初等数论第二章:不定方程

合集下载

自考初等数论复习

自考初等数论复习

初等数论初等数论自学安排第一章:整数的可除性(6学时)自学18学时整除的定义、带余数除法 最大公因数和辗转相除法 整除的进一步性质和最小公倍数 素数、算术基本定理[x]和{x}的性质及其在数论中的应用习题要求3p :2,3 ; 8p :4 ;12p :1;17p :1,2,5;20p :1。

第二章:不定方程(4学时)自学12学时二元一次不定方程c by ax =+多元一次不定方程c x a x a x a n n =++Λ2211 勾股数 费尔马大定理。

习题要求29p :1,2,4;31p :2,3。

第三章:同余(4学时)自学12学时同余的定义、性质 剩余类和完全剩余系 欧拉函数、简化剩余系欧拉定理、费尔马小定理及在循环小数中的应用 习题要求43p :2,6;46p :1;49p :2,3;53p 1,2。

第四章:同余式(方程)(4学时)自学12学时同余方程概念 孙子定理高次同余方程的解数和解法 素数模的同余方程 威尔逊定理。

习题要求60p :1;64p :1,2;69p :1,2。

第五章:二次同余式和平方剩余(4学时)自学12学时二次同余式单素数的平方剩余与平方非剩余 勒让德符号 二次互反律 雅可比符号、素数模同余方程的解法习题要求78p :2; 81p :1,2,3;85p :1,2;89p :2;93p :1。

第六章:原根与指标(2学时)自学8学时指数的定义及基本性质 原根存在的条件 指标及n 次乘余 模2 及合数模指标组、 特征函数习题要求123p :3。

➢ 第一章 整除 一、主要内容筛法、[x]和{x}的性质、n !的标准分解式。

二、基本要求通过本章的学习,能了解引进整除概念的意义,熟练掌握整除 整除的定义以及它的基本性质,并能应用这些性质,了解解决整除问题的若干方法,熟练掌握本章中二个著名的定理:带余除法定理和算术基本定理。

认真体会求二个数的最大公因数的求法的理论依据,掌握素数的定义以及证明素数有无穷多个的方法。

初等数论第二章3

初等数论第二章3

初等数论
Number Theory
第二章 不定方程
• 本章所讨论的不定方程,是指整系 本章所讨论的不定方程, 数代数方程,并且限定它的解是整 数代数方程, 数。本章只讨论几类比较简单的不 定方程。 定方程。
第三节 几类特殊的不定方程
不定方程是一个内容丰富的课题, 不定方程是一个内容丰富的课题 , 许多不 定方程的解法有其特殊性。 定方程的解法有其特殊性 。 本节要介绍几类 这样的方程,以及几个有普遍性的方法。 这样的方程,以及几个有普遍性的方法。
第三节 几类特殊的不定方程
由此及式(8)与式 得到 由此及式 与式(9)得到 与式
x + y = 24 2 x − xy + y 2 = 67
解这两个联立方程组, 解这两个联立方程组,得到所求的解是
x1 = 7 x2 = 9 . 或 y2 = 7 y1 = 9
第三节 几类特殊的不定方程
一、因数分析法
任何非零整数的因数个数是有限的, 因此, 任何非零整数的因数个数是有限的 , 因此 , 可以对不定方程的解在有限范围内用枚举法 确定。 确定。
第三节 几类特殊的不定方程
求方程x 的整数解。 例1 求方程 2y + 2x2 − 3y − 7 = 0的整数解。 的整数解 解 原方程即 (x2 − 3)(y + 2) = 1。 。 因此
第三节 几类特殊的不定方程
综合以上,注意到 式对于x, , 的 综合以上,注意到(11)式对于 ,y,z的 式对于 对称性,得到方程的 个正整数解 对称性,得到方程的12个正整数解 (x, y, z) = (2, 4, 20),(2, 5, 10),(2, 20, 4), 20), 10), 4), (2, 10, 5), (4, 2, 20),(5, 2, 10), , , , (20, 2, 4), (10, 2, 5), (20, 4, 2), , , , (10, 5, 2), (4, 20, 2), (5, 10, 2)。 , , 。

初等数论二-夏子厚

初等数论二-夏子厚
注:这就是著名的弗罗贝尼乌斯 (Frobenius)问题。这时n=2的情况, 在19世纪,由西勒维斯特(Sylvester) 证明了这个定理。
如:5x+6y=C无非负整数解的最大整数C=?
第一节 二元一次不定方程
• 思考与练习2.1 • 1、解下列不定方程: (1)15x+25y=100 (2)306x-360y=630 • 2、把100分成两份,使一份可被7整除, • 一份可被11整除。 • 3、设a与b是正整数,(a, b) = 1,则任何大
,tZ,于是由x ,但区间的长度是
0,y 0 N ,故此区来自abab
间内的整数个数为[ N ]或[ N ] 1。 ab ab
第一节 二元一次不定方程
例4:证明:二元一次不定方程 ax by =N
(a, b) = 1,a>1,b>1,当N>ab a b
时有非负整数解,但是N= ab a b时则 不然。(不再给予证明)
于ab a b的整数n都可以表示成n = ax by的形式,其中x与y是非负整数,但是n = ab a b不能表示成这种形式。
第二节 多元一次不定方程
• 设a1, a2, , an是非零整数,N是整数,称 关于未知数x1, x2, , xn的方程

a1x1 a2x2 anxn = N (1)
第一节 二元一次不定方程

(3)
写出方程(1)的解
x y
x0 y0
b1t a1t
,t
Z

其中(a, b)c1
c,a1
a (a, b)
,b1
b (a, b)

• 例1:求7x+4y=100的一切整数解
• 解:因(7,4)=1,从而原方程有解。 其特解为x0 =0,y0 =25。

初等数论不定方程

初等数论不定方程

充分性:用数学归纳法 (n=2)时已证
假设对n-1时条件是充分的,令
d2 (a1, a2 ), (d2 , a3,an ) d | c
则方程 d2t2 a3x3 an xn c 有解,设解为
t2, , x3, xn, 又a1x1 a2 x2 d2t2,有解,
设为x1, , x2, ,这样 x1, , x2, xn, 就是方程的解。
但是自然数无穷递降是不可能的,于是产
生了矛盾,∴ 2 无理数。
几个特殊的不定方程的初等解法
(5)几类特殊的不定方程
§1 二元一次不定方程
定义:形如 ax by c
其中 ( a 0,b 0)a,b,c为整数的方程称为二元 一次不定方程。
例:2X+3Y=5
5U+6V=21
定理: ax by c 有解的充要条件是
(a,b)|c
证:设方程有解 x0 , y0则有 ax0 by0 c
令 25 4 y1 33

x1有 33 x1
4 y1

25
故y1

6 8x1
1 x1 4
,令1 x1 4

y2令x1
4y2
1
令y2 t, x1 1 4t 故
y 8 107 t, x 3 37t,t Z
§2 多元一次不定方程
2.1定义:形如 a1x1 a2 x2 an xn c(n 2)

(
z
2
y
,
z
2
y
)
1
因为设
(
z
2
y
,
z
2
y

初等数论不定方程的解法

初等数论不定方程的解法

初等数论不定方程的解法初等数论是数论中的一部分,主要研究整数之间的性质和关系。

在初等数论中,不定方程是一个非常重要的研究对象。

不定方程是指一个方程中包含的未知数不确定,需要求解这些未知数的取值以满足方程。

本文将介绍不定方程的一般解法,并通过具体例子进行演示。

首先,我们来介绍一下一元一次不定方程的解法。

一元一次不定方程的一般形式为ax + by = c,其中a、b、c为已知整数,x、y为未知整数。

解决这个方程的关键是找到一组x、y的取值,使得方程成立。

我们可以通过以下步骤来解决一元一次不定方程:1.首先,我们要判断方程是否有解。

我们知道,当且仅当c是a和b的最大公约数的倍数时,方程才有整数解。

我们可以使用欧几里得算法来求出a和b的最大公约数gcd(a,b),然后判断c是否是gcd(a,b)的倍数。

2.如果方程有解,我们需要求出一个特解。

我们可以使用扩展欧几里得算法来求解特解。

扩展欧几里得算法可以找到一组整数x0和y0,使得ax0 + by0 = gcd(a,b)。

我们可以将c除以gcd(a,b)得到c',然后将特解x0和y0乘以c'得到一个特解x1 = x0 * c',y1 = y0 * c'。

3.一旦我们找到了一个特解,我们可以通过以下形式来构造方程的通解:x = x1 + k * (b / gcd(a, b))y = y1 - k * (a / gcd(a, b))其中k为整数。

这样,我们就可以通过改变k的值来得到方程的所有整数解。

接下来,我们来介绍一下二次不定方程的解法。

二次不定方程的一般形式为ax^2 + bxy + cy^2 + dx + ey + f = 0,其中a、b、c、d、e、f为已知整数,x、y为未知数。

对于二次不定方程,我们可以通过一些特殊的方法来求解。

下面介绍两种常用的方法:1.利用配方法。

如果二次不定方程中的系数是已知整数,且可以对方程进行配方法,那么我们可以通过配方法来求解方程。

初等数论第二章1

初等数论第二章1

(1)
是n元一次不定方程。
若存在整数x10, x20, , xn0满足方程(1),则称 (x10, x20, , xn0)是方程(1)的解,或说x1 = x10, x2 = x20, ,xn = xn0是方程(1)的解。
第一节一次不定方程
定理1 方程(1)有解的充要条件是
(a1, a2, , an)b。
初等数论
Number Theory
第二章 不定方程
• 本章所讨论的不定方程,是指整系 数代数方程,并且限定它的解是整 数。本章只讨论几类比较简单的不 定方程。
第一节一次不定方程
定义1 设a1, a2, , an是非零整数,b是整数, 称关于未知数x1, x2, , xn的方程
a1x1 a2x2 anxn = b
7。
11
习题一
4. 甲班有学生7人,乙班有学生11人,现有100 支铅笔分给这两个班,要使甲班的学生分到 相同数量的铅笔,乙班学生也分到相同数量 的铅笔,问应怎样分法?
5. 证明:二元一次不定方程 ax by = n,a > 0, b > 0,(a, b) = 1的非负整数解的个数为
[ n ]或[ n ] 1。 ab ab
因此,若式(2)成立,则
( ) b b
b
d
y1 , d
y2 ,
, d
yn
就是方程(1)的解,充分性得证。证毕。
第一节一次不定方程
定理2 设a,b,c是整数,方程
ax by = c
(3)
若有解(x0, y0),则它的一切解具有
x x0 b1t
, tZ
(4)
y y0 a1t
的形式,其中
习题一
6. 设a与b是正整数,(a, b) = 1,证明:1, 2, , ab a b中恰有 (a 1)(b 1) 个整数可以表示

初等数论不定方程

初等数论不定方程

初等数论不定方程一、知识归纳:所谓不定方程,是指未知数的个数多于方程个数,且未知数受到某些(如要求是有理数、整数或正整数等等)的方程或方程组。

不定方程也称为丢番图方程,是数论的重要分支学科,也是历史上最活跃的数学领域之一。

不定方程的内容十分丰富,与代数数论、几何数论、集合数论等等都有较为密切的联系。

不定方程的重要性在数学竞赛中也得到了充分的体现,每年世界各地的数学竞赛吉,不定方程都占有一席之地;另外它也是培养学生思维能力的好材料,数学竞赛中的不定方程问题,不仅要求学生对初等数论的一般理论、方法有一定的了解,而且更需要讲究思想、方法与技巧,创造性的解决问题。

在本节我们来看一看不定方程的基础性的题目。

1.不定方程问题的常见类型:(1)求不定方程的解;(2)判定不定方程是否有解;(3)判定不定方程的解的个数(有限个还是无限个)。

2.解不定方程问题常用的解法:(1)代数恒等变形:如因式分解、配方、换元等;(2)不等式估算法:利用不等式等方法,确定出方程中某些变量的范围,进而求解;(3)同余法:对等式两边取特殊的模(如奇偶分析),缩小变量的范围或性质,得出不定方程的整数解或判定其无解;(4)构造法:构造出符合要求的特解,或构造一个求解的递推式,证明方程有无穷多解;(5)无穷递推法。

以下给出几个关于特殊方程的求解定理:(一)二元一次不定方程(组)定义1.形如(不同时为零)的方程称为二元一次不定方程。

定理1.方程有解的充要是;定理2.若,且为的一个解,则方程的一切解都可以表示成为任意整数)。

定理3.元一次不定方程,()有解的充要条件是.方法与技巧:1.解二元一次不定方程通常先判定方程有无解。

若有解,可先求一个特解,从而写出通解。

当不定方程系数不大时,有时可以通过观察法求得其解,即引入变量,逐渐减小系数,直到容易得其特解为止;2.解元一次不定方程时,可先顺次求出,……,.若,则方程无解;若|,则方程有解,作方程组:求出最后一个方程的一切解,然后把的每一个值代入倒数第二个方程,求出它的一切解,这样下去即可得方程的一切解。

初等数论§2不定方程

初等数论§2不定方程

(1)方程的一般解可以表示为 x x0 bt, y y0 at,t 0,1,2, 在a个单位长度内,y一定有整数解。 所以,一定存在某个 t Z ,使得
0 y y0 at a 1
对此t,代入原方程,得 x N b( y0 at)

N b(a 1)
(1)的解为
x

y

t
2v ,v Z.
v
(3)
(2)的解为
t z Biblioteka 1 3u 2u,
u Z. (4) x 1 3u 2v
把(4)代入(3),消去t,得

y

v
,u,v Z .
z 2 u
注:三元一次不定方程的整数解中含有2个参数.
再令u x 11z, 则方程可化为 7u 4z 1 又令 t 2u z, 则方程可化为 4t u 1 u 4t 1.
逐步往回代入,可得 z t 2u 2 7t;
x 23 81t; y 25 88t;t Z
2019/5/21
2019/5/21
16
2019/5/21
17
§2.2 多元一次不定方程 一、多元一次不定方程有解的判定
定理1 方程 a1 x1 a2 x2 an xn N , a1, ,an , N Z (1) 有整数解 (a1,a2 , ,an ) N . 证明:( ),记(a1,a2 , ,an ) d . 〔1〕有解 d a1 , ,d an d N .
2019/5/21
18
定理1 方程
a1 x1 a2 x2 an xn N , a1, ,an , N Z (1)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(观察) 要使x,y(即k)取整数,只需k取适当的值使(3k-5)能被7整数. 3 5k 通过观察与估算可知当k取2时, 1 由此得到 7 3 5k 3 5 2 x 30 2k 30 2 2 25 7 7 因此原方程的一个整数解为x=25,y=2.
( y0 y ) 是整数, 令这个整数为t1 , 代入上式,得 a x x0 bt1 , 即x x0 bt1 . 同时由 ( y0 y ) t1 , 得y y0 at1 . a
1、辗转相除法 对于ax+by=c,先利用辗转相除法得到 ax+by=1的一个解;再两边乘于c,得到ax+by=c的一个解; 最后运用定理(2.2)写出一切整数解.
§2.2 解二元一次不定方程
• 对于二元一次不定方程(2.1)整数解的研 究,最理想的结果是能像一元二次方程那 样,找出表示方程(2.1)所有整数解的公式. • 这个公式是能够找到的,但它是建立在方 程(2.1)的一个整数解(即所谓的特解)的 基础上的.因些如何找到方程(2.1)的一个 整数解就成为求出它一切整数解的关键.
)
(6)的解为:y 2 33t , x y x 3 37t (t 0, 1, 2,
)
从而原方程的解为:x 3 37t , y 2 x y 8 107t (t 0, 1, 2, )
或先求出原方程的一个特解,再给出一切整数解。
在(2)式两端同乘以c1得 asc1 btc1 (a, b)c1 c 令x0 =sc1 , y0 =tc1,即得 ax0 by0 c, 故(2. 1)式有一组整数解x0,y0 .
注:定理的证明过程实际给出求解方程(2.1)的方法:
(i )由辗转相除法等可求得 (1) n 1 Qn a (1) n Pnb rn (a, b), 取s (1) n 1 Qn , t (1) n Pn;
下面通过具体例子介绍一种判定方程是否有 解,及其求出其解的直接算法——整数分离法,用这个 方法求不定方程(2.1)的一个整数解的一般步骤是:
(1)变形:令系数绝对值较大的未知数为k(k表示整数)通过 对方程变形,用k表示的代数式来表示另一个未知数; (2)分离:把(1)中的k的代数式所包含的关于k整系数的 整式分离出来,使它成为关于k的一个一次式与一个分工 之和;
c (ii )再取sc1 s x0 , ( a, b)
c tc1 t y0; ( a, b)
c (iii )则x0 s , ( a, b)
c y0 t ( a, b)
就为方程组()的一组整数解。 1
推论1 如果(a,b)=1,那么 方程(2.1)有整数解.
推论2 如果c不能被a,b的最大公约数整除,那 么方程(2.1)无整数解. 例2.1 判断下列方程有无整数解. (1) 16x-37y=7 (2)3x+6y-12=0 (3)2x+6y-1=4
Hale Waihona Puke 对于高于二次的多元不定方程,人们知道得不多。 另一方面,不定方程与数学的其他分支如代数数论、 在有限群论 代数几何、组合数学等有着紧密的联系, 在有限群论和最优设计中也常常提出不定方程的问题, 这就使得不定方程这一古老的分支继续吸引着许多数
学家的注意,成为数论中重要的研究课题之一。
第一部分 二元一次不定方程
证:(必要条件)设x0 , y0 为(2. 1)的一组整数解,则 ax0 by0 c (a, b) a, (a, b) b, (a, b) ax0 by0 c,
(a, b) a,
(a, b) b,
(a, b) ax0 by0 c.
(充分条件)若(a, b) c, 设c c1 (a, b), c1 Z , 而对a, b Z , 且a 0,b 0,则存在s, t Z , 使得 as bt (a, b) (2)
例3、求111x 321y 75的一切整数解.
注:利用辗转相除法求(a,b)时,前提为a,b为正整数,
且a大于b, 因此求解此方程时可以考虑用变量替换。
解:令x y, y x, 原方程化为321x 111y 25 (321,111) 3 75, 方程(5)有解,且同解于方程 107x 37 y 25 (5)
建算经》中的百鸡问题标志中国对不定方程理论有了系 统研究。 秦九韶的大衍求一术将不定方程与同余理论联 系起来。 百鸡问题说:“鸡翁一,值钱五,鸡母一, 值钱三,鸡雏三,直钱一。百钱买百鸡,问鸡翁、母、 雏各几何?”。 这是一个三元不定方程组问题。 1969年,莫德尔较系统地总结了这方面的研究成果。 近年来,这个领域更有重要进展。 但从整体上来说,
第二章
不定方程
不定方程是指未知数个数多于方程个数,且对解有
一定限制(比如要求解为正整数等)的方程。 是数论中 最古老的分支之一。古希腊的丢番图早在公元3世纪就 开始研究不定方程, 因此常称不定方程为丢番图方程。 中国是研究不定方程最早的国家,公元初的五家共 井问题就是一个不定方程组问题,公元5世纪的《 张丘
例7、求方程5x+3y=52的全部正整数解
例 1、求7 x 4 y 100的一切整数解。
利用观察法求出7 x 4 y 1的一组特解( 1, 2); 再写出 方程的一切整数解
例2、求321x 111y 75的一切整数解.
解: (321,111) 3 75, 方程有解,且同解于方程 107x 37 y 25
其次还应证明,设x ,y 是(2. 1 )的任一解,则 一定可以找到一个整数t1 , 使得 x' =x0 +bt1,y' y0 at1成立.
因为x, y 与x0 , y0 都是(2.1)的解,代入(2.1)式得 ax by c ,ax0 by0 c 上面两式相减得 a ( x x0 ) b( y y0 ) 0, 由此得 x x0 b ( y0 y ) . 由于x x0 是整数, ( a , b ) 1 , 因此 a
例3、求107 x 37 y 25的一切整数解
解:
37 y 25 107 x
25 107 x 25 33x y 2 x 37 37
25 33x 令 y ,则33x+37 y 25 37
(6)
25 37 y 25 4 y 同理 x y 33 33
证:首先证明(2.3)是方程(2.1)的解.因为x0,y0 , a, b, t都是整数, 所以x0 bt , y0 at也是整数.把x x0 bt , y y0 at 代入(2.1)左边, 得到ax by a x0 bt b y0 at ax0 by0 c 从而x0 bt , y0 at是方程(2.1)的解.
研究不定方程一般需要要解决以下三个问题: ①判断何时有解。 ②有解时决定解的个数。 ③求出所有的解。 本节讨论能直接利用整除理论来判定是否有解,以及 有解时求出其全部解的最简单的不定方程——— 二元一次不定方程。
定理2.1
设二元一次不定方程 ax by c ( a, b) c (2.1)
(a, b Z , a, b不全为零)有整数解的充要条件是:
x 4 y 1
可以直接解出。 再依次反推上去,就得到原方程的通解。 为了减少运算次数,在用带余除法时,总取绝对值最小 余数。 下面我们来讨论当二元一次不定方程(1)可解时, 它的非负解和正解问题。 由通解公式知这可归结为去确 定参数t的值,使x,y均为非负或正。
我们可以根据题目要求, x x0 bt (1)求出通解 y y0 at
(2)解不等式组 x x0 bt 0 x x0 bt 0 或 y y0 at 0 y y0 at 0
(3)根据t的取值范围,求出t的相应整数值,得到 方程的非负整数(或正整数)解.
例2.6求不定方程3x+4y=23的非负整数解..
(6)
25 4 y 令 x , 33 1 x 则y=6 8 x 4
(7)
(8)
1 x 再令 y ,最后得到x 4 y 1 4 则x 1 4t , y t (t 0, 1, 2, )
则(7)的解为:x 1 4t , y 2 33t (t 0, 1, 2,
而方程107x 37 y 1的一解是: x (1) 2 9 9, y (1)3 26 26, 故原方程的一组整数解为:x 9 25, y 26 25,
则原方程的一切整数解为: x 9 25 37t , y 26 25 107t (t 0, 1, 2, )
(变形)
例2.5
求不定方程6x-17y=18的整数解.
先用整数分离法求出一个解 k 令y k , 则x 3 3k 6 取k 6得到x 20,因此方程的一个
整数解为x0 20, y0 6.
因此它的一切整数解为 x 20 17t (t为任意整数) y 6 6t
(8)的一个特解为x 1, y 0; 从而(7)的一个特解为x 1, y 2; 由此得到(6)的一个特解为x 3, y 2; 最后得到原方程的一个特解为x 3, y 8
注:这种解不定方程的算法实际上是对整个不定方程 用辗转相除法,依次化为等价的不定方程, 直至得到 这样的不定方程 一个变量的系数为正负1的方程为止。
通过观察得到x=1,y=5是原方程的一个整数 解.从而得到它的通解为
x 1 4t t为任意整数 y 5 3t
解不等式组
x 1 4t 0 得到 y 5 3t 0 1 5 t 因此t 可取0和1. 4 3 当t 0时, x 1, y 5 当t 1时, x 5, y 2
相关文档
最新文档