.D.x﹣7=014、某工程,甲独做需12天完成,乙独做需8天完成,现由甲先做3天,乙再参加合做,求完成这项工程共用的时间.若设完成此项工程共用x天,则下列方程正确的是()A. + =1B. + =1C. + =1D. +=115、某年的7月份有5个星期六,并且它们的日期之和为85,则7月4日是()A.星期四B.星期五C.星期六D.星期日二、填空题(共10题,共计30分)16、若关于x的方程的解大于关于x的方程的解,则a的取值范围为________.17、小林在做解方程作业时,不小心将方程中的一个常数污染看不清楚,被污染的方程是2y- = y-※,小林翻看了书后的答案是y=- ,则这个常数是________ .18、一件商品按成本价提高20%后标价,又以9折销售,售价为270元.设这件商品的成本价为x元,则可列方程:________19、若关于x的方程是一个一元一次方程,则a的值为________.20、李明同学欲购买一件运动服,打七折比打九折少花30元钱,那么这件运动服的原价为________。
华东师大版数学七年级下册 解一元一次方程(定义及去括号类)同步练习(Word版含答案)

6.2.2.1解一元一次方程(定义及去括号类)★只含有未知数(元),并且含有未知数的式子都是式,未知数的次数都是,这样的方程叫做一元一次方程★解含括号的一元一次方程(1)当方程中含有带括号的式子时,需把括号去掉,方法与有理数运算中的去括号类似;(2)去括号的依据是去括号法则(3)一般步骤:去括号、合并同类项、移项、系数化为1。
一.选择题(共5小题)1.下列方程:①2x2﹣x=6;②y=x﹣7;③;④;⑤;⑥x=3,其中是一元一次方程的有()A.2个B.3个C.4个D.以上答案都不对2.方程3(x+1)=x+1的解是()A.x=﹣1B.x=0C.x=1D.x=23.下列方程的解是x=2的方程是()A.3x+6=0B.C.D.1﹣2x=54.如果方程﹣4x=﹣2与关于x的方程6x﹣2m=9的解互为相反数,则m的值是()A.﹣6B.6C.D.5.已知(a﹣3)x|a﹣2|﹣5=8是关于x的一元一次方程,则a=()A.3或1B.1C.3D.0二.填空题(共5小题)6.若4x2k+3=9是一元一次方程,则k=.7.若x=﹣1是关于x的方程2x﹣m=6的解,则m的值是.8.若方程(k﹣2)x|k|﹣1+7=0是关于x的一元一次方程,则k的值等于.9.方程(2a﹣1)x2+3x+1=4是一元一次方程,则a=.10.若关于x的方程(3a+2)x2+4x b﹣2﹣5=0是一元一次方程,则关于x的方程ax+b=0的解是.三.解答题(共30小题)11.解方程:2x﹣9=5x+3.12.解方程:(1)8﹣x=3x+2;(2).13.解方程:(1)2x+3=11﹣6x;(2)(3x﹣6)=x﹣3.14.解方程:8x=﹣2(x+4).15.解方程:3x﹣2(x+3)=6﹣2x.16.解方程:3(2x﹣1)=4x+3.17.2(x﹣3)=5﹣3(x+1).18.解方程:7x+2(3x﹣3)=20.19.解方程:6(x+)+2=29﹣3(x﹣1)20.解方程:3x﹣7(x﹣1)=3﹣2(x+3).21.解方程:4x﹣6=2(3x﹣1)22.(3x﹣6)=x﹣3.23.解方程:5x﹣2(3﹣2x)=﹣3.24.解方程:4x﹣3=2(x﹣1)25.2(x+8)=3(x﹣1)26.(x+1)﹣2(x﹣1)=1﹣3x.27.解方程:2(x﹣2)﹣3(4x﹣1)=9(1﹣x)28.解方程:7+2x=12﹣2x.29.解方程:(x﹣1)=2﹣(x+2).30.解方程:x﹣1=2(x+1)31.解方程:2﹣2(x﹣1)=3x+4.32.解方程:5x+2=3(x+2)33.34.35.解下列方程:(1)2{3[4(5x﹣1)﹣8]﹣20}﹣7=1;(2)=1;(3)x﹣2[x﹣3(x+4)﹣5]=3{2x﹣[x﹣8(x﹣4)]}﹣2;36.有一位同学在解方程3(x+5)+5[(x+5)﹣1]=7(x+5)﹣1,首先去括号,得3x+15+5x+25﹣5=7x+35﹣1,然后移项,合并同类项,最后求解,你有没有比他更简单的解法?试求解.37.已知y=1是方程2﹣(m﹣y)=2y的解,求关于x的方程m(x﹣3)﹣2=m(2x+5)的解.38.若方程3(2x﹣1)=2﹣3x的解与关于x的方程6﹣2k=2(x+3)的解相同,求k的值.39.已知方程(1﹣m2)x2﹣(m+1)x+8=0是关于x的一元一次方程.(1)求m的值及方程的解.(2)求代数式5x2﹣2(xm+2x2)﹣3(xm+2)的值.40.已知(m﹣3)x|m|﹣2+6=0是关于x的一元一次方程.(1)求m的值;(2)若|y﹣m|=3,求y的值.6.2.2.1解一元一次方程(定义及去括号类)参考答案与试题解析★只含有一个未知数(元),并且含有未知数的式子都是整式,未知数的次数都是1,这样的方程叫做一元一次方程★解含括号的一元一次方程(4)当方程中含有带括号的式子时,需把括号去掉,方法与有理数运算中的去括号类似;(5)去括号的依据是去括号法则(6)一般步骤:去括号、合并同类项、移项、系数化为1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元一次方程复习
一、基本概念与性质
1、方程的有关概念
(1)方程:含有未知数的等式叫做方程。
一元一次方程:只含有一个未知数且未知数指数是一次的方程。
2、等式的基本性质:
(1)等式两边同时加上或减去同一个代数式,所得结果仍是等式。
(2)等式两边同时乘同一个数或除以一个不为零的数,所得结果仍是等式。
3、方程的变形法则:
(1)方程两边都加上(或都减去)同一个数或同一个整式,方程的解不变。
移项:将方程中的某些项改变符号后,从方程的一边移动到另一边,这样的变形叫做移项,注意移项要变号。
例:①将方程x -5=7移项得:x =7+5 即 x =12
②将方程4x =3x -4移项得:4x -3x =-4 即 x =-4 (2)方程两边都乘以(或都除以)同一个不等于0的数,方程的解不变。
例:①将方程-5x =2两边都除以-5得:x=-5
2 ②将方程32 x =1
3 两边都乘以32得:x=9
2 4、使方程左右两边的值相等的未知数的值叫做方程的解.
练习:
1、下列式子中是一元一次方程的是( )
A 、1个
B 、2个
C 、3个
D 、4个
二、解一元一次方程的步骤
(1)去分母(每一项都要乘最小公倍数)
(2)去括号(注意是否变号)
(3)移项(要变号)
(4)合并同类项
(5)系数化1
注意:
(1)方程中有多重括号时,一般应按先去小括号,再去中括号,最后去大括号的方法去括号,每去一层括号合并同类项一次,以简便运算。
(2)“去分母”指去掉方程两边各项系数的分母;去分母时,要求各分母的最小公倍数,去掉分母后,注意添括号。
去分母时,不要忘记不等式两边的每一项都乘以最小公倍数(即公分母)
例题:
三、一元一次方程的实际应用
1、重点:找等量关系列方程
难点:审题找准等量关系,巧妙设未知量
运用方程解实际问题的一般过程:
(1)审题:分析题意,找出题中的数量及其关系;
(2)设元:选择一个适当的未知数用字母表示; ()051=x ()x 312+()
y y +=4326
213+=+b a
(3)列方程:根据相等关系列出方程;
(4)解方程:求出未知数的值;
(5)检验:检验求出的值是否正确或符合实际情形;
(6)答:写出答案
2、一元一次方程的应用 ●纯数学上的应用: (1)一元一次方程定义的应用;
(2)方程解的概念的应用;
(3)代数中的应用;
(4)公式变形
(5)数字问题
一般可设个位数字为a ,十位数字为b ,百位数字为c .
十位数可表示为10b+a , 百位数可表示为100c+10b+a .
然后抓住数字间或新数、原数之间的关系找等量关系列方程
例题1:x 取何值时,代数式4x-5与3x-6的值互为相反数?
例题2:k 取什么值时,代数式31+k 的值比2
13+k 的值小1。
例题3:如果方程312=+x 的解也是方程032=--x a 的解,那么a 的值是多少?
例题4:一个两位数,十位数字比个位数字大5,且这个两位数比两个数位上的数字之和的8倍还大5,求这个两位数。
●实际生活上的应用:
(1)等积变形问题
常见几何图形的面积、体积、周长计算公式,依据形虽变,但体积不变.
①圆柱体的体积公式 V=底面积×高=S ·h =πr 2h
②长方体的体积 V =长×宽×高=abc
(2)市场经济问题
①商品利润=商品售价-商品成本价 ②商品利润率=商品利润商品成本价
×100% ③商品销售额=商品销售价×商品销售量
④商品的销售利润=(销售价-成本价)×销售量
⑤商品打几折出售,就是按原标价的百分之几十出售,如商品打8折出售,即按原标价的80%出售.
(3).行程问题:路程=速度×时间 时间=路程÷速度 速度=路程÷时间
①相遇问题: 快行距+慢行距=原距
②追及问题: 快行距-慢行距=原距
③航行问题:
顺水(风)速度=静水(风)速度+水流(风)速度
逆水(风)速度=静水(风)速度-水流(风)速度
抓住两码头间距离不变,水流速和船速(静不速)不变的特点考虑相等关系.
x x x =--2235)2(
(4)工程问题:工作量=工作效率×工作时间
完成某项任务的各工作量的和=总工作量=1
(5)储蓄问题
利润=每个期数内的利息本金
×100% 利息=本金×利率×期数 本利和=本金×利率×期数+本金
(6)调配问题
例题1:甲组人数是乙组人数的2倍,从甲组抽调8人到乙组,这时甲组剩余的人数是乙组人数的一半多2个,甲乙组原来各多少人?
例题2:轮船在静水中的速度为每小时20km ,水流速度每小时4km ,从甲码头顺流航行到乙码头,再返回甲码头,共用5h,(不计停留时间),求甲乙码头的距离。
例题3:某项工程,由甲队独做需18天完成,乙队独做只需甲队的一半时间完成,甲乙两队合作需要多少天完成?
例题4:爸爸为小明存了一个3年期的教育储蓄(3年期的年利率为2.7%),3年后能取5405元,他开始存入了多少元?
例题5:一个长方形的长比宽多2cm,若把它的长和宽都增加2cm 后,面积则增加242cm ,
长方形原来的长和宽分别是多少?
例题:6:红按8折的价格从商店里买了一套运动服,付款240元,问这套运动服的原价是多少元?
习题训练
1、若x=2是方程3x-∣m ∣=x+2的解,则m= 。
2、已知05432=+-n x 是关于x 的一元一次方程,则n= 。
3、三个连续的偶数的和为72,则这三个数分别是 。
4、若79b a x 与12437---y x b a 是同类项,则x= ,y= 。
5、若关于x 的方程 x+2=a 和2x-4=3a 有相同的解,则a= 。
6、一种商品每件的成本为a 元,若按成本每件增加25%的定价出售,每件售价为 元;在此基础上,若因库存积压而减价,每件按售价的九折出售,每件还能盈利 元。
7、今年暑假,王老师一家三口外出旅行一周,这一周各天的日期的和为91,那么王老师一家是 号回家的。
8、已知关于x 的方程ax+b=c 的解为x=1,则c-a-b-1= 。
9、比x 的一半少3的数是x 与1的和的31
,列方程得 。
10、一种小麦磨成面粉后,重量要减少15%,为了得到4250千克的面粉,至少需要 千克的小麦。
11、七年级(1)班发作业本,若每人发4本,则还余12本,若每人发5本,则还少18本,设该班有x 名学生,则可列方程为 。
12、一年定期的储蓄的年利率为2.25%,某人把10000元钱按一年期存入银行,到期后扣除利息税,可得本息之和为 元。
(利息税为利息的20%)
二、解下列方程(共20分)
21、2x+3=x-1 22、3(x-6)-(2x+3)=7(5-x)
23、2)4(322131=-+x x 24、03
.002.003.0255.09.04.0x x x +-+=-
)
52(6)54(33)1(x x x -+=--。