一平行线等分线段定理

合集下载

平行线等分线段定理及证实[精华]

平行线等分线段定理及证实[精华]

平行线等分线段定理及证明
附图
定理内容
如果一组等距的平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等
经过三角形一边中点且与另一边平行的直线必平分第三边
经过梯形一腰的中点且与底边平行的直线必平分另一腰
第二条定理也做:三角形过一边中点的直线平行第二边平分第三边。

也称“一二三定理”。

第二第三条即常说的“中位线定理”。

定理证明过程
证明如下:
已知:AB∥CD∥EF,GI,JL交AB,CD,EF于点G,J,H,K,I,L.(如右图)
求证:GH:HI=JK:KL
证明:
过点K作G'I'∥GI交AB ,CD ,EF于点G',H' I'.
∵ AB∥CD∥EF,G'I'∥GI
∴ 四边形GHKG',HII'H‘,GII'G是平行四边形(平行四边形判定定理),∠BJK=∠KLI,∠JG'I'=∠G'I'F(内错角相等)
∴△JG'K∽△I'LK,(相似三角形判定),GH=G'H',HI=H'I'(平行四边形对边相等)
∵G'H':H'I'=JK:KL(相似三角形性质)
∴GH:HI=JK:KL(等量代换)
推论1:过三角形一边中点与另一边平行的直线必平分第三边
推论2:过梯形一腰中点且平行于底边的直线必过另一腰中点。

平行线等分线段与分线段成比例定理在生活实例题中的应用

平行线等分线段与分线段成比例定理在生活实例题中的应用

平行线等分线段与分线段成比例定理在生活实例题中的应用平行线等分线段与分线段成比例定理在生活实例题中的应用广西桂林市灌阳县新街初级中学541604唐荣保随着中学新课改的不断推进,数学教学上,也一改以往"记定理,解死题"的"传统",开始重视培养学生灵活运用熟知的数学定理解决日常生活中实际问题的能力.教学不再是套公式,死运算的陈旧芝麻,而是融生活性,趣味性,技巧性于一体.下面以平行线等分线段与分线段成比例这两个初中数学中常用的简单定理为例,看看它们在解决生活实际问题中的应用.平行线等分线段定理:如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等.如图1所示:即已知直线,:,,J,若AB=BC,则DE=E定理的作用:可以用来证明同一直线上的线段相等;可以等分线段.平行线分线段成比例定理:一组平行线截两条直线,所截得的对应线段成比例.如图1所示:图11,J2,J3即已知直线,J,,,J,,,贝0AB:BC=DE:EF.定理的作用:可以用来证明同一直线上的线段成比例,可以等比例划分线段.上述两定理常用来解决近年出现的一些地形规划和均匀切割等要求学生利用尺规作图的生活实例题.正确理解和掌握定理,这一类题便迎刃而解,下面举例说明.例1正在修建的中山北路有一形状如图2所示的三角形空地需要绿化.拟从点A出发,将AABCB分成面积相等的三个三角形,以便种上三种不同的花草.请你帮助规划出方案(保留作图痕迹,不写作法).点拨分析题意知应使以A为顶点,高为h的三角形面积相等,由三角形面积公式知应将底边BC三等分.过点作射线BM.BE:EF=FG.EEt}GCFFtGC,由平行线等分线段定理可得BE=EF=FC.作法:1.过点B作射线BM,在BM上顺次截取BE:EF=FG:2.连结GC;3.分别过点E,F作EE∥GC,FF∥GC,交BC于E,F;4.连结AE,AF;则△A的,/XAEF,AAFC为所求作的三角形.例2某工厂需将一块长50cm,宽40cm的长方形钢板ABCD精确地分成九个面积相等的小长方形,请用一把长60cm的刻度尺完成(保留作图痕迹),并说明理由.点拨由题意知须分别三等分钢板的长,宽,由平行线等分线段定理即可作出.作法:1.将一长60cm的直尺EF的两头分别放在4D,BC上;2.在钢板上分别点出EF的三等分点P,Q使EP=20ClTI,EQ=40cm;3.平移EF至EF,点出三等分点P,Q使EP=20cm,EQ:40cm;4.分别连结P,P,Q,Q作直线0,n;同理可作直线b,b.因此由直线n,o,b,b将长方形钢板精确地分成九等分(图3所示).例3两户人家分一块梯形稻田CABCD(如图4),一户两口人,另一户三口人,要求按人口数平均分配,并且所分得的稻田都要从与AD相邻的水渠引水灌溉,问应如何分./'/.,//,,/a',,譬≮Jp,lfD,,,a/?Q'i,,,,/6~,,,,b,,,图3,/,,,G,,^图中学数学杂志2010年第8期舅舅目缓蹴舅名舅舅配?要求精确作图(保留作图痕迹,不写作法),阐述分配方法的合理性.畏,,M',,.,~,CG图4点拨根据题意分析知两户人家所分得的田块是以AD为上底,BC下底,面积比为2:3的梯形, 由梯形的面积公式知在高为h的情况下需分别把AD,BC分成长度为2:3的两段,利用平行线分线段成比例定理即可作出.合理性:梯形ABCD的高为h,1,).s两口之家=÷×詈(AD+Bc)h,一1s三口之家=寺×÷(AD+Bc)h,.,故.s两口之家:S三口之家2:3.数学来源于生活,并且应用于生活.从上述三例可以看出,数学教学应朝着培养学生运用所学知识解决生活中实际问题的方向发展,而不应拘泥于繁琐的代数运算和几何证明.在大力提倡素质教育的今天,学生所学能为用,素质教育理念的真谛才能得到贯彻.作者简介唐荣保,男,广西桂林市人,1954年7月生, 中教一级.聚焦中考数学中的"课题学习"问题安徽蒙城县双涧中学233521张雷"课题学习"是全日制义务教育《数学课程标准(实验稿)》在"实践与综合应用"课程领域设置的全新的课程内容,帮助学生综合运用已有的知识和经验,经过自主探索和合作交流,解决与生活经验密切联系的,具有一定挑战性和综合性的问题,以发展学生解决问题的能力,加深学生对"数与代数", "统计与概率","空间与图形"内容的理解,体会各部分内容之间的联系.《课程标准》认为:数学本身就是一个过程,只有通过大量的数学活动,学生才能形成对数学的全面的认识.因此过程本身就是一个课程目标."课题学习"问题已经成为近年来各地中考命题的热点,值得关注.但实际教学中很多教师对这类问题却有无从下手之感,现结合近两年年中考试题举例说明一下这类问题的常见考查类型及解法,以期待对教学有实际帮助.1中考对"课题学习"的评价在中考中较为注重通过"重要数学活动经验" 和"数学基本思想"的考查来了解"课题学习"的教学情况.数学活动考查的主要方面包括:数学活动过程中所表现出来的思维方式,思维水平,对活动对象,相关知识与方法的理解深度;从事探究与交流的意识,能力和信心等;能否通过观察,实验,归纳,类比等活动获得数学猜想,并寻求证明猜想的合理性; 能否使用恰当的数学语言有条理地表达自己的数学思考过程.2中考对"课题学习"的考查呈现方式一般呈现的方式有:1.设置情境,探究结论,然后利用如探究出结论求解给出问题;2.设置多层次的问题,"暴露"数学活动过程;3.迁移活动过程中的思想方法,间接考查学生的数学活动过程;4.通过试题解答的结果,进行数学活动过程的考查;5.设计一些包含活动过程的问题,在活动中进行有关过程性目标的考查.2.1突出迁移应用《课程标准》强调"从学生已有的生活经验出49。

22.1.4相似形-平行线分线段成比例定理

22.1.4相似形-平行线分线段成比例定理
复习
平行线等分线段定理
如果一组平行线在一
条直线上截得的线段相等,
A
那么在其他直线上截得的
线段也相等。
B
如图a//b//c,若AB=BC,
C
则DE=EF。
D
a
E
b
F
c
推论 经过三角形一边的
A
中点与另一边平行的直
线必平分第三边。
E
F
在△ABC中,
∵AE=EB,且EF//BC, B
C
∴AF=FC。
平行线等分线段定理的条件
B
C
例2 如图所示,在△ABC中,E,F分别是AB和AC上 的点,且EF∥BC.
(1)如果AE=7,EB=5,FC=4, 那么AF的长是多少?
(2)如果AB=10,AE=6,AF=5, 那么FC的长是多少?
用平行于三角形一边且和其他两边相交的直线截三角形, 所截得的三角形的三边与原三角形的三边对应成比例.
B
E
当 AB 1
A
D
BC
B
E
C
F
当 AB 1 BC
C
F
结论:后者是前者的一种特殊情况!
例1、如图所示,已知AB∥CD∥EF,那么下列结论 正确的是 ( )
A. AD = BC B. BC = DF DF CE CE AD
C. CD = BC D. CD = AD
EF BEEF AF练习:如图,直线 l1∥l2∥l3 ,直线AC、
相邻的两条平行线间的距离相等
一组平行线中相邻两条平行 线间距离不相等,结论如何?
l
三条距离不相等的平行线
A
截两条直线会有什么结果?
B
猜 想 :

20-21版:一 平行线等分线段定理(创新设计)

20-21版:一 平行线等分线段定理(创新设计)

课堂讲义
当堂检测
3.推论2
文字 经过梯形一腰的中点且与底边平__行__的直线必平分另一腰 语言
符号 在梯形ABCD中,AD∥BC,E为AB的中点,过E作 语言 EF∥BC,交CD于F,则F_平__分__CD
图形 语言 作用 证明线段相等,求线段的长度
预习导学
课堂讲义
当堂检测
要点一 平行线等分线段定理
预习导学
ቤተ መጻሕፍቲ ባይዱ课堂讲义
当堂检测
预习导学
课堂讲义
当堂检测
规律方法 这是平行线等分线段定理在空间 的推广,即:如果一组平行平面在一条直线 上截得的线段相等,那么在其他直线上截得 的线段也相等.
预习导学
课堂讲义
当堂检测
跟踪演练 3 如图所示,四边形 ABCD 中,AB= CD,E,F 分别是 BC,AD 的中点,BA,CD 的 延长线分别与 EF 的延长线交于点 M,N. 求证:∠AME=∠CNE.
预习导学
课堂讲义
当堂检测
1.如图所示,l1∥l2∥l3,直线 AB 与 l1,l2,l3 相
交于 A,E,B,直线 CD 与 l1,l2,l3 相交于 C,
E,D,AE=EB,则有( )
A.AE=CE
B.BE=DE
C.CE=DE
D.CE>DE
解析 由平行线等分线段定理知CE=ED.
答案 C
预习导学
预习导学
课堂讲义
当堂检测
(2)当 l1 与 l2 异面时,如图, 在直线 l2 上取一点 G,过点 G 作 l3∥l1,设 l3
与平面 α,β,γ分别相交于 P,Q,R.
则 l1 与 l3 确定一个平面π1,l3 与 l2 确定一个平 面π2.在平面π1 中,连接 AP,BQ,CR,则由 面面平行的性质可知 AP∥BQ∥CR.由 AB= BC,得 PQ=QR;同理在平面π2 中,就可证 明 DE=EF.综上,DE=EF.

平行线等分线段定理 课件

平行线等分线段定理   课件
求证:AG=2DE.
图 1-1-4
【思路探究】
【自主解答】 在△AEC 中, ∵AF=FC,GF∥EC, ∴AG=GE. ∵CE∥FB, ∴∠GBD=∠ECD,∠BGD=∠E. 又 BD=DC, ∴△BDG≌△CDE. 故 DG=DE,即 GE=2DE, 因此 AG=2DE.
1.如果已知条件中出现中点,往往运用三角形的中位 线定理来解决问题.
图 1-1-3
【证明】 ∵▱ABCD 的对角线 AC、BD 交于点 O, ∴OA=OC,OB=OD. ∵AA′⊥a,OO′⊥a,CC′⊥a, ∴AA′∥OO′∥CC′. ∴O′A′=O′C′, 同理:O′D′=O′B′, ∴A′D′=B′C′.
如图 1-1-4,在△ABC 中,AD,BF 为中线, AD,BF 交于 G,CE∥FB 交 AD 的延长线于 E.
2.有梯形且存在线段中点时,常过该点作平行线,构 造平行线等分线段定理的推论 2 的基本图形,进而进行几何 证明或计算.
如图 1-1-7,在梯形 ABCD 中,AD∥BC,BC=2AD, E,F 分别是 AB,CD 的中点,EF 交 BD 于 G,交 AC 于 H. 求证:EG=GH=HF.
图 1-1-7
平行线等分线段定理
1.平行线等分线段定理 (1)文字语言:如果一组平行线在 一条直线 上截得的线 段相等,那么在 其他直线 上截得的线段也 相等 .
(2)图形语言
图 1-1-1 如图 1-1-1,l1∥l2∥l3,l 分别交 l1,l2,l3 于 A, B,C,l′分别交 l1,l2,l3 于 A1,B1,C1,若 AB=BC, 则 A1B1=B1C1 .
1.本题中由 AC⊥AB,DB⊥AB 知 AC∥DB,联想到作 OE⊥AB,再根据平行线等分线段定理证明点 E 是 AB 的中点.

(4)平行线分线段成比例

(4)平行线分线段成比例

G
4 如图,已知直线 a∥b∥c,直线 m、n 与 a、b、c 分别交于点 A、
C、E、B、D、F,AC=4,CE=6,BD=3,则 DF 等于( A.7 C.8 B.4.5 D.8.5
)
活动六:小结
平行线分线段成比例定理: 两条直线被一组平行线所截,所得的对应线段成比例
A B C D E F a b c C A (D ) B E F a b c
E F
b
b
c
C
F
c
活动四:用一用
例1 .已知: a∥b∥c 则:
AB BC AB DE
( DE ) ( EF )
BC AC
(AC )
( EF ) ( DF)
F
A B
D
E
a b
( BC) ( EF)
C c
( DF )
例2.教材第71页例题
M
A E
N
D
B
C
E E
M
F D
A
A
N
推论:
B B
C
平行于三角形一边的直线截其他两边 (或两边延长线),所得的对应线段成比例
复习引入
1.平行线等分线段定理
两条直线被一组平行线所截,如果在其中一条 直线上截得的线段相等,那么在另一条直线上截 得的线段也相等
推论1 经过梯形一腰的中点与底平行的 直线,必平分另一腰。
推论2
经过三角形一边的中点与另一 边平行的直线,必平分第三边。
A E
D

A F
? E C ?F ? B C
B
图1
符号语言:
∵在梯形ABCD,AD∥EF∥BC, AE=EB ∴DF=FC

平行线等分线段定理

平行线等分线段定理

l1
A
l2
B
l3
C
A1 B1 C1
平行线等分线段定理 如果一组平行线在一条直线
上截得的线段相等,那么在其他直线上截得的线段也相等
AD
A
E ?F
E ?F


B
图4
C
B
图5
C
推论1 经过梯形一腰的中点与底平行的 推论2 经过三角形一边的中点与另一
直线,必平分另一腰。
边平行的直线,必平分第三边。
符号语言:
1)已知:如图,梯形ABCD中,AD∥BC, ∠ABC=90。M是CD的中点
C
求证:AM=BM
M D
分析:过M点作ME∥AD交AB于点E 又∵在梯形ABCD中,MD=MC A ∴AE=EB
B E
易证ME是AB的垂直平分线
2)如图 ,已知AC AB,DB AB,O为CD中点,
求证:OA=AB
D
证明:过O做OE AB于E
A FH
GB
E
C
证明: 四边形ABCD是平行四边形
AD//BC AD=BC
DF=1/2AD
BE=1/2BC
四边形FDEB是平行四边形
BF//DE AF=DF
AH=HG 同理CG=HG
AH=HG=CG
练习题
辅助线点滴: 有线段中点时,常过 该点作平行线,构造 平行线等分线段定理 及推论的基本图形。
符号语言
∵在梯形ABCD,AD∥EF∥BC,AE=EB
∵△ABC中,EF∥BC,AE=EB
∴DF=FC
∴AF=FC
例题讲解:
已知:线段AB 求作:线段AB的五等分点。
作法:1)作射线AC。

初中数学—平行线等分线段定理

初中数学—平行线等分线段定理

求证: B1B2=B2B3. 证明: (1) 当 l//l 时 (如图), ∵l1//l2//l3,
l l
A1 B1
l1
∴ A1A2B2B1, A2A3B3B2
A2 B2
l2
都是平行四边形, ∴ A1A2=B1B2, A2A3=B2B3,
A3
B3
l3
又∵A1A2=A2A3, ∴B1B2=B2B3.
思想: 借助平行四
每两个相邻的小孔中心的距离相等, 如果只有圆规和
无刻度直尺, 应当怎样确定小孔的中心位置?
画法: (1) 连接 AB; (2) 在钢板上另作一射线
AC; (3) 在 AC 上取 AD=DE
=EF=FG;
B PQ R A DE F G C
(4) 连接 GB;
(5) 分别过点 D, E, F 作 GB 的平行线, 交 AB
通过证明
例 1. 如图, 要在一块钢板上的 A、B 两个小孔
间再钻三个小孔, 使这些小孔都在直线 AB 上, 并且
每两个相邻的小孔中心的距离相等, 如果只有圆规和
无刻度直尺, 应当怎样确定小孔的中心位置?
思路: 工具中直尺无刻度,
B
不便于度量 AB 的长度.
因为平行线可以等分线段, A
所以考虑过 A 作一条不与 AB 重合的射线 AC, 在 AC 上则可

A1 A2
又∴∵∠AB11AB22=CA1=2A∠3,B2B3C2; ③ A3
∴由B①1C②1=③B得2C△2. B1C①1B2≌△B2C2B3,
l3于C2.
l l 思想B1: l1
为平变行CC1非.2 B平B2 3行ll23
∴B1B2=B2B3.
结论: 如果一条直线被三条平行直线截得的线段相等, 那么这三条平行线截其他直线所得的线段也相等.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、平行线等分线段定理
如果一组平行线在一条直线上截得的线段相等,那么在任一条(与这组平行线相交的)直线上截得的线段也相等.
推论1:经过三角形一边的中点与另一边平行的直线必平分第三边. 推论2:经过梯形一腰的中点,且与底边平行的直线平分另一腰. 二、平行线分线段成比例定理
三条平行线截两条直线,所得的对应线段成比例.
推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例.
例1.已知:如图,四边形ABCD 是正方形,延长BC 到点E ,连结AE 交CD 于F ,
FG ∥AD 交DE 于G .
求证:FC =FG .
证明:在正方形ABCD 中,AB ∥CD , ∴CF AB =EF AE .∵FG ∥AD ,∴FG AD =EF AE . ∴
CF AB =FG
AD
.∵AB =AD ,∴CF =FG . 例2.如图,在△ABC 中,D 为AC 边上的中点,AE ∥BC ,ED 交 AB 于G ,交BC 延长线于F ,若BG ∶GA=3∶1,BC=10,则AE 的 长为_________.
解:∵AE ∥BC,∴△BGF ∽△AGE.∴BF ∶AE=BG ∶GA=3∶1. ∵D 为AC 中点,1AE AD
CF DC

== ∴AE=CF.∴BC ∶AE=2∶1.∵BC=10,∴AE=5.
三、相似三角形的判定及性质判定定理。

相关文档
最新文档