电伴热基本常识
安装电伴热的五个注意事项和四个原则

安装电伴热的五个注意事项和四个原则一、五个注意事项1. 安全第一:在安装电伴热之前,务必确保电源已经断开,避免触电危险。
同时,要确保工作区域干燥并远离易燃物品,以防止火灾风险。
2. 了解产品规格:在购买电伴热之前,要仔细阅读产品说明书,了解其功率、电压、尺寸等规格参数。
确保所购买的电伴热产品与实际需求相符合,避免安装过程中出现不匹配的情况。
3. 清洁安装表面:在安装电伴热之前,要确保安装表面干净、平整,并且没有尖锐的物体或锈蚀。
这样可以保证电伴热的粘附效果和散热效果,提高使用寿命和安全性能。
4. 正确选择安装位置:电伴热可以安装在地板、墙壁、屋顶等多种位置。
在选择安装位置时,要考虑到电伴热的散热效果、使用效果和安全性,避免安装在易损坏或不适合的位置,影响正常使用。
5. 专业人员安装:安装电伴热需要一定的专业知识和技能,建议寻求专业人员的帮助进行安装。
专业人员能够根据实际情况,合理安排电伴热的布线和连接,确保安装质量和使用效果。
二、四个原则1. 选择合适的电伴热产品:根据实际需求选择适合的电伴热产品是安装的首要原则。
要考虑到所需加热面积、功率需求、电压要求等因素,确保选用的电伴热产品能够满足预期的加热效果。
2. 保证安全可靠性:安装电伴热时,要确保电源线路和电伴热产品的连接牢固可靠,不松动、不漏电。
同时,要选择耐高温、耐磨损的电伴热材料,以确保长期安全可靠的使用。
3. 注意节能环保:在安装电伴热时,要尽量选择节能环保的产品。
比如,选择具有节能功能的温控器,可以根据实际需求智能调节温度,避免能源的浪费。
4. 合理布线和连接:在安装电伴热时,要遵循合理布线和连接的原则。
要保证电伴热产品的布线不交叉、不搭接,避免短路和漏电的风险。
同时,要注意保护电伴热产品的连接头,避免受到外力损坏。
总结:在安装电伴热时,我们需要遵循以上的五个注意事项和四个原则。
注意事项包括安全第一、了解产品规格、清洁安装表面、正确选择安装位置和专业人员安装。
电伴热带原理及使用

电伴热带简介一、作用:电伴热是用电热来补偿被伴热体(容器、管道等)在工艺过程中的热量损失,以维持介质工艺温度。
二、分类:自限式电伴热带:电热功率随系统温度的变化自调,随时补偿温度变化,避免伴热带过热烧毁。
恒功率电伴热带:通电后功率输出是恒定的,不会随外界环境、保温材料、伴热的材质变化而变化,而其功率的输出或停止通常是由温度传感器来控制。
三、结构:自限温电伴热带组成:平行导电金属线芯、发热芯带(PTC材料)、绝缘层、屏蔽层、防护套。
四、原理:当温度升高时,导电塑料产生微分子的膨胀,碳粒渐渐分开,引起电路终端电阻上升,伴热带会自动减少功率输出。
当温度变低时,导电塑料又恢复到微分子收缩状态,碳粒相应连接起来,形成电路,伴热带发热功率又自动上升。
五、按结构分类自限温伴热带可分为:基本型:由芯带和绝缘构成的自限温伴热带,用“J”表示。
加强型:在基本型外,再包覆一层外护套,用“B”表示。
防爆型:在基本型外,将金属丝编织形成屏蔽层,具有接地和增强保护的作用,再包覆一层外护套,用“P”表示。
耐腐型:在基本型自限温伴热带外包裹一层具有耐酸、碱特性的外护套,用“F”表示。
六、按温度分类:自限温电伴热带各系列参数七、具体型号规格:例:D BRZ-25-200-J低温型,伴热带窄型,标称功率25W/m ,额定电压220 V ,基本型。
八、阻值:芯带发热可认为是并联电路,芯带发热阻值变化,功率也变化;芯带在稳定时必须有一个定型阻值作为电压选择依据。
九、绝缘:绝缘表面应光滑平整、色泽均匀;应紧密挤包在芯带上。
十、防护套:护套应单层挤包,表面平整、色泽均匀,且容易剥离不损伤绝缘和编织层。
十二、 安装注意事项:1. 严禁蒸汽伴热和电伴热混用于一体;2. 及时处理被伴热物体锋利的边及毛刺;3. 绝缘层不得损坏,应紧贴被加热体以提高热效率,若被伴热体为非金属体,应用铝箔胶带增大接触传热面积,用紧固带固定,严禁用金属丝绑扎;4. 法兰处介质易泄露,缠绕电热带时应避开其正下方;5. 避免电伴热带两根母线直接接触,造成短路;6. 用防水密封胶和防水绝缘胶布处理电伴热接头与盲头;7. 屏蔽层必须接地,接地电阻不大于4Ω,绝缘阻值不低于20M Ω; 8. 电伴热带安装时的最小弯曲半径不得小于其厚度的5~6倍;9. 缠绕方法应尽可能使散热体必要时随时可拆除进行维修或更换而不损坏电热带或影响其它线路。
设备和管道的电伴热

设备和管道的电伴热一、电伴热的概念及应用电伴热就是用电作为外部热源将热能供给管道系统,通常以自限温电热带对管道或设备进行伴热保温。
电伴热不但适用于蒸汽伴热的各种情况,而且能解决蒸汽伴热不易解决的许多问题。
①对于热敏介质管道的伴热,电伴热能有效地进行温度控制,可以防止管道过热。
②需要维持较高温度的管道伴热,一般维持温度超过150℃,蒸汽伴热比较困难,而电伴热则比较容易。
③非金属管道的伴热,一般不可能采用蒸汽伴热,可用电伴热。
④不规则外形的设备如泵类,由于电伴热产品柔软、体积小,可以紧靠设备外敷设,能有效地进行伴热。
⑤较偏远地区,没有蒸汽或其他热源的地方。
⑥长输管道的伴热。
⑦较窄小空间内管道的伴热等。
电伴热的典型结构如图所示。
电伴热的典型结构图1—电源接线盒;2—自调控伴热带;3—电伴热标签;4—保温层及其他外保护层;5—T形伴热带连接盒;6—伴热带的尾端;7—聚酯纤维带二、电伴热的方法①感应加热法:在管道上缠绕电线或电缆,当接通电源后,由于电磁感应效应产生热量,以补偿管道的散热损失,维持操作介质的温度。
感应加热的费用太高,限制了这种方法的发展。
②直接通电法:在管道上通以低压交流电,利用交流电的集肤效应产生的热量,维持管道温度不降。
它的优点是投资少、加热均匀,但在有支管、环管、变径和阀件的管道上很难使用,只适用于长输管道。
③电阻加热法:利用电阻体发热补偿管道的散热损失,以维持其操作温度。
国内外广为应用的电伴热产品多属于电阻体发热产品。
三、电伴热产品的选型和计算选用电伴热产品,主要依据工艺条件、环境情况、管道设计、管道所在区域的爆炸危险性分类。
一般按下列步骤选型和计算。
1.需伴热的管道散热损失计算按公式(参照规范SH 3040-2012)计算出每米管道的散热损失量(W/m)。
式中:Di一保温层内径,m;D。
—保温层外径,m;a—保温层外表面向大气的放热系数,W/m²·℃;ai一保温层内加热空间空气向保温层的放热系数,W/m²·℃,一般取13.95;λ—保温材料制品导热系数,W/m·℃;t-被伴介质温度,℃;ta—环境温度,℃;K—热损失附加系数,取1.15~1.25;q1—带伴热的管道热损失,w/m;2.产品系列的选择①确定工作电压,一般为220V(交流电)。
电伴热的特点、优点、寿命、应用范围介绍

招专业人才上一览英才一、电伴热的特点我国工艺管线和罐体容器的伴热目前大多采用传统的蒸气或热水伴热。
电伴热是用电热的能量来补充被伴热体在工艺流程中所散失的热量,从而维持流动介质最合理的工艺温度,它是一种高新技术产品。
电伴热是沿管线长度方向或罐体容积大面积上的均匀放热,它不同于在一个点或小面积上热负荷高度集中的电伴热;电伴热温度梯度小,热稳定时间较长,适合长期使用,其所需的热量(电功率)大大低于电加热。
电伴热具有热效率高,节约能源,设计简单,施工安装方便,无污染,使用寿命长,能实现遥控和自动控制等优点,是取代蒸汽,热水伴热的技术发展方向,是国家重点推广的节能项目。
二、电伴热的优点电伴热与蒸汽(热水)相比,具有诸多优势如下:(1)电伴热装置简单、发热均匀、控温准确,能进行远控,遥控,实现自动化管理。
(2)热具有防爆、全天候工作性能,可靠性高,使用寿命长。
(3)电伴热无泄漏,有利于环境保护。
(4)节省钢材:它不需要蒸气伴热所需的一来一去二趟伴热管路。
(5)节省保温材料。
(6)节约水资源,不象锅炉每天需要大量的水。
(7)电伴热还能解决蒸气和热水伴热难以解决的问题。
(8)电伴热设计工作量小,施工方便简单,维护工作量小。
(9)效率高,能大大降低能耗。
有的项目,无论是一次性投资,还是年运行费用,电伴热带比蒸汽伴热带都要节省;有的项目电伴热带的一次性投资可能会略高于蒸汽热水伴热,但以年运行费用论,通常电伴热运行1-2年节省的费用就能收回投资。
三、电热带使用寿命在正确维护下,电伴热系统使用寿命为8年或更长四、电伴热产品的应用范围电伴热产品可广泛用于石油、化工、电力、医药、机械、食品、船舶等行业的管道、泵体、阀门、槽池和罐体容积的伴热保温、防冻和防凝,是输液管道、储液介质罐体维持工艺温度最先进、最有效的方法。
电伴热不但适用于蒸汽伴热的各种场所,而且能解决蒸汽伴热难以解决的问题,如:长输管道的伴热,窄小空间的伴热;无规则外型的设备(如泵)伴热;无蒸汽热源或边远地区管道和设备的伴热;塑料与非金属管道的伴热,等等。
消防电伴热保温 工作原理(一)

消防电伴热保温工作原理一、电伴热保温的基本概念电伴热保温是一种通过电力加热的方式来保持管道、容器等设备在一定温度范围内的保温技术。
它通过电热线圈或电热膜等电热元件将热量传导到被保温设备上,从而实现保温的目的。
二、电伴热保温的工作原理1. 电热元件的加热电伴热保温的核心是电热元件的加热。
电热元件一般分为电热线圈和电热膜两种形式,它们通过接通电源,使电阻发热,产生一定的热量。
2. 传热与保温当电热元件加热后,产生的热量通过导热材料传导到被保温设备表面,使其达到所需的保温温度。
同时,设备表面的保温材料也起到了一定的保温作用,减少热量的散失。
3. 温度控制电伴热保温系统通常配备有温度控制装置,可以根据需要对被保温设备的温度进行精确控制。
一般来说,温度控制装置会根据设定的温度值来控制电热元件的加热时间和温度,以保持设备在稳定的温度范围内。
三、电伴热保温的应用领域1. 管道保温电伴热保温广泛应用于工业管道的保温,特别是在化工、石油、医药等行业中,通过电热元件的加热,可以有效防止管道在低温环境下结冰或凝结。
2. 容器保温对于需要保持一定温度的液体储存容器,电伴热保温也可以发挥重要作用。
通过电热元件的加热,可以保持液体在所需的温度范围内,确保生产过程的正常进行。
3. 冷冻设备保温在冷冻设备中,为了避免设备结霜或温度下降过快,常常需要采用电伴热保温技术,通过电热元件的加热来保持设备在稳定的工作温度下运行。
四、电伴热保温的优势和发展趋势1. 节能环保相比传统的蒸汽、热水保温方式,电伴热保温可以更精确地控制温度,避免能量的浪费,具有更好的节能环保效果。
2. 自动化程度高电伴热保温系统可以实现全自动化控制,减少了人工操作的需求,提高了生产效率和安全性。
3. 多样化应用随着技术的不断进步,电伴热保温系统的应用范围也在不断扩大,已经可以满足更多复杂工况下的保温需求。
4. 安全可靠电伴热保温系统采用低压供电,安全可靠,不会引起火灾和爆炸等安全隐患。
电伴热的这些知识你知道吗?很多电工听都没听说过

电伴热的这些知识你知道吗?很多电工听都没听说过01电伴热简单介绍电伴热带自进入应用以来,已经成为当今世界上最通用的电伴热带类型。
它们可以广泛地应用于管道和罐体的防冻保温、维持工艺温度、加热公路、坡道、人行横道、屋檐及地板等。
02电伴热原理电伴热带结构是在两根平行的导电铜母线之间,分布着起加热作用的半导体聚合物发热芯,其外部由高分子绝缘护套、镀锡铜编织屏蔽网和耐腐蚀的含氟高分子外护套构成。
电伴热带是由导电聚合物和两根平行金属导线及绝缘护层构成。
03电伴热特性电伴热半导体聚合物发热元件的电阻会随温度的变化而改变,其结果是电伴热带的输出功率随着其温度的升高而降低,即当被伴热体的温度下降时,发热芯的热输出功率会增加,当被伴热体的温度上升时,发热芯的热输出功率则会减少。
电伴热带即使重叠也不会过热。
无需特别的设计,可以在现场任意剪切其工作长度,以精确对应管道的实际铺设长度。
无需特殊工具,安装极为简。
04电伴热应用罐体管道一般都是运输或储存液体介质的设备,冬季容易发生冻结,电伴热带-体化罐体管道防冻技术使用效果好,而且应用广泛,-直被应用于工业管道的防冻保温及抗凝中。
电伴热带管道保温技术可以确保罐体内介质在短时间内发生融化,并顺通过罐体管道运输出去,将电伴热带缠绕于罐体表面,利用电伴热配件进行连接固定,通电散热后起到防冻保温的目的。
05使用时注意事项电伴热因为其电气特性,在送电投用瞬间电流会达到数倍额定电流,然后数秒内电流就开始下降,一般一分钟左右即可恢复正常,基本不会引起开关动作。
如果一只总开关带多路电伴热开关的情况下,要先送总开关,每隔两到三分钟逐次投入分路电伴热,防止瞬时过流跳闸。
06电伴热接线和终端处理需要注意的是,根据经验终端处宜用斜口钳剪出斜口三角,插入终端盒,紧固螺丝,最重要的是要打胶,打胶,打胶,重要的事情说三遍。
终端盒是电伴热系统的薄弱点,如果防水系统未做好,会在雨雪天气引起绝缘下降,甚至造成短路故障。
电伴热知识介绍

• 工业(石油,化工,轻工及电力)
• 民用建筑
4
电伴热产品-伴热温度与时间的关系
介质温度
TFluid
没有伴热的情况
时间 (小时)
介质温度 有伴热的情况
TFluid
时间 (小时)
5
电伴热产品-自调控电伴热线外观
11
• 电伴热线的安装及操作-保温层安装
注意事项 厚度及规格符合设计要求 施工时管道、保温层须干燥 保温层外加防水外罩 应避免损伤电伴热线 安装完后应立即对电伴热线进行绝缘测试 在保温层外加标签注明“内有电伴热线”,标明所有配件位置 小于100mm外径的管道上,保温层内径应加大到13mm
f 电伴热带受损,引起短路;
首先检查阀门泵和其它曾维修过的 电伴热带是否有损伤,在检查保温 层被挤压的破损处的电伴热带是否 有损伤,并修复或更换电伴热带;
用兆欧表测量绝缘电阻,干燥和重 新密封接头; 查找受损伤处,更换电源电缆。
20
g 电伴热带受潮,引起短路; h 电源线受损,引起短路;
回路发热量正常,但管线达不到应有的维持温度
可能存在的故障原因: a 保温层受潮或缺失
相应的解决方法: 更换干燥的保温材料,正确安装 防水铝皮护套;
b 在阀门、支架和其它散热体上 缠绕的电伴热带长度不够。
增加缠绕长度,但不要超过最大 回路长度。
21
22
23
24
19
开关跳闸
可能的故障原因: a 开关规格小; 相应的排除方法: 重新计算,更换开关;
b 回路电流大; c 启动温度低;
d 回路开关损坏; e 电源箱、二通、三通 / 尾端处对 地绝缘不好或有短接现象;
电伴热知识介绍资料

电伴热知识介绍资料
尊敬的用户,大家好:
欢迎来到电伴热知识介绍资料!
电伴热系统采用电伴热热泵为核心,电伴热热泵配备多费尔管路系统,室内外多处安装采暖器具,形成一个完整的热水循环系统,室内温度由电
伴热热泵控制实现。
电伴热系统与传统的供暖方式相比,具有几大特点:
首先,电伴热系统利用多费尔管路系统分布空调,能够实现热水的集
中供热,减少室内热风入口,从而保证室内空气洁净,同时实现更好的分
布式供暖;
其次,电伴热系统采用电伴热热泵为核心,具有超高的效率,能够节
省90%以上的能源;
第三,电伴热系统的运行成本低,由于采用电伴热热泵能够达到高效
的能量转换,而且不需要添加任何其他燃料,从而极大的降低了运行成本,可以使用户获得更低的整体运行成本;
第四,电伴热系统拥有智能控制系统,可以自动控制室内温度,智能
地调节温度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电伴热设计和安装
电热带长度的计算
根据计算散热量(W/m),使用环境,电源 电压和功率后,根据电伴热带的特性曲线图 等选择电伴热带。只要使电热带单位长度额 定发热量,等于或接近计算单位长度的散热 量就行。 如果计算出来的单位长度的散热量大于电热 带单位长度额定发热量,不能保证管线的维 持温度,电热带的敷设方式可改为下述两种 方法:
式中—QB:单位面积散热量,W/ m2, S:容器或罐体的表面积,m2。 容器或罐体表面积的计算如下: 二端平面形:S=D(R+H); 二端半球形:S=D(2R+H)。 式中— D:容器直径,m; R:容器半径,m; H:二端平面形或二端半球形圆柱容器高度,m。
电伴热设计和安装
电伴热设计和安装
第一步: 计算温差△T △T=TM-TA 第二步: 从表中查出管道单位时间的散热量QB (W/m)。如果 管道在室内,将QB乘上0.9。如果被伴热管道是塑料管道, 由于塑料的导热性远低于金属,应再乘0.6~0.7系数。 第三步: 散热量QB值是以玻璃纤维保温材料计算的,如果使用其 它保温材料,应按表提供的保温系数(f)进行修正。即: QT= QB ×f QT是管道真正的单位时间散热量以瓦特/米(W/m)表示, 伴热的的就是补偿QT 。
电伴热设计和安装
2011-5-20 吴文强
电伴热设计和安装
管道及附件耗散热量的计算
确定以下几个参数: TM——管道内流体必须维持的温度 ℃; TA——当地最低的环境温度 ℃ (历年一月份平均最低温度平均值); 管道尺寸; 保温层种类和厚度; 管道是在室内或室外,地上敷设或埋地敷设。 上述参数确定后,可按下述步骤计算管道散失到环境的热 量QB:
电伴热设计和安装
1.采用两条或更多条的平行电热带。
电伴热设计和安装
2.采用沿管线缠绕方法敷设电热带。这种方法适用于需 要较高维持温度,管线的直径又比较大,而电热带单位 长度发热量又较小的情况。
电伴热设计和安装
比如:在114 mm(4”)管线上计算得 散热量是30 W/m,而电热带发热量是20W/m, 其比值30/20=1.5,查表可得出每圈电热带跨 距为305 mm。 在确定电热带长度时,每对法兰需要加上 2倍的管径长度;弯头需要加上1.5倍的管径 长度;管线撒的金属托架需要加上3~5倍的管 径长度。除此之外,还要预留电源的接线长 度1~2米,中间接线盒预留约0.5米。
当△T =30℃热损失为11.0w/m,当△T =40℃热损失14.9w/m,△T =35℃时,每米损 失可采用中间插入法求得(因表中无QB值)。
QB=11.0w/m+(14.9w/m - 11.0w/m)[(35-30)÷(40-30)]=12.95w/m
步骤三:保温层采用硅酸钙,查保温材料修正数表乘以保温系数f及综合系数1.4 Qr=1.4QB×f=1.4×12.95w/m×1.50=27.195w 答案:管道每米损失热量27.195W
电伴热设计和安装
阀门的散热量计算
阀门的散热量计算依阀门的结构形式不同而不同,闸阀的 散热量通常是相关联直径管线每米散热量的1.22倍。球形阀的 散热量是闸阀的散热量的0.7倍;碟形阀的散热量是闸阀散热量 的0.5倍,浮式球阀的散热量是闸阀的0.6倍。 例如:直径48mm(1”) 闸阀散热量 1.22QT=1.22 X 36.5=44.5W。 直径48mm 球形阀的散热量是44.5 X 0.7=31.2W。
例:有一直径3米,高4米的上下二端平面形圆柱罐体,最低 环境温度-10 ℃ ,最高风速15 m /s,采用50 mm的玻璃纤维 作保温层,罐体的维持温度80 ℃ ,求该罐体的散热量是多少。 查表得到,在风速15 m /s,环境温度-10 ℃ ,维持温度80 ℃ , 保温材料是玻璃纤维,厚度50 mm,每平方米散热量 QB=77.39 n/m2。 罐体的表面积: S=D(R+H) 3.14*3*(1.5+4)=51.81(m2) 罐体的散热量: QT=1.2QBS 1.2*77.39*51.81=4811.49(W) 根据上面计算的结果,查看电热带的厂家样本,选择合适的电 热带。 如果容器或罐体的保温材料在表中查不到,可查表 ,计算容 器或罐体散热量时乘以相应的系数。
电伴热设计和安装
BTV2-CT型。主要用于工艺管线,容器或罐体的防冻和保温,最高维 持温度为65 ℃ 。伴热线适用于普通区,危险区或腐蚀区。
电伴热设计和安装
QTV2-CT型。主要用于工艺管线,容器或罐体的防冻和保温,最高维持温度 为110 ℃ 。伴热线适用于普通区,危险区或腐蚀区。
电伴热设计和安装
电伴热设计和安装
容器或罐体电热带的选型计算
计算方法: 容器或罐体电热带的选型计算,首先 应根据保温层材料的厚度和介质所需要维 持的温度,从表求得单位(每平方米)面 积散热量,并乘以容器或罐体的表面积求 得总散热量,进而求出电热带的长度。
电伴热设计和安装
常用的工程计算公式如下: QT=1.2QBS
电伴热设计和安装
例1:某厂有一管线,管径为1/2“,保温材料是硅酸钙,厚度10mm,管道中流体 为水,水温需保持10℃,冬季最低气温是-25℃,环境无腐蚀性,周围供电条件 380V、220V均有,求管道每米热损失? 步骤一:△T = TA - TB =10℃-(-25℃)=35℃ 步骤二:查管道散热量表,管径1/2“。10mm保温层。
压力容器
电伴热设计和安装
特殊情况下的设计
如前所述,我们查知的管道、容器罐体的热耗散量,是按现场实际情况综 合计算得知的,如数据表中没有您所需要的热耗散量,则可通过计算有关热损失 公式来求知所需要的数据。可按下列经验公式进行计算。
电伴热设计和安装
电热ห้องสมุดไป่ตู้的规格和技术指标
海上油气田开发工程设施上的电伴热系统中使用最多的是美国瑞侃公司的电 热线的产品,它的系列产品主要有: