常微分方程初等解法和求解技巧毕业论文
(完整版)常微分方程初等解法及其求解技巧毕业论文

目录摘要 (I)关键词 (I)Abstract (I)Key words (I)1.前言 (1)2.常微分方程的求解方法 (1)2.1常微分方程变量可分离类型解法 (1)2.1.1直接可分离变量的微分方程 (3)2.1.2可化为变量分离方程 (3)2.2常数变易法 (7)2.2.1一阶线性非齐次微分方程的常数变易法 (7)2.2.2一阶非线性微分方程的常数变易法 (8)2.3积分因子法 (12)3.实例分析说明这几类方法间的联系及优劣 (14)3.1几个重要的变换技巧及实例 (14)3.1.1变为 (14)3.1.2分项组合法组合原则 (15)3.1.3积分因子选择 (15)参考文献 (16)致谢 (17)常微分方程初等解法及其求解技巧摘要常微分方程是微积分学的重要组成部分,广泛用于具体问题的研究中.求解常微分的问题,常常通过变量分离、两边积分,如果是高阶的则通过适当的变量代换,达到降阶的目的来解决问题.本文就是对不同类型的常微分方程的解法及其求解技巧的系统总结:先介绍求解常微分方程的几种初等解法,如变量分离法,常数变易法,积分因子法等,在学习过程中,通过对不同类型的方程求解,揭示常微分方程的求解规律.然后介绍几类方程求解中的变换技巧及规律,并通过实例来分析这几类方法之间的联系及优劣,从而能快速的找到最佳解法.关键词变量分离法常数变易法积分因子变换技巧Elementary Solution and Solving Skills of OrdinaryDifferential EquationAbstractOrdinary differential equations are important components of calculus and used extensively for the studies on specific issues. Ordinary differential equations are often resolved by the means of variable separation and both sides integral. If they are higher-order ones, we can reduce their order by proper variable substitution to solve this problem. This essay aims at concluding systematically the methods of different types of differential equations and its resoling skills. First of all, I’d would like to introduce several basic resolutions of differential equations, such as variable separation, constant threats, points factor, etc. In the process of learning, I’d like to reduce the law of resolving ordinary differential equations by resolving different types of equations. Then, we describe several equations resolutions and for transformation techniques and its laws,and we also analyze the advantages and disadvantages and connections by using the examples of these methods to be able to find the best solution quickly.Key wordsVariable separation; constant threats; points factor; transform techniques1.前言数学发展的历史告诉我们,300年来数学分析是数学的首要分支,而微分方程又是数学分析的心脏,它还是高等分析里大部分思想和理论的根源.人所共知,常微分方程从它产生的那天起, 就是研究自然界变化规律、研究人类社会结构、生态结构和工程技术问题的强有力工具.它的发展历史也是跟整个科学发展史大致同步的.现在,常微分方程在很多学科领域内有着重要的应用,自动控制、各种电子学装置的设计、弹道的计算、飞机和导弹飞行的稳定性质的研究、化学反应稳定性的研究等.这些问题都可以转化为求常微分方程的解,或者化为研究解的性质的问题.常微分方程具有广泛的社会实践性,无论是在各类学科领域上,还是在实际生产生活中,都有举足轻重的作用.它所涉及范围之广,致使前人对它做了很深入的研究.应用常微分方程理论已经取得了很大的成就,但是,它现有的理论也还远远不能满足需要,还有待进一步的发展,使这门学科的理论更加完善.微分方程是表达自然规律的一种自然的数学语言.它从生产实践与科学技术中产生,而又成为现代科学技术中分析问题与解决问题的一个强有力的工具.人们在探求物质世界某些规律的过程中,一般很难完全依靠实验观测认识到该规律,反而是依照某种规律存在的联系常常容易被我们捕捉到,而这种规律用数学语言表达出来,其结果往往形成一个微分方程,而一旦求出方程的解,其规律则一目了然.所以我们必须能够求出它的解.常微分方程的初等解法,既是常微分方程理论中有自身特色的部分,也与实际问题密切相关;恰当对初等解法进行归类,能正确而又敏捷地判断一个给定的方程属于何种类型,从而能按照所介绍的方法进行分解.总之,常微分方程属于数学分析或基础数学的一个组成部分,在整个数学大厦中占据这重要位置,学好常微分方程基本理论与方法对进一步学习研究数学理论与实际应用均非常重要,因此本文对常微分方程的初等解法进行了简要归纳和分析,主要讨论变量分离方程,非恰当微分方程,线性微分方程,同时结合具体的实例,展示了初等解法在解题过程中的应用及其求解过程中的变换技巧和律.2.常微分方程的求解方法2.1常微分方程变量可分离类型解法定义1 如果一阶微分方程具有形式,则该方程称为可分离变量微分方程.若设,则可将方程化为.即将两个变量分离在等式两端.其特点是:方程的一端只含有的函数与,另一端只含有的函数与.对于该类程,我们通常采用分离变量的方法来处理。
学年论文一阶常微分方程的初等解法

摘 要
一阶常微分方程是数学分析或基础数学的一个组成部分,在整个数学中占有重要的地位。主要从三个方面讲述:一、微分方程的基本概念,二、一阶常微分方程的初等解法(其中包括变量分离微分方程、伯努利微分方程、恰当微分方程与积分因子、一阶隐式微分方程),三、一阶常微分方程初等解法的应用举例。一阶常微分方程的求解因其方法灵活,技巧性强,历来是学生学习中的一大难点,因此,针对不同的题型,应采取不同的方法。
一阶隐方程的一般形式为
(1)形如 的方程的解法,这里假设 有连续的偏导数。引进参数 ,则变为 将两边对 求导数,并以 代入,得到
方程是关于 , 的一阶微分方程,但它的导数已解出,于是可按前面介绍的方法求出它的解。
若已求得的通解的形式为 将它代入,得到
这就是得通解。
若求得的通解的形式为 ,则得到的参数形式的通解为
,
这里 是任意常数。
齐次微分方程 ,
令 ,方程可化为分离变量的方程, 。
分式线性方程
下面分三种情形来讨论:
ⅰ) ,这时 为齐次方程。
ⅱ) 及 ,这时可作变换 ,其中 是线性代数方程 的唯一解,可将方程化为齐次方程 。
ⅲ) 及 ,这时可设 ,方程可化为 ,
再令 ,则方程可进一步化为 ,这是一个变量可分离方程。
第二项经化简后,成为
例3设有如图的电路,其中 为交流电源的电动势; 为电阻,当
电流为 时,它产生的电压降为 ; 为电感,它产生电压降 , 为一常数。今设时刻 时,电路的电流为 ,求电流 与时间 的关系。
解根据基尔霍夫定律,有如下关系
整理后,得到关于 的线性方程式
即要求解初值问题
由线性微分方程求解公式有
积分后得到
一阶常微分方程初等解法求解技巧

姓名:韩毅 学号:41005231 专业:信息与计算科学
1、变量分离方程 2、可化为变量分离方程的 类型 3、线性微分方程与常数变 易法 4.恰当微分方程与积分因子 5、方程不能解出 6、解的稳定性、渐近性稳 定性和不稳定性
1、变量分离方程
ቤተ መጻሕፍቲ ባይዱ
dy f ( x) ( y ) dx
3、线性微分方程与常数变易法
一阶线性微分方程
dy P( x) y Q( x) dx
通解
p ( x ) dx p ( x ) dx ye ( Q( x)e dx c )
4.恰当微分方程与积分因子
4.1 恰当微分方程 4.2、积分因子 4.3、积分因子求法的推广
致谢:
谢谢在我写论文期间 指导我论文的导师: 李老师,以及帮助过 我的同学。
结语:.
常微分方程是数学分析和基础数学的一 个重要组成部分,它的实践意义也很重 大,所以掌握它的解法也很重要,本文 系统的讨论了一阶常微分方程的几种特 殊类型的相应解法,在以后解常微分方 程的过程中更加得心应手,之后还讨论 了常微分方程解的稳定性,了解常微分 方程零解的渐进稳定性,不稳定性,通 过这一系列的讨论,让我对一阶常微分 方程的解有了更深刻的认识,对于以后 的求解有了很大的帮助。
a1 x b1 y c1 dy dx a2 x b2 y c2
技巧1:这类微分方程求解最为简单,实为把方程 化为变量可分离方程进行进一步的求解. 技巧2:这类方程与上面2的解法相似,只不过这 类方程是把一个多项式看成是一个整体,再把它 化为变量可分离方程进行求解. 技巧3:这类微分方程因为分式分子与分母的系数 均不成比例,故需要对分子与分母进行简单变换, 新设变量,通过新设变量,去掉分子与分母的常 数项,化为上述②的形式,进一步进行求解.
一阶常微分方程初等解法的简析与举例

一阶常微分方程初等解法的简析与举例姓名:潘晶晶学号:20085031079数学与信息科学学院数学与应用数学专业指导老师:刘守宗职称:讲师摘要:本文结合例题把常微分方程的求解问题化为积分问题.并且对变量分离,变量变换,常数变易法,恰当微分方程,隐式微分方程等常微分方程的初等解法进行简要分析和求解.关键词:变量变换;隐式微分方程;一阶常微分方程;恰当微分方程A Brief Analysis And Examples of First-Order DifferentialEquations’ Elementary SolutionsAbstract:This article introduce a mothed of tansforming the solution of first-order differenttial equations into the solution of integral.The article also states a brief analysis and elementary method of the elementary solutions for separation of variables,variable transformation, variation law, appropriate differential equation, the implicit declined points equations.Key Words:variable transformation;cain declined equations;first-order differential equation; exact differential equation前言数学分析中研究了变量的各种函数及函数的微分与积分.如函数未知,但知道变量与函数的代数关系,便组成代数方程,通过求解代数方程就可解出未知函数.一阶常微分方程的初等解法是把微分方程的求解问题转化为积分问题,其解的表达式由初等函数或超越函数表示,他们在实际问题中有着广泛的应用,值得我们好好学习和体会. 1.一阶微分方程的基本概念联系着自变量,位置函数及其导数的关系式叫作微分方程,自变量只有一个的微分方程叫作常微分方程,阶数为一阶的叫作一阶常微分方程.2.变量分离方程的解法举例分析2.1变量分离方程的解法形如()()dyf x y dxϕ= (1) 的方程,称为变量分离方程,()f x ,()y ϕ分别是x ,y 的连续函数.这是一类最简单的一阶函数.如果()0y ϕ≠,我们可将(1)改写成()()dyf x dx y ϕ=,这样变量就分离开来了.两边积分,得到()()dyf x dx c y ϕ=+⎰⎰c 为任意常数.由该式所确定的函数关系式(,)y y x c =就是常微分方程(1)的解.例 求解方程dy dx =.解 当1y ≠±时,将变量分离,得=,两边积分,得c =+,则有arcsin arcsin y x c =+,即sin(arcsin )y x c =+,因当1y =±显然也是所求方程的解,且包含于上式,故所求方程的通解为sin(arcsin )y x c =+,其中成为任意常数.2.2化为变量分离的微分方程有些方程本不是可分离变量微分方程的类型,但经过变量变换可化为分离变量的微分方程.可分为三种情况来讨论:()1021==c c 的情形这时,有=dx dy =++y b x a y b x a 2211⎪⎭⎫ ⎝⎛=++x y g xy b a x yb a 2211. 因此,只要作变换x yu =,则方程就转化为变量分离方程.例 求解方程22dyx xy y dx =-. 解 方程可化为2()dy y y dx x x =-,令y u x =,将dy du x u dx dx=+代入上式, 可得2dux u dx=-,易知0u =是上式的一个解,从而0y =为原方程的一个解.当0u ≠时,分离变量得2du dx u x -=,两边积分得1ln u x c =+,故可得原方程的通解为ln x y x c=+. ()22121b b a a =k =的情形. 这时方程可写为()().22222122y b x a f c y b x a c y b x a k dx dy +=++++= 令u y b x a =+22,则方程化为().22u f b a dxdu+=, 这是变量分离方程.例 求解方程111dy dx x y =+-+. 解 令1u x y =-+,则有1y u x -=--,代入所求方程()111d u x dx u---=+,整理可得1du dx u=-, 由变量分离得22u x c =-+,故所求方程的解为()212x y x c -++=.()32121b b a a ≠及21,c c 不全为零的情形 因为方程右端分子,分母都是y x ,的一次多项式,因此⎩⎨⎧=++=++.0,0222111c y b x a c y b x a 代表Oxy 平面上两条相交的直线,设交点为()βα,,若令⎩⎨⎧-=-=,,βαy Y x X 则化为⎩⎨⎧=+=+,0,02211y b x a y b x a 从而变为.2211⎪⎭⎫ ⎝⎛=++=X Y g Y b X a Y b X a dX dY 因此,求解上述变量分离方程,最后代回原方程,即可得到原方程的解.例 求解方程111dy dx x y =+-+. 解 令1u x y =-+,则有1y u x -=--,代入所求方程()111d u x dx u---=+,整理可得1du dx u=-,由变量分离得22u x c =-+,故所求方程的解为()212x y x c -++=. 2.3常数变易法 一阶线性微分方程()(),x Q y x P dxdy+= 其中()()x Q x P ,在考虑的区间上是x 的连续函数,若Q ()0=x ,变为(),y x P dxdy= 称为一阶齐次线性微分方程,若(),0≠x Q 称为一阶非齐次线性微分方程.变易分离方程,易求得它的通解为(),⎰=dxx P ce y这里c 是任意常数.现在讨论非齐次线性方程的通解的求法.不难看出,是的特殊情形,两者既有联系又有差别,因此可以设想它们的解也应该有一定的联系而又有差别,现试图利用方程的通解的形式去求出方程的通解,显然,如果中c 恒保持为常数,它们不可能是的解.可以设想在中将常数c 变易为x 的待定函数,使它满足方程,从而求出(),x c 为此,令()(),dxx P e x c y ⎰=微分之,得到()()()()().dx x P dxx P e x P x c e dxx dc dx dy ⎰+⎰= 以代入得到()()()()()()()()(),x Q e x c x P e x P x c e dxx dc dx x P dx x P dx x P +⎰=⎰+⎰ 即()()(),⎰=-dx x P e x Q dxx dc积分后得到()()(),1c dx e x Q x c dxx P +⎰=-⎰这里1c 是任意常数.将代入得到()()().1⎪⎭⎫ ⎝⎛+⎰⎰=⎰-c dx e x Q e y dx x P dxx P 这就是方程的通解. 2.4伯努利微分方程 形如()()n y x Q y x P dxdy+= 的方程,称为伯努利微分方程,这里()()x Q x P ,为x 的连续函数.1,0≠n 是常数.利用变量变换可将伯努利方程化为线性方程.事实上,对于,0≠y 用n y -乘两边,得到()(),1x Q x P y dxdyy n n+=-- 引入变量变换,1n y z -=从而().1dxdy y n dx dz n --= 将代入得到()()()(),11x Q n z x P n dxdz-+-= 这是线性微分方程,可按常数变易法求得它的通解,然后代回原来的变量,便得到的通解.此外,当0>n 时,方程还有解.0=y例 求解微分方程222dy y x dx x y=+. 解 这是一个伯努利微分方程,两边同乘以2y ,得222dy y y x dx x=+, 令2u y =,则有2du ux dx x=+. 上式是一个一阶非齐次线形微分方程,由常数变易法可求得上式的解为312u cx x =+, 从而原方程的通解为2312y cx x =+, 2.5恰当微分方程考虑微分形式的一阶微分方程()(),,0M x y dx N x y dy +=(11),如果该式的左端恰好是某个二元函数(),u x y 的全微分,即()()(),,,u u M x y dx N x y dy du x y dx dy x y∂∂+==+∂∂ 则称(11)为恰当微分方程,对于一阶微分方程()(),,0M x y dx N x y dy +=,若有M Ny x∂∂=∂∂,则该方程必为恰当微分方程.我们接着讨论如何求得该恰当微分方程的解.我们可以把(),uM x y x∂=∂看作只关于自变量x 的函数.对它积分可得()(),u M x y dx y ϕ=+⎰,由此式可得()(),d y u M x y dx x x dyϕ∂∂=+∂∂⎰, 又因为有(),uN x y x∂=∂,故 ()(),d y N M x y dx dy xϕ∂=-∂⎰, 对该式积分可得()(),y N M x y dx dy x ϕ∂⎡⎤=-⎢⎥∂⎣⎦⎰⎰, 将该式代入,得恰当微分方程的通解为()(),,M x y dx N M x y dx dy c x ∂⎡⎤+-=⎢⎥∂⎣⎦⎰⎰⎰.例 求解微分方程()2220dyx y y x dx++=. 解 这里2M x y =,22N y x =+,从而2M Nxy y x∂∂==∂∂,可知所求的微分方程为恰当微分方程,则有2uy x x∂=∂, 对x 积分得()2212u x y y φ=+, 再对y 求导,则得()2d y ux y y dyφ∂=+∂, 又有22ux y y∂=+∂, 则可得()2y y φ=,将()2y y φ=代入得22122u x y y =+, 所以原方程的通解为22122x y y c +=. 2.6积分因子法恰当微分方程可以通过积分求出它的通解.因此能否将一个非恰当微分方程化为恰当微分方程就有很大的意义.积分因子就是为了解决这个问题引进的概念.如果存在连续可微函数(),0x y μμ=≠,使得()()()(),,,,0x y M x y dx x y N x y dy μμ+=为一恰当微分方程,即存在函数u ,使Mdx Ndy du μμ+=,则称(),x y μ为方程()(),,0M x y dx N x y dy +=的积分因子.函数(),x y μ为()(),,0M x y dx N x y dy +=积分因子的充要条件是()()M N y xμμ∂∂=∂∂, 即()M N NM x y y xμμμ∂∂∂∂-=-∂∂∂∂. 假设原方程存在只与x 有关的积分因子()x μμ=,则0xμ∂=∂,则μ为原方程的积分因子的充要条件是()M N x y xμμ∂∂∂=-∂∂∂,即()()M Ny x x N φ∂∂-∂∂=仅是关于x 的函数.此时可求得原方程的一个积分因子为()x dxe φμ⎰=.同样有只与y 有关的积分因子的充要条件是()()M Ny xy Mϕ∂∂-∂∂=-是仅为y 的函数,此时可求得方程(11)的一个积分因子为()y dye ϕμ⎰=.例 求解方程()330ydx x y dy ++-=. 解 在此式中M y =,33N x y =+-,因13M Ny x∂∂=≠=∂∂,所以该方程不是恰当方程,因()233M N y x N x y ∂∂--∂∂=+-不是x 的函数,但()2M Ny x M y ∂∂-∂∂=-是y 的函数,所以22dy y e y ⎰=为方程的积分因子,方程乘以积分因子,得()3223330y dx y xy y dy ++-=,该式为恰当微分方程,通过以上介绍的求恰当微分方程的方法得原方程的通解为33414xy y y c +-=. 2.7隐式微分方程2.7.1可以解出y 或x 的方程()1讨论形如,dy y f x dx ⎛⎫= ⎪⎝⎭的方程的解法,这里假设,dy f x dx ⎛⎫⎪⎝⎭有连续的偏导数.引进参数,dyp dx=则变为 (),.y f x p =将两边对x 求导数,并以dyp dx=代入,得到 .f f p p x p x∂∂∂=+∂∂∂ 方程是关于x ,p 的一阶微分方程,但它的导数已解出,于是可按前面介绍的方法求出它的解.若已求得的通解的形式为(),,p x c ϕ=将它代入,得到()(),,,y f x x c ϕ=这就是得通解.若求得的通解的形式为(),,x p c ϕ=则得到的参数形式的通解为()()(),,,,.x p c y f p c p ϕϕ=⎧⎪⎨=⎪⎩ 其中是p 参数,c 使任意常数.若求得的通解的形式为(),,0,x p c Φ=则得到的参数形式的通解()(),,0,,.x p c y f x p Φ=⎧⎪⎨=⎪⎩ 其中p 是参数,c 为任意常数.()2形如,dy x f y dx ⎛⎫= ⎪⎝⎭的方程,假定函数有连续的偏导数. 引进参数,dy p dx=则变为 (),,x f y p =将两边对y 求导数,然后以1dx dy p=代入,得到 1.f f dp p y p dy∂∂=+∂∂ 方程是关于y ,p 的一阶微分方程,但它的导数dp dy已解出,于是可按前面介绍的方法求解,设求得通解为 (),,0,y p c Φ=则得的通解为()(),,0,,.y p c x f y p Φ=⎧⎪⎨=⎪⎩2.7.2不显含y 或x 的方程()1讨论形如(),'0F x y =的方程的解法. 记dy p dx=,令()(),.x t p t ϕφ== 这里t 为参数,因为,dy pdx =以代入上式得()()',dy t t dt φϕ=两边积分,得到()()'.y t t dt c φϕ=+⎰于是,得到方程的参数形式的通解为()()(),'.x t y t t dt c ϕφϕ=⎧⎪⎨=+⎪⎩⎰ 这里c 为任意常数.()2形如(),'0F y y =的方程,其解法同方程的求解方法类似.记',p y =引入参数t ,将方程表示为适当的数形式()(),.y t p t ϕφ=⎧⎪⎨=⎪⎩由关系式,dy pdx =得()()',t dt t dx ϕφ=由此得()()',t dx dt t ϕφ= ()()'.t x dt c t ϕφ=+⎰于是 ()()()',.t x dt c t y t ϕφϕ⎧=+⎪⎨⎪=⎩⎰ 为方程的参数形式的通解,其中c 为任意常数.此外,不难验证,若(),00F y =有实根,y k =则y k =也是方程的解例 求微分方程''y x e y =-的解.解 令'p y =,则p x e p =-,将上式两边对y 求导1p dp dp e p dy dy=-, 整理并积分可得()2112p y e p p c =-++, 所以方程的通解为()2112p p x e p y e p p c ⎧=-⎪⎨=-++⎪⎩ 结语对于一个给定的常微分方程,不仅要准确判断它属于何种类型,还要注意学习的解题技巧,从中总结经验,培养自己的机智和灵活性,对各种方法的推导进行分析归纳,并根据方程特点,引进适当的变换,将方程换为能求解的类型.才能熟练地把它应用在社会的实践中去.参考文献[1] [美]塞蒙斯G F.微分方程.张理晶译.北京:人民教育出版社,1981.[2] 胡健伟,汤怀民.微分方程数值解法[M].北京:科学出版社,1999.[3] 王高雄,周之铭,朱思铭,王寿松.常微分方程(第三版)[M].北京:高等教育出版社,2006.。
常微分方程初值问题的解法

常微分方程初值问题的解法随着科技的不断进步和人类社会的不断发展,工程技术和科学技术的发展已经成为推动社会进步的重要力量,而数学则是工程技术和科学技术的基础和支撑,常微分方程作为数学分支的重要组成部分,对于理论研究和实际应用都有着深远的影响。
在实际工程中,解决常微分方程初值问题是数学理论在抽象式运算与工程实践之间的重要桥梁。
本文将介绍常微分方程初值问题的概念、求解方法以及实际应用。
一、常微分方程初值问题的概念常微分方程是指未知函数一阶或高阶微商与自变量和常数的关系式,常微分方程初值问题是指在初值u(x0)=u0已知的情况下,确定函数u(x)的解的问题。
在初值问题中,自变量是独立变量,取值范围可以是任意实数,因变量是函数值,是依赖自变量而实现的数值,常数是影响函数变化的一些固定参数。
常微分方程模型经常出现在工程技术模型中,一些实际应用场景可以通过建立数学模型来进行求解。
二、常微分方程初值问题的解法常微分方程初值问题的解法大致可以分为两种,一种是解析解法,即直接利用微积分学知识对方程进行求解;另一种是数值解法,即采用数值方法对方程进行数值计算求解。
下面将分别介绍这两种方法的解法原理。
1. 解析解法解析解法是指通过数学工具对函数解析表达式进行研究,以求出常微分方程的解。
该方法的先决条件是对方程具有严格的内部结构和特殊的形式,只有在特殊情况下才能找到一些特解。
这种方法的难点在于方程方程形式和初始条件可能存在巨大的数学难度,解析解的求解需要求解一些解析式的积分、微分和级数。
往往只有在一些特殊情况下,解析解法才能一般性的解决问题,因此该方法的适用场景相对较少。
2. 数值解法数值解法是指通过数值计算的方法,通过有限个代数运算和计算机模拟的方法得出方程的解。
数值解法的优点是具有广泛的适用性,可以有效地求解各种类型的常微分方程初值问题,使得无法通过解析方法求解的问题也可以得到解答。
数值解法可分为无条件稳定和条件稳定两种情况,前者是指方法不会出现不稳定结果的情况,而后者则保证了方法收敛性的同时,存在一定的条件限制。
二阶常微分方程的解法及其应用本科毕业论文

毕业论文(设计)原创性声明本人所呈交的毕业论文(设计)是我在导师的指导下进行的研究工作及取得的研究成果。
据我所知,除文中已经注明引用的内容外,本论文(设计)不包含其他个人已经发表或撰写过的研究成果。
对本论文(设计)的研究做出重要贡献的个人和集体,均已在文中作了明确说明并表示谢意。
作者签名:日期:毕业论文(设计)授权使用说明本论文(设计)作者完全了解**学院有关保留、使用毕业论文(设计)的规定,学校有权保留论文(设计)并向相关部门送交论文(设计)的电子版和纸质版。
有权将论文(设计)用于非赢利目的的少量复制并允许论文(设计)进入学校图书馆被查阅。
学校可以公布论文(设计)的全部或部分内容。
保密的论文(设计)在解密后适用本规定。
作者签名:指导教师签名:日期:日期:注意事项1.设计(论文)的内容包括:1)封面(按教务处制定的标准封面格式制作)2)原创性声明3)中文摘要(300字左右)、关键词4)外文摘要、关键词5)目次页(附件不统一编入)6)论文主体部分:引言(或绪论)、正文、结论7)参考文献8)致谢9)附录(对论文支持必要时)2.论文字数要求:理工类设计(论文)正文字数不少于1万字(不包括图纸、程序清单等),文科类论文正文字数不少于1.2万字。
3.附件包括:任务书、开题报告、外文译文、译文原文(复印件)。
4.文字、图表要求:1)文字通顺,语言流畅,书写字迹工整,打印字体及大小符合要求,无错别字,不准请他人代写2)工程设计类题目的图纸,要求部分用尺规绘制,部分用计算机绘制,所有图纸应符合国家技术标准规范。
图表整洁,布局合理,文字注释必须使用工程字书写,不准用徒手画3)毕业论文须用A4单面打印,论文50页以上的双面打印4)图表应绘制于无格子的页面上5)软件工程类课题应有程序清单,并提供电子文档5.装订顺序1)设计(论文)2)附件:按照任务书、开题报告、外文译文、译文原文(复印件)次序装订3)其它目录1 引言........................................................................................................................................ - 7 -2 二阶常系数常微分方程的几种解法 ............................................................................ - 7 - 2.1特征方程法 ...................................................................................................................... - 7 - 2.1.1 特征根是两个实根的情形 ..................................................................................... - 8 - 2.1.2 特征根有重根的情形 .............................................................................................. - 8 - 2.2常数变易法 .................................................................................................................... - 10 -2.3拉普拉斯变换法 ........................................................................................................... - 11 -3 常微分方程的简单应用................................................................................................. - 12 - 3.1 特征方程法 ................................................................................................................... - 13 - 3.2 常数变易法 ................................................................................................................... - 15 -3.3 拉普拉斯变换法 .......................................................................................................... - 16 -4 总结及意义........................................................................................................................ - 17 - 参考文献................................................................................................................................. - 18 -二阶常微分方程的解法及其应用摘要:本文主要介绍了二阶常系数微分方程的三种解法:特征方程法、常数变异法和拉普拉斯变换法,并着重讨论了特征方程根为实根、复根及重根的情形。
微分方程的求解方法应用与实例

微分方程的求解方法应用与实例微分方程是数学中的重要分支之一,广泛应用于各个领域,如物理、工程、经济等。
解微分方程是研究微分方程的核心问题之一,掌握微分方程的求解方法对于解决实际问题至关重要。
本文将介绍微分方程的求解方法,并结合实例进行详细说明。
一、初等解法初等解法是解微分方程最常用的方法之一,主要包括分离变量法、参数法、齐次法和常系数线性齐次微分方程方法等。
分离变量法适用于可分离变量的微分方程。
通过将方程中的变量分离并进行分别积分的方式,最终得到微分方程的解。
参数法适用于可以利用某些特定的参数化代换将微分方程化简的情况。
通过给定参数化代换,将原微分方程转化为更简单的形式,并求解得到解。
齐次法适用于齐次线性微分方程。
通过将微分方程中的变量进行替换,使之变为齐次线性微分方程,并通过相应的解法求解得到原微分方程的解。
常系数线性齐次微分方程方法适用于常系数线性齐次微分方程。
通过特征方程的求解,找到微分方程的通解。
二、变量分离法变量分离法是解微分方程常用的方法之一,适用于将微分方程中的未知函数和自变量分离的情况。
以一阶可分离变量的形式为例,设微分方程为dy/dx=f(x)g(y),其中f(x)和g(y)是关于x和y的函数。
首先将方程两边同时乘以dx和1/g(y),得到dy/g(y)=f(x)dx。
之后对方程两边同时积分,得到∫dy/g(y)=∫f(x)dx。
最后将等式两边积分得到微分方程的解。
三、常微分方程的解法常微分方程是微分方程中的一种重要类型,是指微分方程中未知函数与变量的最高导数只有一阶,没有更高阶的情况。
常微分方程的解法多种多样,如一阶常微分方程、二阶常微分方程等。
以一阶常微分方程为例,设方程为dy/dx=f(x,y),其中f(x,y)是已知函数。
可以通过变量分离、齐次、恰当微分方程以及一些特殊的解法等方法求解常微分方程。
四、实例分析下面通过一个实例来详细说明微分方程的求解方法。
假设有一辆汽车的速度满足以下条件:在0时刻,汽车的初速度为10m/s,经过1小时,汽车的速度下降到5m/s。
常微分方程的数值解法及其应用

引 言自然界中很多事物的运动规律可用微分方程来刻画。
常微分方程是研究自然科学和社会科学中的事物、物体和现象运动、演化和变化规律的最为基本的数学理论和方法。
物理、化学、生物、工程、航空航天、医学、经济和金融领域中的许多原理和规律都可以描述成适当的常微分方程,如牛顿的运动定律、万有引力定律、机械能守恒定律,能量守恒定律、人口发展规律、生态种群竞争、疾病传染、遗传基因变异、股票的涨幅趋势、利率的浮动、市场均衡价格的变化等,对这些规律的描述、认识和分析就归结为对相应的常微分方程描述的数学模型的研究。
因此,常微分方程的理论和方法不仅广泛应用于自然科学,而且越来越多的应用于社会科学的各个领域。
它的学术价值是无价的,应用价值是立竿见影的。
求一阶常微分方程的解是数学工作者的一项基本的且重要的工作。
由于国内外众多数学家的努力,使此学科基本上形成了一套完美的学科体系;由于该问题比较复杂且涉及的面广,使得有些问题的解析解很难求出,而对于一些典型的微分方程(如线性方程、某些特殊的一阶非线性方程等)可以运用基本方法求出其解析解,并在理论上可以根据初值问题的条件把其中的任意常数完全确定下来。
然而,在生产实际和科学研究中所遇到的微分方程往往很复杂,在很多情况下都不可能给出解的解析表达式,有时即使能求出形式的解,也往往因计算量太大而不实用,而且高次代数方程求根也并不容易,所以用求解析解的方法来计算微分方程的数值解往往是不适宜的。
实际上,对于解微分方程初值问题,一般只要求得到解在若干个点上的近似解或者解的便于计算的近似表达式(只要满足规定的精度就行)。
所以,研究数学建模中常微分方程模型理论性数值解法迫在眉睫。
本文研究的数值解法主要是针对常微分方程初值问题多种数值解法精度比较而言。
从而得到更常用的数值解法在微分方程模型中的应用。
在自然科学和经济的许多领域中。
常常会遇到一阶常微分方程的初值问题b x a y x y y x f dx dy ≤≤⎪⎩⎪⎨⎧==.)(),,(00 这里),(y x f 是充分光滑,即关于x 或y 满足李普希茨条件的二元函数,0y 是给定的初始值,00)(y x y =称为初始条件。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目 录摘 要 .............................................................. I 关键词 ............................................................. I Abstract ........................................................... I Key words . (I)1.前 言 (1)2.常微分方程的求解方法 (1)2.1常微分方程变量可分离类型解法 (1)2.1.1直接可分离变量的微分方程 (2)2.1.2可化为变量分离方程 (2)2.2常数变易法 (9)2.2.1一阶线性非齐次微分方程的常数变易法 (9)2.2.2一阶非线性微分方程的常数变易法 (10)2.3积分因子法 (16)3.实例分析说明这几类方法间的联系及优劣 (17)3.1几个重要的变换技巧及实例 (18)3.1.1变dxdy 为dy dx ............................................... 18 3.1.2分项组合法组合原则 (19)3.1.3积分因子选择 (20)参考文献 (21)致 (22)常微分方程初等解法及其求解技巧摘要常微分方程是微积分学的重要组成部分,广泛用于具体问题的研究中.求解常微分的问题,常常通过变量分离、两边积分,如果是高阶的则通过适当的变量代换,达到降阶的目的来解决问题.本文就是对不同类型的常微分方程的解法及其求解技巧的系统总结:先介绍求解常微分方程的几种初等解法,如变量分离法,常数变易法,积分因子法等,在学习过程中,通过对不同类型的方程求解,揭示常微分方程的求解规律.然后介绍几类方程求解中的变换技巧及规律,并通过实例来分析这几类方法之间的联系及优劣,从而能快速的找到最佳解法.关键词变量分离法常数变易法积分因子变换技巧Elementary Solution and Solving Skills of OrdinaryDifferential EquationAbstractOrdinary differential equations are important components of calculus and used extensively for the studies on specific issues. Ordinary differential equations are often resolved by the means of variable separation and both sides integral. If they are higher-order ones, we can reduce their order by proper variable substitution to solve this problem. This essay aims at concluding systematically the methods of different types of differential equations and its resoling skills. First of all, I’d would like to introduce several basic resolutions of differential equations, such as variable separation, constant threats, points factor, etc. In the process of learning, I’d like to reduce the law of resolving ordinary differential equations by resolving different types of equations. Then, we describe several equations resolutions and for transformation techniques and its laws, and we also analyze the advantages and disadvantages and connections by using the examples of these methods to be able to find the best solution quickly.Key wordsVariable separation; constant threats; points factor; transform techniques1.前 言数学发展的历史告诉我们,300年来数学分析是数学的首要分支,而微分方程又是数学分析的心脏,它还是高等分析里大部分思想和理论的根源.人所共知,常微分方程从它产生的那天起, 就是研究自然界变化规律、研究人类社会结构、生态结构和工程技术问题的强有力工具.它的发展历史也是跟整个科学发展史大致同步的.现在,常微分方程在很多学科领域有着重要的应用,自动控制、各种电子学装置的设计、弹道的计算、飞机和导弹飞行的稳定性质的研究、化学反应稳定性的研究等.这些问题都可以转化为求常微分方程的解,或者化为研究解的性质的问题.常微分方程具有广泛的社会实践性,无论是在各类学科领域上,还是在实际生产生活中,都有举足轻重的作用.它所涉及围之广,致使前人对它做了很深入的研究.应用常微分方程理论已经取得了很大的成就,但是,它现有的理论也还远远不能满足需要,还有待进一步的发展,使这门学科的理论更加完善.微分方程是表达自然规律的一种自然的数学语言.它从生产实践与科学技术中产生,而又成为现代科学技术中分析问题与解决问题的一个强有力的工具.人们在探求物质世界某些规律的过程中,一般很难完全依靠实验观测认识到该规律,反而是依照某种规律存在的联系常常容易被我们捕捉到,而这种规律用数学语言表达出来,其结果往往形成一个微分方程,而一旦求出方程的解,其规律则一目了然.所以我们必须能够求出它的解.常微分方程的初等解法,既是常微分方程理论中有自身特色的部分,也与实际问题密切相关;恰当对初等解法进行归类,能正确而又敏捷地判断一个给定的方程属于何种类型,从而能按照所介绍的方法进行分解.总之,常微分方程属于数学分析或基础数学的一个组成部分,在整个数学大厦中占据这重要位置,学好常微分方程基本理论与方法对进一步学习研究数学理论与实际应用均非常重要,因此本文对常微分方程的初等解法进行了简要归纳和分析,主要讨论变量分离方程,非恰当微分方程,线性微分方程,同时结合具体的实例,展示了初等解法在解题过程中的应用及其求解过程中的变换技巧和律.2.常微分方程的求解方法2.1常微分方程变量可分离类型解法定义 1 如果一阶微分方程具有形式)()(y g x f dx dy =,则该方程称为可分离变量微分方程.若设0)(≠y g ,则可将方程化为dx x f y g dy )()(=.即将两个变量分离在等式两端.其特点是:方程的一端只含有y 的函数与dy ,另一端只含有x 的函数与dx .对于该类程,我们通常采用分离变量的方法来处理。
2.1.1直接可分离变量的微分方程]1[形如 )()(y g x f dx dy = (2.1)的方程称为变量分离方程.分别是,x y 的连续函数.例2.1 求解032=++yx e dy dx y 的通解. 解 将变量分离得dx e dy ye x y 32=--,两边积分得c e e x y 61312132+=-,因而通解为 c e e x y =--3232(c 为任意常数).2.1.2可化为变量分离方程而有些方程虽然不是变量分离方程,但是可以通过适当的变量代换,转换为分离变量方程. (变量代换的思想)对于新方程应用分离变量的方法,求出通解后再带回原变量就可以得到其通解.如何寻求恰当的变量代换将给定的方程化为分离变量方程,没有一般的方法,但是对于一些特殊类型的方程,这种变量代换却有固定的形式.下面介绍几类这样的方程.类型1:齐次方程[2]形如 ⎪⎭⎫ ⎝⎛=x y g dx dy (2.2)的方程,称为齐次微分方程,这里()u g 是u 的连续函数,对方程(2.1)做变量变换 x y u =(2.3)即ux y =,于是u dx du x dx dy += (2.4)将(2.3),(2.4)代入(2.2),则原方程变为)(u u dxdu ϕ=+, 整理后,得到 xu u dx du -=)(ϕ(2.5)方程(2.5)是一个变量分离方程.可按前面(2.1)的方法求解,然后代回原来的变量,便得到(2.2)的解.注 该类型还可以推广到形如()⎪⎭⎫ ⎝⎛+=x y f x g x y dx dy . 例2.2 解方程dxdy xy dx dy x y =+22. 解 原方程化为22)(y dxdy x xy =-且x y ≠, 即 1-⎪⎭⎫ ⎝⎛=xy x y dx dy , 于是,令x y u =,即xu y =,将dx du u dx dy +=代入该方程,得12-=+u u dx du x u ,整理即有 112-=--=u u u u u dx du x , 分离变量,得xdx du u u =-1 )0(≠u , 两边积分得,1ln ln ln c x u u +=-,将x y u =代回来,得)ln()ln(11y c c x xy x y =⋅⋅=, 所以 x y ce y = (c 为任意常数),另外0=u ,即0=y 也是原方程的解,但此解包含于通解0=c 之中.故方程的通解为.yx y ce =类型2: 形如()c by ax f y x dx dy ++=--βαβα11(2.6)的方程也可以经变量变换化为变量分离方程,这里的c b a ,,均为常数. 做变量变换c by ax u ++=βα,这时有()u f x b x a dxdy y b x a dx du ⋅⋅⋅+⋅⋅=⋅⋅⋅+⋅⋅=----1111ααβαβαβα, 即()dx x u f b a du 1-=⋅⋅+⋅αβα. 是变量分离方程.而当1==βα时,()c by ax f dxdy ++=为其特殊形式. 例2.3 求解方程yx xy y x dx ++=3dy . 解 因为yx xy y x dx ++=3dy , 可以化为()1dy 22++=y x y x dx . 于是,令122++=y x u(2.7)则 xu x dxdy y x dx du 2222+=+=, (2.8)将(2.8)代入(2.6)可以知道,这是一个分离变量方程.即 xdx du u =+221, 两边同时积分,得()121ln c x u +=+(2.9)再将(2.9)代入(2.7),得()12222ln c x y x +=++.所以12222c xe y x +=++,整理得 2222x Ce y x =++,其中C 为任意常数.类型3:形如 ()()0=+dy xy xg dx xy yf(2.10)的方程同样可已经变量替换化为变量分离方程.将(2.10)变形为 ()()xy xg xy yf dx dy -= (2.11)做变量替换xy u = (2.12)这时有 2xu dxdu dx dy -= (2.13)将(2.11)和(2.12)代入(2.13)中,得()()()dx xdu u uf u ug u g 1=-. 由此,化为变量分离方程,两边积分并代回原来的变量,可求出方程的解.类型4:形如 ()xy f dxdy x=2 (2.14)的方程是变量分离方程.做变量替换xy u =,则 2x u dx du dx dy -=(2.15)代入原方程,得()dx xdu u f u 11=+(2.16)(2.16)就是变量分离方程.类型5:形如 ⎪⎭⎫ ⎝⎛=2x y xf dx dy (2.17)的方程是变量分离方程.做变量替换2x y u =, 则,有xudx du x dy 22+=(2.18)将(2.18)代入(2.17)中,得()dx xdu u u f 121=-, 所以,原方程同样是变量可替换方程.类型6:形如)(xy f dx dy y x =(2.19)的方程是变量分离方程.做变量替换xy u =,则 2x u x dx du dx dy -=(2.20)代入原方程,得()dx xdu u uf u 11=+,是变量分离方程.类型7:形如βαby ax dxdy+= (2.21)其中α、β满足βααβ-=)的方程. 可令1+=αz y ,方程(2.20)化为齐次方程⎥⎥⎦⎤⎢⎢⎣⎡+⎪⎭⎫⎝⎛+=-b x z dx dz ααα11, 事实上(1)dy dz z dx dxαα=+, 由于ααβαβαβααααbz x bz x by x dxdz+=+=+=+, 所以()ααααbz ax dxdzz +=+1, 即()⎥⎥⎦⎤⎢⎢⎣⎡+⎪⎭⎫⎝⎛+=-b x z dx dz ααα11, 再设xzu =,可化为变量分离变量. 变量分离求解方程是一种相当简洁的解法,也是最基本的解法,求解变量可分离的微分方程,关键是在正确的分离变量与计算不定积分,要理解隐式解存在的根据是隐函数的求导法则,并应该注意不要遗漏可能存在的常数解.对于比较复杂的方程,需经过变量替换或等价变形使之转换成变量分离方程,最后利用变量分离求解,变量代换是求解一阶微分方程的一种重要方法,在一阶微分方程的初等解法中具有重要的作用. 2.2常数变易法常数变易法是求解一阶非齐次线性常微分方程的重要方法,即将常数变易为待定函数,通过求解待定函数的表达式进而求出原方程通解,常数变易法实际上也是一种变量变换方法,通过变换可将方程化为变量分离方程. 2.2.1一阶线性非齐次微分方程的常数变易法对于一阶线性齐次方程0)(=+'y x p y ,它的通解为⎰=-dx x p ce y )(.从此出发,将通解中的任意常数c 换成待定函数)(x u ,假设⎰=-dx x p e x u y )()( (2.22)为一阶线性非齐次方程)()(x q y x p y =+'(2.23)的解,为了确定)(x u ,将(2.22)代入(2.23)的左边,得到⎰'=+'-dxx p e x u y x p y )()()(. 从而得到)()()(x q e x u dxx p =⎰'-,即⎰='dxx p e x q x u )()()(,积分后得到c dx e x q x u dxx p +⎰=⎰)()()(,其中c 为任意常数.把)(x u 代入(2.22)中,得到方程(2.23)的通解为))(()()(c dx e x q e y dxx p dx x p +⎰⎰=⎰-.2.2.2一阶非线性微分方程的常数变易法个别的一阶非线性微分方程,可用常数变易法求解,下面介绍四种形式非线性微分2.3积分因子法把一阶线性微分方程)()(x Q y x P dxdy+= (2.30)改写为如下的对称形式dx x Q ydx x p dy )()(=- (2.31)一般而言,(2.31)不是恰当方程,但以因子 ()⎰=-dx x p e x u )(乘(2.31)两侧,得到方程dx x Q e ydx x p e dy e dx x p dx x p dx x p )()()()()(⎰=⎰-⎰---,即dx x Q e y e d dx x p dx x p )()()()(⎰=⎰-- .它是恰当方程,由此可直接积分,得到⎰+⎰=⎰--c dx e x Q y e dx x p dx x p )()()(,这样就求出了方程的通解))(()()(⎰+⎰⎰=-c dx e x Q e y dxx p dxx p(2.32)c 为任意常数,其中()x u 为积分因子,一般情况下,积分因子是很难寻求的,只有在很特殊的情况下才很容易求得.例2.9[9] 求方程()32420x y y dx x dy -+=的积分因子.解 原方程改写为()34220x ydx x dy y dx +-=,显然131x μ=,1u xy =,221y μ=,2u x =.为使()()123211g xy g x x y =,只需取 ()()121g xy xy =,()251g x x =. 于是求的原方程的一个积分因子521x y μ=.总结:总之, 研究微分方程积分因子的实质是把求解微分方程问题转换为寻求积分因子的方法,这种方法体现了一种以退为进的创新思维,这种思维方式的转变还是值得我们学习的.3.实例分析说明这几类方法间的联系及优劣以上总结了常微分方程的几种解法,熟悉各种类型方程的解法,正确而又敏捷地判断一个给定的方程属于何种类型,从而按照所介绍的方法进行求解,这是最基本的要求.但是我们所遇到的方程未必都恰好是所介绍过的方程类型,因此要注意学习解题的技巧,善于根据方程的特点,引进恰当的变换,将方程化为能求解的新类型,从而求解.下面是几类方程之间的关系图:这样从不同角度,用不同方法解决了同一问题,更能深刻的体会到常微分方程几种解法之间的联系及其巧妙之处.3.1几个重要的变换技巧及实例常微分方程的求解有众多方法,技巧性很强,有时能用不同方法解决同一问题,因此我们也要熟悉常微分方程几类初等解法之间的联系及优劣,从而能快速的找到最优解法.下面以例题来介绍“变换”的技巧和规律.3.1.1变dxdy 为dy dx 若微分方程为(或可转换为)()()y x g y x f dx dy ,,=,当()()y x f y x g ,,较()()y x g y x f ,,简单时,可变变dxdy 为dy dx ,此时方程变为 ()()y x f y x g dy dx ,,=,经此变换后方程可能是前面所介绍的某类方程.例3.1求方程yx xy dx dy +=22的通解 解 令()xy y x f 2,=,()y x y x g +=2,,因此原方程不属于前面所介绍的各类方程,但()()xy x y x f y x g 212,,+=, 所以xy x dy dx 212=-, 方程属于伯努利方程. 令2x z =,dy dx xz 2'=,方程变为1=-yzdy dz . 解之得)(ln )(2c y y c dy eez x ydx ydx+=+⎰⎰==-.3.1.2分项组合法组合原则分项组合法的关键在于组合,组合的原则为:(1) 分项后,若存在只与dx 和x 相关的项,或只与dy 和y 相关的项,应为独立项,不与其它项组合.(2) 所有微分相关项组合成一项.例3.2 求方程0)32(1432=-+dy yx ye dx y y 的通解.解 求解过程如下(1) 拆项 dy yx dy ye dx y dy y x ye dx y y y 4343321)32(122-+=-+. (2) 组合 dy ye y 22与dy 相关,应单独为一项,4331--='⎪⎪⎭⎫ ⎝⎛y y ,1='x , 3y dx 和dy yx 43-为全微分相关项,应组合成新的一项. (3)将方程转换成分组全微分方程因为222y y de dy ye =,⎪⎪⎭⎫ ⎝⎛=-34331y x d dy y x dx y ,所以原方程转化为 0)(3322=+=⎪⎪⎭⎫ ⎝⎛+y x e d y x d de y y , 通解为c yx e y =+32. 3.1.3积分因子选择总所周知,当微分方程为非恰当的时需借组积分因子将其转化为恰当的,全微分方程的标准格式为()()()()0,,123111=⎪⎪⎭⎫ ⎝⎛++∑∑∑---n i n i n i i i i y q x g y x f d y x u ,其中01>n ,02≥n ,03≥n .0),(≠y x u 通常称为积分因子,一般常微分方程需经过恒等变化才能转化成上式.有上式可直接得到方程的解为()()()c y q x g y x f n i n i n i ii i =++∑∑∑---123111,. 解常微分方程时,积分因子是重新组合后各项的公因子,解题关键仍在于组合.例3.3 求方程()022=-+xydx dy y x 的通解.解 ()xydx ydy dy x xydx dy y x 2222-+=-+,(1) 分项重新组合:因为ydy 独立微分项,应为单独一项;(2) 找积分因子: 022=-xydx dy x 不是全微分方程.由于微分方程中dx 前的函数是幂函数,但符号为负,dy 前的函数是幂函数符号为正,故一定要使函数之一为负.因为y x d dx y x dy yx xydx dy x y 222222)2(1=+-=--, 所以积分因子为21y -.由此有 0ln )2(1222=-=-+-y x d y d xydx dy x ydy y, 所以通解为c yx y =-2ln . 归纳起来,在我们求解已解出导数的常微分方程时,常常根据所给方程的结构特点,设法做出适当变换,将其化为可分离变量的方程或其他易于求解的类型.在求解以微分形式出现的常微分方程是,应先考虑分项组合法.因此在解题过程中注重应用上述技巧将使得方程的解答相对比较简练快捷.参考文献[1] 王高雄,周之铭,朱思铭,王寿松等.常微分方程(第三版)[M].:高等教育,2006:30-60.[2] 许敏伟,吴炳华. 变量代换法在求解微分方程问题中的应用[J]. 教育学院学报,2008.9 71-72.[3] 焦洪田.一阶非线性微分方程的常数变易法[J].雁北师学院学报, 1999(6):44-45.[4] 龚雅玲.求解微分方程的积分因子法[J].教育学院学报, 2007, 22(1):31-35.[5] 伍军.求解积分因子的几种方法[J].师大学学报(自然科学版) ,2006, 25(1):103-109.[6]清华,金兰,昊.常微分方程容﹑方法与技巧[M] :华学科技.2006:8-10.[7] 鹤鸣.几种特殊类型积分因子的求法及在解微分方程中的应用[J].学院学报,2003(3):18-22.[8] 邓小青.一类常微分方程初的等解法浅析[J].商学院学报, 2008, 22(1):73-74.[9] 吴淼生.关于非恰当方程0Mdx Ndy +=积分因子的求法[J].师专学报,1994(2):15-23.[10] 徐胜林.《常微分方程》例题分析[J].高等函授学报(自然科学版),2005,18(02):22-23.致本次毕业论文是在老师的精心指导下完成的,在论文的构思和写作过程中,首先要感洁老师对我的细心指导.从老师身上,我不仅学到了治学的严谨精神,而且也学到了做人的态度,这让我受益匪浅.所以,在此我要向老师表示最衷心得感和最深厚的敬意.然后也要感芳老师、申进老师以及大学期间的所有任课老师,感他们的教导与帮助.同时,我想感我的父母,感他们对我多年的养育之恩.他们给了我温暖的家和无私的爱,没有他们二十多年来的关心和支持,我无法想象自己能够顺利地完成学业.由于这次撰写毕业论文的时间较短,加上本人的水平有限,所以论文还有许多的不足之处.在此也恳请各位专家和教授给予批评与指导.最后向所有关心和帮助过我的老师和同学表示由衷的感.。