正余弦定理及面积公式1
正弦定理和余弦定理的所有公式

正弦定理和余弦定理的所有公式正弦定理和余弦定理的公式有哪些?在数学学习中,正弦定理和余弦定理的应用是很频繁的,正余弦定理指定是正弦定理、余弦定理,是揭示三角形边角关系的重要定理,下面是小编为大家整理的正弦定理和余弦定理的所有公式,供参考。
数学不好的人五大特征高中数学最无耻的得分技巧高考考场上数学拿高分的技巧如何判断函数的对称性与周期性1正弦定理、三角形面积公式正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,并且都等于该三角形外接圆的直径,即:a/sinA=b/sinB=c/sinC=2R.面积公式:S△=1/2bcsinA=1/2absinC=1/2acsinB.1.正弦定理的变形及应用变形:(1)a=2RsinA,b=2RsinB,c=2RsinC(2)sinA∶sinB∶sinC=a∶b∶c(3)sinA=a/2R,sinB=b/2R,sinC=c/2R.应用(1)利用正弦定理和三角形内角和定理,可以解决以下两类解斜三角形问题:a.已知两角和任一边,求其他两边和一角.b.已知两边和其中一边的对角,求另一边的对角.一般地,已知两边和其中一边的对角解三角形,有两解、一解.(2)正弦定理,可以用来判断三角形的形状.其主要功能是实现三角形中边角关系转化.例如:在判断三角形形状时,经常把a、b、c分别用2RsinA、2RsinB、2RsinC来代替.2.余弦定理在△ABC中,有a2=b2+c2-2bccosA;b2=c2+a2-2accosB;c2=a2+b2-2abcosC;变形公式:cosA=b2+c2-a2/2bc,cosB=c2+a2-b2/2ac,cosC=a2+b2-c2/2ab在三角形中,我们把三条边(a、b、c)和三个内角(A、B、C)称为六个基本元素,只要已知其中的三个元素(至少一个是边),便。
高一春季课程第9讲 正弦、余弦定理及面积公式(教师版)

正弦、余弦定理及其面积公式一、要点归纳1、余弦定理:2222222222cos 2cos 2cos a b c bc Ab c a ca B c a b ab C=+-=+-=+-;2、正弦定理:2sin sin sin a b cR A B C===,其中R 为ABC ∆的外接圆半径; 3、面积公式:111sin sin sin 222S ab C ac B bc A ===.,4abcS R R=为外接圆半径; 22sin sin sin S R A B C =()12S a b c r =++r 为ABC ∆的内切圆半径,p 为半周长.二、典型例题例1、在ABC ∆中,015,10,60a b A ===,则cos B =() A.C.答案:D解析:依题意得00060B <<,由正弦定理得sin sin a bA B=,得sin sin b A B B a ===D 例2、在ABC ∆中,内角,,A B C 的对边分别是,,a b c ,若22ab -=,sin C B =, 则A =( )0.30A 0.60B 0.120C 0.150D答案:A解析:由sinC B =可得c =,由余弦定理得222cos 2b c a A bc +-===于是030A =,故选A 例3、在ABC ∆中,已知04,30a b A ===,则sinB =____________.解析:由正弦定理易得结论sin B =.例4、已知ABC ∆的内角,A B 及对边,a b 满足11tan tan a b a b A B+=⋅+⋅,求内角C . 答案:2C π=解析:由11tan tan a b a b A B+=⋅+⋅及正弦定理得sin sin cos cos A B A B +=+, 即sin cos cos sin A A B B -=-,从而sin coscos sincos sinsin cos4444A AB B ππππ-=-,即sin sin 44A B ππ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭,又0A B π<+<,故44A B ππ-=-,2A B π+=,所以即2C π=.例5、在ABC ∆中,已知030,2,B AB AC ∠===求ABC ∆的面积.答案:解析:要求ABC S ∆,已知,AB AC 只需要求A ∠,根据已知条件:两边及一边的对角,用正弦定理可以先求出AB 的对角C ∠,使问题得到解决.由正弦定理,得sin sin AB B C AC ⋅==000150C <∠<,所以060C ∠=或0120C ∠=当60C ∠=时,0190,232ABC A S AB AC ∆∠==⋅=,当0120C ∠=时,130,i n 32ABC A S AB AC A ∆∠==⋅⋅=ABC S ∆=例6、在ABC ∆中,,,a b c 分别为内角,,A B C 的对边,且()()2sin 2sin 2sin a A b c B c b C =+++ (1)求A 的大小;(2)若sin sin 1B C +=,试判断ABC ∆的形状. 答案:0120,等腰钝角三角形解析:(1)由已知,根据正弦定理得()()2222a b c b c b c =+++,即222a b c bc =++ 由余弦定理得2222cos a b c bc A =+-故1cos 2A =-,又()0,A π∈,故0120A =(2)由(1)得222sin sin sin sin sin A B C B C =++,又sin sin 1B C +=,得1sin sin 2B C ==因为00090B <<,00090C <<,故B C =,所以ABC ∆是等腰的钝角三角形.例7、已知圆内接四边形ABCD 的边长分别为2,6,4AB BC CD DA ====,求四边形ABCD 的面积.答案:解析:解答本题有几点要弄清,(1)圆内接四边形的性质;(2)四边形的面积计算没有公式; 需要四边形进行分割或补形;(3)必须求三角形的一个角.解法一:分割.连接BD ,则()222222cos 2cos BD AD AB AD AB A CD CB CD CB A π=+-⋅=+-⋅- 即164242cos 1636246cos A A +-⨯⨯=++⨯⨯,解得1cos 2A =-所以sin sin A C ==,所以11sin sin 22ABCD S AB AD A CB CD C =⋅+⋅=解法二:补形,延长,CD BA 交于点E ,设,DE x AE y ==,由于EAD ECD ∆≈∆所以AD ED EACB EB EC ==, 即4624x yy x ==++,解得2832,55x y ==在EAD ∆中,根据余弦定理得11cos 14E =,从而sin E =所以11sin sin 22ABCD S EC EB E EA ED E ∆=⋅-⋅=点评:将多边形转化为三角形是解三角形的一重要手段.例8、如图,在ABC ∆中,已知045B =,D 是BC 边上的一点,10AD =,14AC =,6DC =,求AB 的长.答案:解析:在ADC ∆中,10,14,6AD AC DC ===,由余弦定理得222100361961221062AD DC AC cos ADC AD DC +-+-∠===-⋅⨯⨯,所以00120,60ADC ADB ∠=∠=,在ABD ∆中,0010,45,60AD B ADB ==∠=, 由正弦定理得sin sin AB ADADB B=∠,所以0010sin 10sin 60sin sin 45AD ADB AB B ⋅∠====例9、已知ABC ∆的三边,,a b c 满足,22222a b c c ++=,则边c 的对角C ∠的取值范围为___________________;答案:0,3π⎛⎤⎥⎝⎦解析:依题意,22222212cos 242a b a b a b C ab ab ++-+==≥BE所以C ∠的取值范围为0,3π⎛⎤⎥⎝⎦.例10、已知ABC ∆1,且sin sin A B C +=,(1)求边AB 的长; (2)若ABC ∆的面积为1sin 6C ,求角C 的度数.答案:060解析:(1)由题意及正弦定理,得1,AB BC AC BC AC +++, 两式相减,得1AB =;(2)()2222221cos 222AC BC AC BC AB AC BC AB C AC BC AC BC +-⋅-+-===⋅⋅,所以 060C =三、同步练习【基础】1、在ABC ∆中,A B >是sin sin A B >的( ) .A 充分不必要条件 B 必要不充分条件 C 充要条件 D 既不充分也不必要条件 答案:C解析:在ABC ∆中,2sin 2sin sin sin A B a b R A R B A B >⇔>⇔>⇔>,因此选C 2、已知关于x 的方程22cos cos 2sin 02Cx x A B -+=的两根之和等于两根之积的一半,则ABC ∆一定是( )A 直角三角形B 钝角三角形C 等腰三角形D 等边三角形答案:C解析:由题可得:211cos cos cos 2sin 222C CA B -=⋅⋅=,从而()2cos cos 1cos 1cos cos sin sin A B A B A B A B =++=+-()cos cos sin sin 1cos 1A B A B A B +=⋅-=,又因为A B ππ-<-<所以0A B -=所以ABC ∆一定是等腰三角形,故选C3、已知ABC ∆的三边长分别为,,a b c 且面积()22214ABC S b c a ∆=+-,则A 等于( ) 0.45A0.30B 0.120C 0.15D答案:A 解析:由()22211sin 42ABC S b c a bc A ∆=+-=得222sin cos 2b c a A A bc+-==所以045A =4、如图,在ABC ∆中,若21,3b c C π=∠=,则a =___________. 答案:解析:由余弦定理得,212121cos 33a a π+-⨯⨯⨯=,即220a a +-=, 解得1a =或2-(舍去)5、已知,,a b c 分别是ABC ∆的三个内角,,A B C所对的边,若1,a b ==,2A C B += 则sin C =___________ 答案:1解析:由2A C B +=及0180A B C ++=,得060B =,由正弦定理得1sin A = 得1sin 2A =,由a b <知060A B <=,所以030A =,0018090C A B =--= 所以0sin sin 901C ==6、在ABC ∆中,已知2,a b ==015C =,求A . 答案:解析:错解:由余弦定理得,22202cos1548228c a b ab =+-=+-⨯⨯=-所以c =sin 1sin 2a C A c == 而000180A <<,所以030A =或者0150A =辨析:由题意b a >,所以B A >,因此0150A =是不可能的,错因是没有认真审题,未利用隐含条件,在解题时要善于应用题中的条件,特别是隐含条件,全面细致的分析问题,避免错误发生.正解:同上c 1sin 2A =,因为b a > 所以B A >且000180A << 所以030A =7、在ABC ∆中,0045,60B C ∠=∠=,)21a =,求ABC ∆的面积S .答案:6+解析:因为()0018075A B C ∠=-+=所以由正弦定理得)21sin 4sin a Bb A===AB所以)11sin 214622ABC S ab C ∆==⨯⨯⨯=+⎝⎭8、如图,在ABC ∆中,已知a b 045B =,求,A C 及c . 答案:060A =或者0120075C =或者015解析:由正弦定理得:sin sin a B A b ===因为004590B =<,即b a <,所以060A =或0120当060A =时,075C =sin sin b C c B === 当0120A =时015C =sin sin b C c B === 【巩固】1、在ABC ∆中,角,,A B C 所对的边分别是,,a b c若2,sin cos a b B B =+=则角A 的大小为____________. 答案:030解析:由sin cos B B +12sin cos 2B B +=,即s i n 21B =,因为0B π<<,所以045B =又因为2a b ==,所以在ABC ∆2sin 45= 解得1sin 2A =,又a b <,所以045A B <=,所以030A = 2、ABC ∆中,3A π=,3BC =,则ABC ∆的周长为( )A3B π⎛⎫+⎪⎝⎭B6B π⎛⎫+⎪⎝⎭C 6sin 33B π⎛⎫++ ⎪⎝⎭D 6sin 36B π⎛⎫++ ⎪⎝⎭答案:D 解析:由正弦定理得: 32sin sin sin sin sin sin sin 33b c b c b cB C B C B B ππ++====+⎛⎫+- ⎪⎝⎭得2sin sin 6sin 36b c B B B ππ⎫⎛⎫⎛⎫+=+-=+⎪⎪ ⎪⎝⎭⎝⎭⎭, 故三角形的周长为:36sin 36b c B π⎛⎫++=++ ⎪⎝⎭所以选D3、在ABC ∆中,,,a b c 分别是角,,A B C 的对边,且274sin cos222B C A +-= (1)求A ∠的度数;(2)若3a b c =+=,求b 和c 的值.答案:(1)3π(2)1b =2c =或21b c == 解析:由题意得()2721cos 2cos 12B C A -+-+=⎡⎤⎣⎦ ()2721cos 2cos 12A A +-+=,所以1cos 2A = 所以3A π=()222221cos 322b c a A b c a bc bc +-==+-=将a 3b c +=代入得2bc =,由3b c +=及2bc =,得1,2b c ==或2,1b c ==4、在ABC ∆中,已知1tan ,3B C AC ==,求ABC ∆的面积.答案:解析:设,ABBC CA 的长分别为,,c a b由tan B 060B =,所以1sin 2B B ==又sin C =sin 8sin b C c B === 所以()sin sin sin sin cos sin 1132A B C B C B C=+=++故1sin 2ABC S bc A ∆==5、在不等边ABC ∆中,a 为最大边,如果222a b c <+,求A 的取值范围. 答案:解析:错解:因为222a b c <+,所以2220b c a +->,则222cos 02b c a A bc+-=>,由于cos A 在()0,π上为减函数,且cos 02π=所以2A π<,又因为A 为ABC ∆的内角,所以02A π<<原因:审题不细心,已知条件弱用,题设a 为最大边,而错解中把a 看做是三角形的普通一条边,造成解题错误.正解:由上面的解法可得:2A π<又因为a 为最大边,所以3A π>,因此得A 的取值范围是,32ππ⎛⎫⎪⎝⎭. 6、某海轮以30海里/小时的速度航行,在A 点测得海面上的油井P 在南偏东060,向北航行40分钟后到达B 点,测得油井P 在南偏东030,海轮改为北偏东060的航向再行驶80分钟到达C 点,求,P C 间的距离.答案:解析:如图,在ABP ∆中,40302060AB =⨯= 0030,120APB BAP ∠=∠=由正弦定理,得:sin sin AB BPBPA BAP =∠∠,即201=解得BP =在BPC ∆中,80304060BC =⨯= 由已知090PBC ∠=,所以PC =所以,PC 间的距离为. 【拔高】1、设,,a b c 分别是ABC ∆的三个内角,,A B C 所对的边,则“()2a b b c =+”是“2A B =”的_____________条件. 答案:充要条件;解析:先设2A B =,我们来看是不是能推出()2a b b c =+,由正弦定理, sin sin sin 2b a aB A B==所以cos 2a B b=另一方面,由余弦定理,我们有222cos 2a c b B ac+-=于是就有22222a c b aac b+-=化简整理即得()2a b b c =+这就是说,“2A B =”是“()2a b b c =+”的充分条件,另外,其必要性也是成立的,即APCB60030060“2A B =”是 “()2a b b c =+”的充要条件.2、在ABC ∆中,已知AB B ==,AC 边上的中线BD =sin A 的值.解析:设E 为BC 的中点,连接DE ,则DE AB =P 设BE x =,在B D E ∆中,利用余弦定理可得:2222cos BD BE ED BE ED BED =+-⋅∠28523x =++,解得71,3x x ==-(舍去)故2sin A =sin A =3、在ABC ∆中,,,a b c 分别是角,,A B C 所对的边,若2,,cos42B a C π===求三角形ABC 的面积. 答案:47解析:题中已知三角形中三个条件,故三角形是可解的,根据三角形面积公式知,只需要求出b 或者c 即可.因为cos2B =,由二倍角公式得:43cos ,sin 55B B ==所以()())sin sin sin sin cos A B C B C B B π=--=+=+=由sin sin a c A C =,得107c = 所以14sin 27ABC S ac B ∆==4、设ABC ∆的内角,,A B C 所对的边长分别为,,a b c 且3cos cos 5a Bb Ac -=,则tan cos A B =_______________. 答案:4解析:将3cos cos 5a B b A c -=两端同除以2R ,得3cos cos .2252a b cB A R R R-= 即()()333sin sin sin sin sin sin sin cos sin cos 555A B B A C A B A B B A -==+=+移项整理可得2sin cos 8sin cos A B B A =这样就得到tan cot 4A B =5、在锐角ABC ∆中,角,,A B C 所对的边长分别为,,a b c ,6cos b a C a b +=,则t a n t a n t a n t a n C CA B+=_________________.答案:4解析:先来明确解题方向,将tan tan tan tan C CA B+切割化弦, 222222222tan tan tan tan tan tan tan tan tan sin sin cos cos sin cos sin sin sin cos sin sin 22C C A BC A B A B C A B A B C A BCC A Bc c a b c a b c abab ++=⋅+=⋅==+-+-⋅ 另一方面,依题意得222226cos 62b a b a a b c C a b ab ab ++-+===⋅, 化简可得222223a b c +=,所以222212a b c c +-=从而就得到2222tan tan 24tan tan C C c A B a b c +==+- 6、观察:2020003sin 20cos 50sin 20cos504++=,2020003sin 15cos 45sin15cos454++=,据此写出一个与此二式规律相同的式子____________. 答案:()()22003sin sin 60sin sin 604θθθθ=+-+- 解析:构造外接圆半径为12的ABC ∆,使0,60A B θθ==-,所以0120C =,于是0sin ,sin ,sin sin120a A b B C C =====, 由余弦定理可得 2222cos c a b ab C =+-也就是222sin sin sin 2sin sin cos C A B A B C =+- 这样就得到()()22003sin sin 60sin sin 604θθθθ=+-+-, 写成“()()22003sin cos 30sin cos 304θθθθ++++=,当然也可以的.。
高中数学正弦余弦公式大全

正弦定理和余弦定理一:基础知识理解1 .正弦定理分类内容定理===2 R ( R 是△ ABC 外接圆的半径 )变形公式① a = 2 R sin _ A , b = 2 R sin _ B , c = 2 R sin _ C ,② sin A ∶ sin B ∶ sin C =a ∶ b ∶ c ,③ sin A =,sin B =,sin C =解决的问题① 已知两角和任一边,求其他两边和另一角,② 已知两边和其中一边的对角,求另一边的对角2 .余弦定理分类内容定理在△ ABC 中,有 a 2 = b 2 + c 2 -2 bc cos _ A ;b 2 = a 2 +c 2 -2 ac cos _ B ; c 2 = a 2 + b 2 -2 ab cos _ C 变形公式cos A =;cos B =;cos C =解决的问题① 已知三边,求各角;② 已知两边和它们的夹角,求第三边和其他两个角3 .三角形中常用的面积公式( 1 ) S = ah ( h 表示边 a 上的高 );( 2 ) S = bc sin A = ac sin B = ab sin C ;( 3 ) S = r ( a + b + c )( r 为三角形的内切圆半径 ).二:基础知识应用演练1 .( 2012·广东高考 ) 在△ ABC 中,若∠ A = 60°,∠ B = 45°, BC = 3 ,则 AC =()A . 4B . 22 .在△ ABC 中, a =, b = 1 , c = 2 ,则 A 等于 ()A . 30°B . 45°C . 60°D . 75°3 .( 教材习题改编 ) 在△ ABC 中,若 a = 18 , b = 24 , A = 45°,则此三角形有 ()A .无解B .两解C .一解D .解的个数不确定4 .( 2012·陕西高考 ) 在△ ABC 中,角 A , B , C 所对边的长分别为 a , b , c .若 a = 2 , B =, c = 2 ,则 b = ________.5 .△ ABC 中, B = 120°, AC = 7 , AB = 5 ,则△ ABC 的面积为________ .解析:1 选B 由正弦定理得:=,即=,所以 AC = × =2 .2 选C ∵ cos A ===,又∵ 0°< A <180°,∴ A =60°.3 选B ∵ =,∴ sin B = sin A = sin 45°,∴ sinB = .又∵ a < b ,∴ B 有两个.4 由余弦定理得 b 2 = a 2 + c 2 -2 ac cos B =4+12-2×2×2 × =4,所以 b =2.答案:25、解析:设 BC = x ,由余弦定理得49=25+ x 2 -10 x cos 120°,整理得 x 2+5 x -24=0,即 x =3.因此 S △ ABC = AB × BC ×sin B = ×3×5× = . 答案:小结: ( 1 ) 在三角形中,大角对大边,大边对大角;大角的正弦值也较大,正弦值较大的角也较大,即在△ ABC 中,A > B ⇔ a > b ⇔ sin A >sin B .( 2 ) 在△ ABC 中,已知 a 、 b 和 A 时,解的情况如下:A 为锐角 A 为钝角或直角图形关系式 a = b sin A b sin A < a < b a ≥ b a > b解的个数一解两解一解一解三、典型题型精讲(1)利用正弦、余弦定理解三角形[例1] ( 2012·浙江高考 ) 在△ ABC 中,内角 A , B , C 的对边分别为 a , b ,c ,且 b sin A = a cos B .( 1 ) 求角 B 的大小; ( 2 ) 若 b = 3 , sin C = 2sin A ,求 a , c 的值.解析: ( 1 ) 由 b sin A = a cos B 及正弦定理=,得sinB = cos B ,所以tan B =,所以 B = .(2) 由 sin C =2sin A 及=,得 c = 2 a . 由 b =3 及余弦定理 b 2 = a 2 + c 2 -2 ac cos B ,得 9= a 2 + c 2 - ac . 所以 a =, c =2 .思考一下:在本例 ( 2 ) 的条件下,试求角 A 的大小.方法小结:1 .应熟练掌握正、余弦定理及其变形.解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷.2 .已知两角和一边,该三角形是确定的,其解是唯一的;已知两边和一边的对角,该三角形具有不唯一性,通常根据三角函数值的有界性和大边对大角定理进行判断.试题变式演练 1 .△ ABC 的三个内角 A , B , C 所对的边分别为 a , b , c , a sin A sin B + b cos 2 A = a .( 1 ) 求;( 2 ) 若 c 2 = b 2 + a 2 ,求 B .解: ( 1 ) 由正弦定理得,sin 2 A sin B +sin B cos 2 A = sin A ,即 sin B ( sin 2 A +cos 2 A ) = sin A .故 sin B = sin A ,所以= .( 2 ) 由余弦定理和 c 2 = b 2 + a 2 ,得 cos B = .由 (1) 知 b 2 = 2 a 2 ,故 c 2 =(2+ ) a 2 . 可得 cos 2 B =,又 cos B >0,故 cos B =,所以 B =45°.(2)利用正弦、余弦定理判定三角形的形状[例2] 在△ ABC 中 a , b , c 分别为内角 A , B , C 的对边,且2 a sin A =( 2 b + c ) sin B +( 2 c + b ) sin C .( 1 ) 求 A 的大小;( 2 ) 若sin B + sin C = 1 ,试判断△ ABC 的形状.[ 解析 ] ( 1 ) 由已知,根据正弦定理得 2 a 2 = ( 2 b + c ) · b + ( 2 c + b ) c ,即a 2 = b 2 + c 2 + bc .由余弦定理得 a 2 = b 2 + c 2 -2 bc cos A ,故 cos A =-,∵ 0< A <180°,∴ A =120°.(2) 由 (1) 得 sin 2 A =sin 2 B +sin 2 C +sin B sin C =又 sin B +sin C =1,解得 sin B =sin C = .∵ 0°< B <60°,0°< C <60°,故 B = C ,∴△ ABC 是等腰的钝角三角形.方法小结:依据已知条件中的边角关系判断三角形的形状时,主要有如下两种方法:( 1 ) 利用正、余弦定理把已知条件转化为边边关系,通过因式分解、配方等得出边的相应关系,从而判断三角形的形状;( 2 ) 利用正、余弦定理把已知条件转化为内角的三角函数间的关系,通过三角函数恒等变形,得出内角的关系,从而判断出三角形的形状,此时要注意应用 A + B + C =π这个结论.[注意] 在上述两种方法的等式变形中,一般两边不要约去公因式,应移项提取公因式,以免漏解.试题变式演练 ( 2012·安徽名校模拟 ) 已知△ ABC 的三个内角 A , B , C 所对的边分别为 a , b , c ,向量 m =( 4 ,- 1 ), n =,且m · n = .( 1 ) 求角 A 的大小;( 2 ) 若 b + c = 2 a = 2 ,试判断△ ABC 的形状.解:( 1 ) ∵ m = ( 4,-1 ) , n =,∴ m · n =4cos 2 -cos 2 A =4·- ( 2cos 2 A -1 ) =-2cos 2 A +2cos A +3.又∵ m · n =,∴ -2cos 2 A +2cos A +3=,解得 cos A =. ∵ 0< A < π ,∴ A = .(2) 在△ ABC 中, a 2 = b 2 + c 2 -2 bc cos A ,且 a =,∴ ( ) 2 =b 2 +c 2 -2 bc ·= b 2 + c 2 -bc . ①又∵ b + c =2 ,∴ b =2 - c ,代入① 式整理得 c 2 - 2 c +3=0,解得 c =,∴ b =,于是 a = b = c =,即△ ABC 为等边三角形.(3)与三角形面积有关的问题[例3] ( 2012·新课标全国卷 ) 已知 a , b , c 分别为△ ABC 三个内角 A , B ,C 的对边, a cos C + a sin C - b - c = 0.( 1 ) 求 A ;( 2 ) 若 a = 2 ,△ ABC 的面积为,求 b , c .[ 解 ] ( 1 ) 由 a cos C + a sin C - b - c =0及正弦定理得sin A cos C + sin A sin C -sin B -sin C =0.因为 B =π- A - C ,所以 sin A sin C -cos A sin C -sin C =0.由于sin C ≠0,所以sin = . 又0< A <π,故 A = .( 2 ) △ ABC 的面积 S = bc sin A =,故 bc =4.而 a 2 = b 2 + c 2 -2 bc cos A ,故 b 2 + c 2 =8. 解得 b = c =2.方法小结:1 .正弦定理和余弦定理并不是孤立的.解题时要根据具体题目合理选用,有时还需要交替使用.2 .在解决三角形问题中,面积公式 S = ab sin C = bc sin A = ac sin B 最常用,因为公式中既有边也有角,容易和正弦定理、余弦定理结合应用.试题变式演练 ( 2012·江西重点中学联考 ) 在△ ABC 中, cos 2 A = cos 2 A -cos A .( 1 ) 求角 A 的大小;( 2 ) 若 a = 3 , sin B = 2sin C ,求 S △ ABC .解: ( 1 ) 由已知得 ( 2cos 2 A -1 ) =cos 2 A -cos A ,则cos A = .因为0< A <π,所以 A = .( 2 ) 由=,可得==2,即 b = 2 c .所以cos A ===,解得 c =, b =2 ,所以 S △ ABC = bc sin A = ×2 × × = .课后强化与提高练习(基础篇-必会题)1 .在△ ABC 中, a 、 b 分别是角 A 、 B 所对的边,条件“ a < b ”是使“cosA >cosB ”成立的 ()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件2 .( 2012·泉州模拟 ) 在△ ABC 中, a , b , c 分别是角 A , B , C 所对的边.若 A =, b = 1 ,△ ABC 的面积为,则 a 的值为 ()A . 1B . 23 .( 2013·“江南十校”联考 ) 在△ ABC 中,角 A , B , C 所对的边分别为 a , b ,c ,已知 a = 2 , c = 2 , 1 +=,则 C =()A . 30°B . 45°C . 45°或135°D . 60°4 .( 2012·陕西高考 ) 在△ ABC 中,角 A , B , C 所对边的长分别为 a , b , c ,若 a 2 + b 2 = 2 c 2 ,则cos C 的最小值为 ()D .-5 .( 2012·上海高考 ) 在△ ABC 中,若sin 2 A + sin 2 B <sin 2 C ,则△ ABC 的形状是 ()A .锐角三角形B .直角三角形C .钝角三角形D .不能确定6 .在△ ABC 中,角 A 、 B 、 C 所对的边分别是 a 、 b 、 c .若 b = 2 a sin B ,则角 A 的大小为________ .解析:由正弦定理得sin B =2sin A sin B ,∵ sin B ≠0,7 .在△ ABC 中,若 a = 3 , b =, A =,则 C 的大小为________ .8 .( 2012·北京西城期末 ) 在△ ABC 中,三个内角 A , B , C 的对边分别为 a ,b ,c .若 b = 2 , B =, sin C =,则 c = ________ ; a = ________.9 .( 2012·北京高考 ) 在△ ABC 中,若 a = 2 , b + c = 7 , cos B =-,则 b = ________.10 .△ ABC 的内角 A , B , C 的对边分别为 a , b , c , a sin A + c sin C -a sin C =b sin B .( 1 ) 求 B ;( 2 ) 若 A = 75°, b = 2 ,求 a , c .11 .( 2013·北京朝阳统考 ) 在锐角三角形 ABC 中, a , b , c 分别为内角 A , B ,C 所对的边,且满足 a - 2 b sin A = 0.( 1 ) 求角 B 的大小;( 2 ) 若 a + c = 5 ,且 a > c , b =,求 ·的值.12 .( 2012·山东高考 ) 在△ ABC 中,内角 A , B , C 所对的边分别为 a , b ,c ,已知sin B ( tan A + tan C )= tan A tan C .( 1 ) 求证: a , b , c 成等比数列;( 2 ) 若 a = 1 , c = 2 ,求△ ABC 的面积 S .课后强化与提高练习(提高篇-选做题)1 .( 2012·湖北高考 ) 设△ ABC 的内角 A , B , C 所对的边分别为 a , b , c .若三边的长为连续的三个正整数,且 A > B > C , 3 b = 20 a cos A ,则sin A ∶ sin B ∶ sin C 为 ()A .4 ∶ 3 ∶ 2B .5 ∶ 6 ∶ 7C .5 ∶ 4 ∶ 3D .6 ∶ 5 ∶ 42 .( 2012·长春调研 ) 在△ ABC 中,角 A , B , C 的对边分别为 a , b , c ,已知4sin 2 - cos 2 C =,且 a + b = 5 , c =,则△ ABC 的面积为________ .3 .在△ ABC 中,角 A , B , C 的对边分别为 a , b , c ,且满足 ( 2 b - c ) cos A - a cos C = 0.( 1 ) 求角 A 的大小;( 2 ) 若 a =, S △ ABC =,试判断△ ABC 的形状,并说明理由.选做题1 .已知 a , b , c 分别是△ ABC 的三个内角 A , B , C 所对的边.若 a = 1 ,b =, A + C = 2 B ,则sin C = ________.2 .在△ ABC 中, a = 2 b cos C ,则这个三角形一定是 ()A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰或直角三角形3 .在△ ABC 中,角 A , B , C 所对的边分别为 a , b , c ,已知cos 2 C =- .( 1 ) 求sin C 的值;( 2 ) 当 a = 2 , 2sin A = sin C 时,求 b 及 c 的长.4 .设△ ABC 的内角 A , B , C 所对的边长分别为 a , b , c ,且cos B =, b = 2.( 1 ) 当 A = 30°时,求 a 的值;( 2 ) 当△ ABC 的面积为3时,求 a + c 的值.课后强化与提高练习(基础篇-必会题)解析1 解析:选C a < b ⇔ A < B ⇔ cos A >cos B .2 解析:选D 由已知得 bc sin A = ×1× c ×sin =,解得 c = 2 ,则由余弦定理可得 a 2 = 4 + 1 - 2×2×1×cos =3 ⇒ a = .3 解析:选B 由1 +=和正弦定理得 cos A sin B +sin A cos B=2sin C cos A ,即 sin C =2sin C cos A ,所以 cos A =,则 A =60°. 由正弦定理得=,则 sin C =,又 c < a ,则 C <60°,故 C =45°.4 解析:选 C 由余弦定理得 a 2 + b 2 - c 2 =2 ab cos C ,又 c 2 =( a 2 + b 2 ),得 2 ab cos C = ( a 2 + b 2 ),即 cos C =≥ = .6 解析:选 C 由正弦定理得 a 2 + b 2 < c 2 ,所以 cos C =<0,所以 C 是钝角,故△ ABC 是钝角三角形.∴ sin A =,∴ A =30°或 A =150°. 答案:30°或 150°7 解析:由正弦定理可知 sin B ===,所以 B =或 ( 舍去 ),所以 C =π - A - B =π --= . 答案:8 解析:根据正弦定理得=,则 c ==2 ,再由余弦定理得 b 2 = a 2 + c 2 -2 ac cos B ,即 a 2 - 4 a -12=0,( a +2)( a -6)=0,解得 a =6 或 a =-2( 舍去 ).答案:2 69 解析:根据余弦定理代入 b 2 =4+(7- b ) 2 -2×2×(7- b )× ,解得b =4. 答案:410 解:(1) 由正弦定理得 a 2 + c 2 - ac = b 2 . 由余弦定理得 b 2 = a 2 +c 2 -2 ac cos B .故cos B =,因此 B =45°.(2)sin A =sin(30°+45°)=sin 30°cos 45°+cos 30°sin 45°= .故 a = b × ==1+, c = b × =2×= .1 1 解:(1) 因为 a -2 b sin A =0,所以 sin A -2sin B sin A =0,因为sin A ≠0,所以 sin B = . 又 B 为锐角,所以 B = .( 2 ) 由 ( 1 ) 可知, B = .因为 b = .根据余弦定理,得7= a 2 + c 2 -2 ac cos ,整理,得 ( a + c ) 2 - 3 ac =7.由已知 a + c =5,得 ac =6.又 a > c ,故 a =3, c =2.于是cos A ===,所以 ·=| |·| |cos A = cb cos A=2× × =1.12 解: ( 1 ) 证明:在△ ABC 中,由于sin B ( tan A +tan C ) =tan A tan C ,所以sin B = ·,因此sin B ( sin A cos C +cos A sin C ) =sin A sin C ,所以 sin B sin( A + C )=sin A sin C .又 A + B + C =π ,所以 sin( A + C )=sin B ,因此 sin 2 B =sin A sin C .由正弦定理得 b 2 = ac ,即 a , b , c 成等比数列.( 2 ) 因为 a =1, c =2,所以 b =,由余弦定理得cos B ===,因为0< B <π,所以sin B ==,故△ ABC 的面积 S = ac sin B = ×1×2× = .课后强化与提高练习(提高篇-选做题)解析1 解析:选D 由题意可得 a > b > c ,且为连续正整数,设 c = n , b = n +1,a = n +2 ( n >1,且n ∈ N * ) ,则由余弦定理可得3 ( n +1 ) =20 ( n +2 ) ·,化简得7 n 2 -13 n -60=0,n ∈ N * ,解得 n =4,由正弦定理可得sin A ∶ sin B ∶ sin C =a ∶ b ∶ c =6 ∶ 5 ∶ 4.2 解析:因为4sin 2 -cos 2 C =,所以2[1-cos( A + B )]-2cos 2 C +1=,2+2cos C -2cos 2 C +1=,cos 2 C -cos C +=0,解得cos C = .根据余弦定理有cos C ==,ab = a 2 + b 2 -7 , 3 ab = a 2 + b 2 +2 ab -7= ( a + b ) 2 -7=25-7=18,ab =6,所以△ ABC 的面积 S △ ABC = ab sin C = ×6× =.答案:3 解: ( 1 ) 法一:由 ( 2 b - c ) cos A - a cos C =0及正弦定理,得(2sin B -sin C )cos A -sin A cos C =0,∴ 2sin B cos A -sin( A + C )=0,sin B (2cos A -1)=0. ∵ 0< B < π ,∴ sin B ≠0,∴ cos A =. ∵ 0< A < π ,∴ A= .法二:由 (2 b - c )cos A - a cos C =0,及余弦定理,得 (2 b - c )·- a ·=0,整理,得 b 2 + c 2 - a 2 = bc ,∴ cos A ==,∵ 0<A < π ,∴ A = .(2) ∵ S △ ABC = bc sin A =,即 bc sin =,∴ bc =3,①∵ a 2 = b 2 + c 2 -2 bc cos A , a =, A =,∴ b 2 + c 2 =6,② 由①② 得 b = c =,∴△ ABC 为等边三角形.选择题解析1 解析:在△ ABC 中, A + C =2 B ,∴ B =60°. 又∵ sin A ==,∴ A =30°或 150°( 舍 ),∴ C =90°,∴ sin C =1.答案:12 解析:选A 法一: ( 化边为角 ) 由正弦定理知:sin A =2sin B cos C ,又 A =π -( B + C ),∴ sin A =sin( B + C )=2sin B cos C .∴ sin B cos C +cos B sin C =2sin B cos C ,∴ sin B cos C -cos B sin C =0,∴ sin ( B - C ) =0.又∵ B 、 C 为三角形内角,∴ B = C .法二: ( 化角为边 ) 由余弦定理知cos C =,∴ a =2 b ·=,∴ a 2 = a 2 + b 2 - c 2 ,∴ b 2 = c 2 ,∴ b = c .3 解: ( 1 ) 因为cos 2 C =1-2sin 2 C =-,且0< C <π,所以sin C = .( 2 ) 当 a =2 , 2sin A =sin C 时,由正弦定理=,得 c =4.由cos 2 C =2cos 2 C -1=-,及0< C <π得cos C =± .由余弦定理 c 2 = a 2 + b 2 -2 ab cos C ,得 b 2 ± b -12=0,解得 b =或2 ,所以或4 解: ( 1 ) 因为cos B =,所以sin B = .由正弦定理=,可得=,所以 a = .( 2 ) 因为△ ABC 的面积 S = ac ·sin B ,sin B =,所以 ac =3, ac =10.由余弦定理得 b 2 = a 2 + c 2 -2 ac cos B ,得4= a 2 + c 2 - ac = a 2 + c 2 -16,即 a 2 + c 2 =20.所以 ( a + c ) 2 - 2 ac =20, ( a + c ) 2 =40.所以 a + c =2 .。
余弦定理公式大全-高中余弦定理公式大全

∵b2=ac,∠A=60°,
∴ =sin60°= .
解法二:在△ABC中,
由面积公式得 bcsinA= acsinB.
∵b2=ac,∠A=60°,∴bcsinA=b2sinB.
∴ =sinA= .
评述:解三角形时,找三边一角之间的关系常用余弦定理,找两边两角之间的关系常用正弦定理.
(2)设AB=3,求AB边上的高.
剖析:有两角的和与差联想到两角和与差的正弦公式,结合图形,以(1)为铺垫,解决(2).
(1)证明:∵sin(A+B)= ,sin(A-B)= ,
∴
=2.
∴tanA=2tanB.
(2)解: <A+B<π,∴sin(A+B)= .
∴tan(A+B)=- ,
即 =- .将tanA=2tanB代入上式整理得2tan2B-4tanB-1=0,解得tanB= (负值舍去).得tanB= ,∴tanA=2tanB=2+ .
设AB边上的高为CD,则AB=AD+DB= + = .由AB=3得CD=2+ ,所以AB边上的高为2+ .
评述:本题主要考查三角函数概念,两角和与差的公式以及应用,分析和计算能力.
10.在△ABC中,sinA= ,判断这个三角形的形状.
分析:判断一个三角形的形状,可由三个内角的关系确定,亦可由三边的关系确定.采用后一种方法解答本题,就必须“化角为边”.
6.在锐角△ABC中,边长a=1,b=2,则边长c的取值范围是_______.
练习简答:1-4.BBCB;1.在△ABC中,A>30° 0<sinA<1sinA> ;sinA> 30°<A<150° A>30°答案:B
正余弦定理、三角形的一些公式

正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即sin A sin B sinC 2R (R为外接圆的半径)变形有: a 2Rsin A b 2Rs inB c 2Rs inC三角形的面积公式:SABC s"A島sin Bb2Rs"C 2R1 1absinC acsin B2 21bcsin A2余弦定理:三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍。
即变形有:cosA22bccosA b■ 2 2 2b c a2bccosB2accosB2 2 ■ 2a c b2aca2b22abcosC2 ■ 2 2 a b c cosC -2ab判断三角形的形状:2 a2 a2 a b2b2b22 c2 c2 , 2c ,bABC为钝角三角形ABC为直角角三角形2a2 2c ,c a2b2,ABC为锐角三角形三角形中有:ABC中 (1) sin(A⑵若A、B)B、si nCC成等差数列,cos(A两角和差的正余弦公式及两角和差正切公式sin sin cos cos sin cos( cos cos sin sin tantan tan二倍角公式:半角公式: sin 2tan 2tan tan2sin cos2 tan1 tan2aB) cosC ta n(A B)a、b、c成等比数列,则该三角ta nC形为正三角形sincostancos2 cos21 2si n222cos字〈正员磅所在的象限炖件(正负涉在刚沁)sin coscos costan tancos sinsin sin1 tan tansin 2现货原油R6008mxehUmG。
余弦定理公式大全

正弦、余弦定理 解斜三角形建构知识结构1.三角形基本公式:(1)内角和定理:A+B+C=180°,sin(A+B)=sinC, cos(A+B)= -cosC,cos2C =sin 2B A +, sin 2C =cos 2B A + (2)面积公式:S=21absinC=21bcsinA=21casinBS= pr =))()((c p b p a p p --- (其中p=2cb a ++, r 为内切圆半径)(3)射影定理:a = b cos C + c cos B ;b = a cos C + c cos A ;c = a cos B + b cos A 2.正弦定理:2sin sin sin a b cR A B C===外 证明:由三角形面积111sin sin sin 222S ab C bc A ac B ===得sin sin sin a b c A B C==画出三角形的外接圆及直径易得:2sin sin sin a b cR A B C===3.余弦定理:a 2=b 2+c 2-2bccosA , 222cos 2b c aA bc+-=;证明:如图ΔABC 中,sin ,cos ,cos CH b A AH b A BH c b A ===-22222222sin (cos )2cos a CH BH b A c b A b c bc A=+=+-=+-当A 、B 是钝角时,类似可证。
正弦、余弦定理可用向量方法证明。
要掌握正弦定理、余弦定理及其变形,结合三角公式,能解有关三角形中的问题. 4.利用正弦定理,可以解决以下两类问题:(1)已知两角和任一边,求其他两边和一角; (2)已知两边和其中一边的对角,求另一边的对角;有三种情况:bsinA<a<b 时有两解;a=bsinA 或a=b 时有 解;a<bsinA 时无解。
5.利用余弦定理,可以解决以下两类问题:(1)已知三边,求三角;(2)已知两边和它们的夹角,求第三边和其他两角。
微考点:正余弦定理在平面几何中的应用
微考点:正余弦定理在平面几何中的应用【必备知识】1.正弦定理:如图所示,在ABC ∆中,A asin =B b sin =Cc sin =R 2(其中R 为ABC ∆外接圆半径). 2.余弦定理:222a b c =+-2cos bc A ;222b c a =+-2cos ca B ;222c a b =+-2cos ab C .222cos 2b c a A bc +-=;222cos 2c a b B ca +-=;222cos 2a b c C ab+-=.3.面积公式:111sin sin sin 222ABC S ab C bc A ca B ∆===.4.余弦定理的正弦形式:将2sin a R A =,2sin B R B =,2sin c R C =代入余弦定理,得①222sin sin sin A B C =+-2sin sin cos B C A ; ②222sin sin sin B A C =+-2sin sin cos A C B ;③222sin sin sin C A B =+-2sin sin cos A B C .【考题示例】技巧一:几何量转化到同一个三角形中利用正余弦定理 【例1】(1)【2016年全国卷Ⅲ】在ABC △中,π4B ,BC 边上的高等于13BC ,则sin A ( ) A .310B .1010C .55D .31010(2)如图,在ABC ∆中,点D 在BC 边上,BD 的垂直平分线过点A ,且满足2CD AB =,25cos 5CAD ∠=,则ADC ∠的大小为______.【思维导图】(1)【在ACD ∆中用AD 表示CD →用AD 表示结合勾股定理表示AC →在ABC ∆中利用正弦定理求sin A ;(2)由条件确定出,CD AD 间的比例关系→利用同角三角函数关系求得sin CAD ∠→在ACD ∆中,利用正弦定理求得ADC ∠.【解析】(1)设BC 边上的高线为AD ,则3,2BC AD DC AD ==,所以225AC AD DC AD =+.由正弦定理,知sin sin AC BCB A =,53sin 22AD AD A =,解得310sin 10A =,故选D .(2)∵BD 的垂直平分线过点A ,∴AB AD =,则22CD AD ==,∴2CDAD=ACD ∆中,()0,CAD ∠π∈,25cos 5CAD ∠=,∴5sin 5CAD ∠=.在ACD ∆中,由正弦定理,sin sin CDDCA A C DD A =∠∠得,∴sin 10sin 10AD DCA DCA CD ∠∠==.∵DCA CAD ∠<∠,∴DCA ∠为锐角,∴310cos 10DCA ∠=,则()2cos cos 2ADC ACD CAD ∠=-∠+∠=-,∴34ADC π∠=.【方法提炼】此类题型主要是将所求几何量与已知的几何量集中某个三角形中,如果这些几何量比较散时,则须通过利用相关的知识和方法将上述几何量转移到同一个三角形中,然后选择正弦定理或余弦定理进行计算.【变式训练】1.如图,在ABC ∆中,点D 在AC 边上,且3AD DC =,7AB =,3ADB π∠=,6C π∠=,则DC 的值为______.1.【解析】由题意,知366DBC ADB C πππ∠=∠-∠=-=,故DBC C ∠=∠,DB DC =.设DC x =,则DB x =,3DA x =.在ADB ∆中,由余弦定理2222cos AB DA DB DA DB ADB =+-⋅⋅∠,即()2221732372x x x x x =+-⋅⋅⋅=,解得1x =,1DC =. 2.如图,在ABC ∆中,D 是AB 边上的点,且满足3AD BD =,2AD AC BD BC +=+=,2CD =,则cos A =( )A .13 B 2 C .14D .02.D 【解析】设,BD x =则3AD x =,23,2AC x BC x =-=-,易知cos cos ADC BDC ∠=-∠,由余弦定理可得222292232222322x x x x xx+--+--=⨯⨯⨯⨯,解得13x =,故1,1AD AC ==,222cos 02AD AC CD A AD AC+-∴==⨯⨯,故选D . 3.如图,在直角ABC ∆中,90ACB ∠=︒,6AC =,4BC =,P 是ABC ∆内的一点,满足PB PC ⊥,PB PC =,则PA =______.3.25【解析】由PB PC ⊥,PB PC =,知PBC ∆为等腰直角三角形,则由4BC =,得4PCB π∠=,2PC =.又90ACB ∠=︒,∴4PCA π∠=,于是在PAC ∆中,由余弦定理得2222cos 20PA AC PC AC PC PCA =-⋅∠=+,∴52PA =.技巧二:从一个三角形到另一个三角形先后利用正余弦定理【例2】【2018年全国新课标I 卷】在平面四边形ABCD 中,90ADC ∠=︒,45A ∠=︒,2AB =,5BD =.(1)求cos ADB ∠;(2)若22DC =,求BC .【思路导图】(1)在ABD ∆根据正弦定理直接求得sin ABD ∠→利用同角三角函数基本关系求cos ADB ∠;(2)根据(1)的结论,利用角互余求得cos BDC ∠→在BCD ∆中利用余弦定理求BC . 【解析】(1)在ABD ∆中,由正弦定理得sin sin BD ABA ADB=∠∠. 由题设知,52sin 45sin ADB=︒∠,所以2sin 5ADB ∠=. 由题设知,90ADB ∠<︒,所以23cos 5ADB ∠=. (2)由题设及(1)知,2cos sin 5BDC ADB ∠=∠=. 在BCD ∆中,由余弦定理得22222cos 2582522255BC BD DC BD DC BDC =+-⋅∠=+-⨯⨯⨯=,所以5BC =.【方法提炼】此类题型根据已知平面图形中的几何量与所求量的分布规律,不可能在同一个三角形中求得所求量时,考虑从已知几何量比较集中的三角形开始,首先求得相关几何量后,再转移到另一个涉及到所求几何量的三角形中进行求解.【变式训练】1.如图,在ABC ∆中,内角,,A B C 的对边分别为,,a b c ,已知24c b ==,2cos c C b =,,AD AE 分别是BAC ∠的中线与角平分线,则AD =______.1.【解析】因为24c b ==,所以1cos 24b Cc ==.在ABC ∆中由余弦定理得22224161cos 244a b c a C ab a +-+-===,所以4a =,即4BC =,∴在ACD ∆中,2CD =,2AC =,又余弦定理,得2222cos 6AD AC CD AC CD ACD =+-⋅⋅∠=,所以6AD =.2.如图,在ABC ∆中,点D 在边BC 上,4sin 5ACB ∠=,72AC =,2cos 10ADB ∠=-,若ABD∆的面积为7,则AB =______.2.37【解析】在ADC ∆中由正弦定理,得()sin sin sin sin sin sin AC C AC ACB AC ACBAD ADC ADB ADBπ⋅∠⋅∠⋅∠===∠-∠∠=222cos ADB ∠=,∴72sin ADB ∠=,于是由1sin 72ABD S AD BD ADB ∆=⋅∠=,解得5BD =.在ADB ∆中,由余弦定理得222cos 37AB AD BD AD BD ADB +-⋅⋅∠=3.在ABC ∆中, 6AB =,3B π=,D 是BC 边上一点,且36AD =23CD =AC 的长为______.3.102【解析】在ABC ∆中由正弦定理得sin sin AB ADADB B=∠∠,∴2sin ADB ∠=,又∵()0,ADB π∠∈,∴344ADB ππ∠=或.∵AD AB >,∴B ADB ∠>∠,∴4ADB π∠=,∴34ADC π∠=,于是在ACD ∆中,由余弦定理可知2222cos 102AC AD CD AD CD ADC =+-⋅∠=,∴102AC =技巧三:在两个三角形中同时利用正余弦定理【例3】如图,四边形ABCD 中,ABD ∆、BCD ∆分别是以AD BD 和为底的等腰三角形,其中1AD =,4BC =,ADB CDB ∠=∠,则AC =_________.【思维导图】设BD x =→分别在ABD ∆与BCD ∆中同时利用余弦定理用x 分别表示出ADB ∠,CDB ∠的余弦值→利用这两个角的关系建立方程进行求解.【解析】设BD x =,则AB x =.在ABD ∆中,由余弦定理得22211cos 22x x ADB x x +-∠==.在BCD ∆中,由余弦定理得 22244cos 248x xCDB x +-∠==⋅⋅.∵ADB CDB ∠=∠,∴cos cos ADB CDB ∠=∠,即128xx =,解得2x =,即2BD =. 【方法提炼】此类题型通常是平面图形中已知几何量比较均衡分布在两个三角形中,同时所求几何题通常是这两个三角形的公共边或公共角,解答时通常是在两个三角形中利用正弦定理或余弦定理,建立方程进行求解.【变式训练】1.如图,已知ABC ∆中,2A π=,角A B C 、、所对的边分别为a b c 、、,点D 在边BC 上, 1AD =,且2,2BD DC BAD DAC =∠=∠,则sin sin BC=__________.1.3【解析】在ABC ∆中,由,22A BAD DAC π=∠=∠,可得,36BAD DAC ππ∠=∠=.设DC x =,则2BD x =,在DAC ∆中,由正弦定理得sin sin AD CDC DAC=∠,所以sin 1sin 2AD DAC C CD x ⋅∠==;在DAB ∆中,由正弦定理得sin sin AD BDB DAB=∠,所以sin 3sin 4AD DAB B BD x ⋅∠==,故3sin 341sin 22B x C x==.2.如图,在四边形ACBD 中,1cos 7CAD ∠=-,且ABC ∆为正三角形,4CD =,3BD =,求ABD ∆周长为______.2.273+【解析】因为1cos 7CAD ∠=-,所以43sin 7CAD ∠=,所以cos BAD ∠cos 3CAD π⎛⎫=∠- ⎪⎝⎭cos cos sin sin 33CAD CAD ππ=∠+∠1114=.设AB AC BC x ===,AD y =,在ACD ∆和ABD ∆中由余弦定理得2222222 2AC AD AC ADcos CAD CD AB AD AB ADcos BAD BD+-⋅∠=+-⋅∠=⎧⎨⎩,代入得222221671137x y xy x y xy ⎧++=⎪⎪⎨⎪+-=⎪⎩,解得7 7x y ⎧=⎪⎨=⎪⎩或7 7x y ⎧=-⎪⎨=-⎪⎩(舍),即7AB AD ==,故ABD ∆周长为273+.【巩固练习】1.如图,ABC ∆是等边三角形,点D 在边BC 的延长线上,且2,7BC CD AD ==,则sin BAD ∠的值为______.1.321【解析】因为ABC ∆是等边三角形,且2BC CD =,所以2,120AC CD ACD =∠=︒.在ACD ∆中,由余弦定理得2222cos AD AC CD AC CD ACD=+-⋅∠,所以22744cos120CD CD CD CD =+-⋅︒,解得1CD =,∴33BD CD ==.在ABC ∆中,由正弦定理,得sin sin BD ADBAD B =∠∠,所以sin 3321sin 3147BD B BAD AD ∠∠===.2.如图,在ABC ∆中,线段AB 上的点D 满足33AB AD AC ==,3CB CD =,则sin sin2AB=__________.2.97【解析】设AC x CD y ==,,则33AB x BC y ==,,∴在ACD ∆中,由余弦定理,得222222992*2*cos 3*x x y x x y x x x A x+-+-==,化简得2232x y =,sin22sin cos sin sin B B BA A=222992**32*3*x x x y y x x +-==2228927x y y +=8317*27239+=,故sin 9sin27A B =.3.在ABC ∆中,30B ∠=︒,5AC =,D 是AB 边上一点,2CD =,ACD ∆的面积为2,ACD ∠为锐角,则BC =__________.3.【解析】由题意,利用面积公式得152sin 22ACDSACD =∠=,解得sin 5ACD ∠=,∴ 5os c ACD ∠=,由余弦定理得到5AD =,由正弦定理,254sin sin 5A A =⇒=.又因为sin sin BC ACA B=,sin 85sin AC A BC B ==. 4.如图,ACD ∆是等边三角形,ABC ∆是等腰直角三角形,90ACB ∠=︒,BD 交AC 于,2E AB =,则AE =______. 4.62【解析】因为9060150BCD ∠=︒+︒=︒,CB AC CD ==,所以15CBE ∠=︒,所以()62cos cos 4530CBE +∠=︒-︒=.在ABE∆中,2AB =,由正弦定理()()2sin 4515sin 9015AE =︒-︒︒+︒,故122sin30262cos15624AE ⨯︒===︒+5.如图,在ABC ∆中,内角,,A B C 对应的边为,,a b c ,60A =︒,D 是边BC 的中点,记sin sin ABD m BAD ∠=∠,则当m 取得最大值时,tan ACD ∠的值等于______.5.3【解析】在ABC ∆中,由余弦定理,得222222cos60a b c bc b c bc bc =+-︒=+-≥.又D 是边BC的中点,∴()12AD AB AC =+,所以()22214AD b c bc =++,则在ABD ∆中,由正弦定理,得2sin sin AD ADABD t BAD BD BC ∠===∠,所以2222222223AD b c bc bc a t BC a a ⎛⎫+++===≤ ⎪ ⎪⎝⎭,当且仅当b c =时取等号,此时,ABC ∆为正三角形,所以当t 取最大值时,tan 3ACD ∠=. 6.如图,在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,()sin 2sin A A B =+,且57sin 16B =.若D 是BC 边上的一点,3cos 4ADB ∠=,则BD DC的值为______..6.【解析】(1)因为()sin 2sin 2sin A A B C =+=,所以由正弦定理得2a c =,又因为3cos 4ADB ∠=,所以7sin ADB ∠=ABD ∆中,由正弦定理得sin sin AD AB B ADB =∠,所以54AD c =.又由由余弦定理得2225532444c c c BD BD ⎛⎫=+-⨯⨯⨯ ⎪⎝⎭,所以32BD c =或38c .因为D 是BC 边上的一点,且由图知32BD c =,因为2a c =,所以12CD c =,所以3BDDC=. 7.在梯形ABCD 中,AB CD ,2CD =,120ADC ∠=︒,57cos CAD ∠=. (1)求AC 的长;(2)求梯形ABCD 的高.7.【解析】(1)在ACD 中,∵57cos CAD ∠=,∴21sin CAD ∠=由正弦定理得sin sin AC CDADC CAD=∠∠,即32sin 227sin 2114CD ADC AC CAD ⨯∠===∠. (2)在ACD ∆中,由余弦定理得:2222cos120AC AD CD AD CD =+⋅⋅⋅︒, 整理得22240AD AD +-=解得4AD =.过点D 作DE AB ⊥于E ,则DE 为梯形ABCD 的高. ∵ABCD ,120ADC ∠=︒,∴60BAD ∠=︒.在直角ADE 中,sin6023DE AD =⋅︒=,即梯形ABCD 的高为23. 8.如图所示,在ABC ∆中,M 是AC 的中点,,23C AM π∠==.(1)若4A π∠=,求AB ;(2)若7BM ABC =∆,求的面积S .8.【解析】(1)由题意得,在中,由正弦定理得,.(2)在中,由余弦定理得,,解得3BC =或1BC =-(舍去)。
正弦定理和余弦定理
正弦定理和余弦定理1.正弦定理和余弦定理定理正弦定理余弦定理内容a sin A =b sin B =c sin C =2R (R 为△ABC 外接圆半径)a 2=b 2+c 2-2bc cos A ; b 2=c 2+a 2-2ac cos B ; c 2=a 2+b 2-2ab cos C 常见变形a =2R sin A ,b =2R sin B ,c =2R sin C ; sin A =a 2R ,sin B =b 2R ,sin C =c2R;a ∶b ∶c =sin A ∶sin B ∶sin C ; a +b +c sin A +sin B +sin C =asin Acos A =b 2+c 2-a 22bc ;cos B =a 2+c 2-b 22ac ;cos C =a 2+b 2-c 22ab2.三角形中常用的面积公式 (1)S =12ah (h 表示边a 上的高);(2)S =12bc sin A =12ac sin B =12ab sin C ;(3)S =12r (a +b +c )(r 为三角形的内切圆半径).3.三角形解的判断A 为锐角A 为钝角或直角 图形关系式 a =b sin A b sin A <a <b a ≥b a >b 解的个数 一解两解一解一解| 微 点 提 醒 |1.三角形中的三角函数关系 (1)sin(A +B )=sin C ; (2)cos(A +B )=-cos C ; (3)sin A +B 2=cos C 2;(4)cos A +B 2=sin C 2.2.三角形中的射影定理 在△ABC 中,a =b cos C +c cos B ; b =a cos C +c cos A ;c =b cos A +a cos B .3.利用正、余弦定理解三角形时,要注意三角形内角和定理对角的范围的限制.‖易错辨析‖判断下列结论是否正确(请在括号中打”√”或“×”)(1)在△ABC 中,已知a ,b 和角B ,能用正弦定理求角A ;已知a ,b 和角C ,能用余弦定理求边c .(√)(2)在三角形中,已知两角和一边或已知两边和一角都能解三角形.(√) (3)在△ABC 中,sin A >sin B 的充分不必要条件是A >B .(×)(4)在△ABC 中,“a 2+b 2<c 2”是“△ABC 为钝角三角形”的充分不必要条件.(√) (5)在△ABC 的角A ,B ,C ,边长a ,b ,c 中,已知任意三个可求其他三个.(×)‖自主测评‖1.(教材改编题)在△ABC 中,已知a =5,b =7,c =8,则A +C =( ) A .90° B .120° C .135°D .150°解析:选B cos B =a 2+c 2-b 22ac =25+64-492×5×8=12.所以B =60°,所以A +C =120°.2.(教材改编题)在非钝角△ABC 中,2b sin A =3a ,则角B 为( ) A.π6 B.π4 C.π3D.π2解析:选C 由正弦定理得b sin A =a sin B , 所以2a sin B =3a ,即sin B =32,又B 为非钝角,所以B =π3,故选C. 3.在△ABC 中,若a =18,b =24,A =45°,则此三角形( ) A .无解 B .有两解C .有一解D .解的个数不确定解析:选B 因为a sin A =b sin B,所以sin B =b a ·sin A =2418×sin45°=223.又因为a <b ,所以B 有两解.4.(教材改编题)已知△ABC 的三边之比为3∶5∶7,则最大角为( ) A.2π3 B.3π4C.5π6D.7π12解析:选A 由三边之比为a ∶b ∶c =3∶5∶7,可设a =3k ,b =5k ,c =7k (k >0),由余弦定理得cos C =a 2+b 2-c 22ab =(3k 2)+(5k )2-(7k )22×3k ×5k=-12,又0<C <π,所以C =2π3.5.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,cos2A =sin A ,bc =2,则△ABC 的面积为________.解析:由cos2A =sin A ,得1-2sin 2A =sin A ,解得sin A =12(负值舍去),由bc =2,可得△ABC的面积S =12bc sin A =12×2×12=12.答案:12………………考点一 利用正、余弦定理解三角形……|多维探究型|……………|多角探明|角度一 求三角形的边长【例1】 (2018届贵阳模拟)在△ABC 中,内角A ,B ,C 的对边a ,b ,c 成公差为2的等差数列,C =120°. (1)求边长a ;(2)(一题多解)求AB 边上的高CD 的长. [解] (1)由题意得b =a +2,c =a +4,由余弦定理cos C =a 2+b 2-c 22ab 得cos120°=a 2+(a +2)2-(a +4)22a (a +2),即a 2-a -6=0,∴a =3或a =-2(舍去),∴a =3.(2)解法一:由(1)知a =3,b =5,c =7,由三角形的面积公式得12ab sin ∠ACB =12c ×CD ,∴CD =ab sin ∠ACBc=3×5×327=15314,即AB 边上的高CD =15314. 解法二:由(1)知a =3,b =5,c =7,由正弦定理得3sin A =7sin ∠ACB =7sin120°,即sin A =3314,在Rt △ACD 中,CD =AC sin A =5×3314=15314,即AB 边上的高CD =15314.角度二 求三角形的角或角的三角函数值【例2】 (1)在△ABC 中,B =π4,BC 边上的高等于13BC ,则cos A =( )A.31010B.1010C .-1010D .-31010(2)(2018届河北“五个一名校联盟”模拟)已知a ,b ,c 分别是△ABC 的内角A ,B ,C 所对的边,且c =2,C =π3,若sin C +sin(B -A )=2sin2A ,则A =________.[解析] (1)设△ABC 中角A ,B ,C 的对边分别是a ,b ,c ,由题意可得13a =c sin π4=22c ,则a =322c .在△ABC 中,由余弦定理可得b 2=a 2+c 2-2ac =92c 2+c 2-3c 2=52c 2,则b =102c .由余弦定理,可得cos A =b 2+c 2-a 22bc=52c 2+c 2-92c 22×102c ×c=-1010,故选C.(2)在△ABC 中,由sin C +sin(B -A )=2sin2A 可得sin(A +B )+sin(B -A )=2sin2A ,即sin A cos B +cos A sin B +cos A sin B -sin A cos B =4sin A cos A ,∴cos A sin B =2sin A cos A ,即cos A (sin B -2sin A )=0,即cos A =0或sin B =2sin A , ①当cos A =0时,A =π2;②当sin B =2sin A 时,根据正弦定理得b =2a ,由余弦定理c 2=b 2+a 2-2ab cos C ,结合c =2,C =π3,得a 2+b 2-ab =4,∴a =233,b =433,∴b 2=a 2+c 2,∴B =π2,∴A =π6.综上可得,A =π2或π6.[答案] (1)C (2)π2或π6『名师点津』………………………………………………|品名师指点迷津|应用正弦、余弦定理的解题技巧(1)求边:利用公式a =b sin A sin B ,b =a sin B sin A ,c =a sin Csin A或其他相应变形公式求解.(2)求角:先求出正弦值,再求角,即利用公式sin A =a sin B b ,sin B =b sin A a ,sin C =c sin Aa 或其他相应变形公式求解.(3)已知两边和夹角或已知三边可利用余弦定理求解.(4)灵活利用式子的特点转化;如出现a 2+b 2-c 2=λab 形式用余弦定理,等式两边是关于边或角的正弦的齐次式用正弦定理.|变式训练|1.(2018届福建莆田联考)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若a sin B cos C +c sin B cos A =12b ,且a >b ,则B =( )A.π6B.π3C.2π3D.5π6解析:选A ∵a sin B cos C +c sin B cos A =12b ,∴根据正弦定理可得sin A sin B cos C +sin C sin B cos A=12sin B ,即sin B (sin A cos C +sin C cos A )=12sin B .∵sin B ≠0,∴sin(A +C )=12,即sin B =12.∵a >b ,∴A >B ,即B 为锐角,∴B =π6,故选A.2.(2019届黄冈模拟)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c . (1)若23cos 2A +cos2A =0,且△ABC 为锐角三角形,a =7,c =6,求b 的值; (2)若a =3,A =π3,求b +c 的取值范围.解:(1)∵23cos 2A +cos2A =23cos 2A +2cos 2A -1=0, ∴cos 2A =125,又A 为锐角,∴cos A =15,a 2=b 2+c 2-2bc cos A ,即b 2-125b -13=0, 得b =5(负值舍去),∴b =5.(2)解法一:由正弦定理可得b +c =2(sin B +sin C )=2⎣⎡⎦⎤sin B +sin ⎝⎛⎭⎫2π3-B =23sin ⎝⎛⎭⎫B +π6, 又0<B <2π3,∴π6<B +π6<5π6,∴12<sin ⎝⎛⎭⎫B +π6≤1,∴b +c ∈(3,23]. 解法二:由余弦定理a 2=b 2+c 2-2bc cos A 可得b 2+c 2-3=bc , ∴(b +c )2-3=3bc ≤34(b +c )2,当且仅当b =c 时取等号,∴b +c ≤23,又由两边之和大于第三边可得b +c >3, ∴b +c ∈ (3,23].………………考点二 判断三角形的形状…………|重点保分型|……………|研透典例|【典例】 (一题多解)在△ABC 中,若a 2+b 2-c 2=ab ,且2cos A sin B =sin C ,试判断△ABC 的形状.[解] 解法一:利用边的关系来判断 由正弦定理得sin C sin B =cb,由2cos A sin B =sin C ,有cos A =sin C 2sin B =c2b .又由余弦定理得cos A =b 2+c 2-a 22bc ,所以c 2b =b 2+c 2-a 22bc,即c 2=b 2+c 2-a 2,所以a 2=b 2,所以a =b . 又因为a 2+b 2-c 2=ab .所以2b 2-c 2=b 2,所以b 2=c 2, 所以b =c ,所以a =b =c . 所以△ABC 为等边三角形. 解法二:利用角的关系来判断 因为A +B +C =180°, 所以sin C =sin(A +B ), 又因为2cos A sin B =sin C ,所以2cos A sin B =sin A cos B +cos A sin B , 所以sin(A -B )=0.又因为A 与B 均为△ABC 的内角,所以A =B , 又由a 2+b 2-c 2=ab ,由余弦定理,得cos C =a 2+b 2-c 22ab =ab 2ab =12,又0°<C <180°, 所以C =60°,所以△ABC 为等边三角形.『名师点津』………………………………………………|品名师指点迷津|判定三角形形状的两种常用途径[提醒]“角化边”后要注意用因式分解、配方等方法得出边的相应关系;“边化角”后要注意用三角恒等变换公式、三角形内角和定理及诱导公式推出角的关系.|变式训练|在△ABC 中,若(a 2+b 2)sin(A -B )=(a 2-b 2)sin(A +B ),则△ABC 的形状是( ) A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰三角形或直角三角形 解析:选D 因为(a 2+b 2)sin(A -B )=(a 2-b 2)sin(A +B ),所以b 2[sin(A +B )+sin(A -B )]=a 2[sin(A +B )-sin(A -B )], 所以2sin A cos B ·b 2=2cos A sin B ·a 2, 即a 2cos A sin B =b 2sin A cos B .解法一:由正弦定理知a =2R sin A ,b =2R sin B , 所以sin 2A cos A sin B =sin 2B sin A cos B , 又sin A ·sin B ≠0,所以sin A cos A =sin B cos B ,所以sin2A =sin2B . 在△ABC 中,0<2A <2π,0<2B <2π,所以2A =2B 或2A =π-2B .所以A =B 或A +B =π2.所以△ABC 为等腰三角形或直角三角形,故选D. 解法二:由正弦定理、余弦定理得: a 2bb 2+c 2-a 22bc =b 2a a 2+c 2-b 22ac, 所以a 2(b 2+c 2-a 2)=b 2(a 2+c 2-b 2),所以(a 2-b 2)(a 2+b 2-c 2)=0, 所以a 2-b 2=0或a 2+b 2-c 2=0, 即a =b 或a 2+b 2=c 2.所以△ABC 为等腰三角形或直角三角形.故选D.………………考点三 三角形面积的计算………………|多维探究型|……………|多角探明|角度一 求三角形的面积【例1】 (2018届武汉调研)在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,且2b cos C =2a +c . (1)求B ;(2)若b =2,a +c =5,求△ABC 的面积. [解] (1)由正弦定理,知2sin B cos C =2sin A +sin C , 由A +B +C =π,得2sin B cos C =2sin(B +C )+sin C , 化简,得2sin B cos C =2(sin B cos C +cos B sin C )+sin C , 即2cos B sin C +sin C =0. 因为sin C ≠0,所以cos B =-12.因为0<B <π,所以B =2π3.(2)由余弦正理b 2=a 2+c 2-2ac cos B ,可知b 2=(a +c )2-2ac -2ac cos B , 因为b =2,a +c =5,所以22=(5)2-2ac -2ac cos 2π3,得ac =1.所以S △ABC =12ac sin B =12×1×32=34.角度二 已知三角形的面积解三角形【例2】 (2018届沈阳教学质量监测(一))在△ABC 中,已知内角A ,B ,C 的对边分别是a ,b ,c ,且2c cos B =2a +b . (1)求C ;(2)若a +b =6,△ABC 的面积为23,求c . [解] (1)由正弦定理得2sin C cos B =2sin A +sin B , 又sin A =sin(B +C ),∴2sin C cos B =2sin(B +C )+sin B ,∴2sin C cos B =2sin B cos C +2cos B sin C +sin B , ∴2sin B cos C +sin B =0, ∵sin B ≠0,∴cos C =-12.又C ∈(0,π),∴C =2π3.(2)∵S △ABC =12ab sin C =23,∴ab =8,由余弦定理,得c 2=a 2+b 2-2ab cos C =a 2+ab +b 2=(a +b )2-ab =28, ∴c =27.角度三 求有关三角形面积或周长的最值(范围)问题【例3】 (2018届沈阳市教学质量检测(一)) 已知△ABC 的三个内角A ,B ,C 的对边分别为a ,b ,c ,面积为S ,且满足4S =a 2-(b -c )2,b +c =8,则S 的最大值为________. [解析] 由题意得:4×12bc sin A =a 2-b 2-c 2+2bc ,又a 2=b 2+c 2-2bc cos A ,代入上式得:2bc sin A =-2bc cos A +2bc ,即sin A +cos A =1,2sin ⎝⎛⎭⎫A +π4=1,又0<A <π,所以π4<A +π4<5π4,所以A +π4=3π4,所以A =π2,S =12bc sin A =12bc ,又b +c =8≥2bc ,当且仅当b =c 时取“=”,所以bc ≤16,所以S 的最大值为8. [答案] 8『名师点津』………………………………………………|品名师指点迷津|与三角形面积有关问题的解题策略(1)求三角形的面积.对于面积公式S =12ab sin C =12ac sin B =12bc sin A ,一般是已知哪一个角就使用含哪个角的公式.(2)已知三角形的面积解三角形.与面积有关的问题,一般要利用正弦定理或余弦定理进行边和角的互化.(3)求有关三角形面积或周长的最值(范围)问题.一般转化为一个角的一个三角函数,利用三角函数的有界性求解,或利用余弦定理转化为边的关系,再应用基本不等式求解.|变式训练|1.(2018年全国卷Ⅲ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若△ABC 的面积为a 2+b 2-c 24,则C =( )A.π2B.π3C.π4D.π6解析:选C 根据题意及三角形的面积公式知12ab sin C =a 2+b 2-c 24,所以sin C =a 2+b 2-c 22ab =cos C ,所以在△ABC 中,C =π4.2.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知△ABC 的面积为a 23sin A .(1)求sin B sin C ;(2)若6cos B cos C =1,a =3,求△ABC 的周长. 解:(1)由题设得12ac sin B =a 23sin A ,即12c sin B =a3sin A .由正弦定理得12sin C sin B =sin A3sin A .故sin B sin C =23.(2)由题设及(1)得cos B cos C -sin B sin C =-12,即cos(B +C )=-12.所以B +C =2π3,故A =π3.由题设得12bc sin A =a 23sin A,即bc =8.由余弦定理得b 2+c 2-bc =9,即(b +c )2-3bc =9,得b +c =33. 故△ABC 的周长为3+33.。
正弦余弦定理三角形面积公式
正弦余弦定理三角形面积公式好的,以下是为您生成的文章:在我们学习数学的奇妙旅程中,有两个非常重要的小伙伴,那就是正弦定理和余弦定理,还有它们与三角形面积公式之间千丝万缕的联系。
这可真是个有趣又实用的知识宝藏!先来说说正弦定理。
正弦定理就像是一个神奇的魔法棒,它告诉我们在任意一个三角形中,各边和它所对角的正弦值的比值是相等的。
这听起来有点抽象,但是咱们来举个例子就好懂多啦。
记得有一次,我和朋友一起去公园散步。
公园的地形有点复杂,有一个三角形的花坛。
我们好奇地想要知道这个花坛三条边的长度。
这时候,正弦定理就派上用场啦!我们先测量出了其中两个角的大小,然后通过正弦定理,很快就计算出了三条边的相对比例,进而估算出了边的长度。
那种解开谜题的成就感,简直太棒了!接下来是余弦定理。
余弦定理能帮助我们通过三角形的三条边来求出角的大小,或者通过两条边和它们的夹角来求出第三条边的长度。
再说说三角形的面积公式。
大家都知道常见的三角形面积公式是底乘以高除以 2,但是当我们只知道三角形的边和角的时候,正弦定理和余弦定理就能帮助我们推导出新的面积公式。
比如说,通过正弦定理可以得到一个面积公式是 S = 1/2 * ab * sinC,这里的 a、b 是两条边,C 是它们的夹角。
在实际生活中,这些知识的用处可大了。
比如说建筑工人在建造房屋的时候,需要计算三角形结构的稳定性和面积,就得用到这些定理和公式;工程师设计桥梁的时候,也得依靠它们来确保桥梁的结构合理。
学习正弦余弦定理和三角形面积公式,就像是在探索一个神秘的宝藏,每一次的运用都是一次惊喜的发现。
它们不仅能帮助我们解决数学问题,还能让我们更好地理解这个丰富多彩的世界。
所以呀,同学们,可别小瞧了这些看似枯燥的定理和公式,它们可是有着大能量呢!只要我们用心去学习、去探索,就能在数学的海洋里畅游,发现更多的精彩!。
正弦定理余弦定理知识点
正弦定理余弦定理知识点正弦定理和余弦定理是三角形中常用的公式。
1.三角形中常用的公式包括:角度和公式A+B+C=π;海伦公式S=√(p(p-a)(p-b)(p-c)),其中 p=(a+b+c)/2;正弦定理a/sinA=b/sinB=c/sinC=2R,其中 R 为外接圆半径;余弦定理a²=b²+c²-2bccosA,b²=a²+c²-2accosB,c²=a²+b²-2abcosC。
2.三角形中的边角不等关系:A>B⟺a>b,a+b>c,a-b<c。
3.正弦定理可用于以下情况:①已知两角和任一边,求其他两边及一角;②已知两边和其中一边对角,求另一边的对角;③几何作图时,存在多种情况。
4.已知两边和其中一边的对角解三角形的情况:(1)A为锐角,有一解;(2)A为锐角或钝角,当a>b时有一解。
5.余弦定理可用于以下情况:(1)已知三角形的三条边长,可求出三个内角;(2)已知三角形的两边及夹角,可求出第三边。
6.三角形面积公式为 S=1/2absinC=1/2bcsinA=1/2casinB。
在解题时,可以利用正弦定理或余弦定理判断三角形的形状,从中找到三角形中的边角关系,判断出三角形的形状。
例如,在△ABC 中已知 acosB=bcosA,利用扩充的正弦定理可以得到 sin(A-B)=0,因此 A=B,即△ABC 为等腰三角形。
练题:1.在△ABC 中,若 XXX2bcosBcosC,可判断三角形的形状。
2.在△ABC 中,已知 atanB=btanA,可判断三角形的形状。
3.已知△ABC 中,有 cosA+2cosCsinB=2,可判断三角形的形状。
解:由题意可得tanA=1,tanB=2,tanC=3则tan(A+B)=tan(180°-C)=tanC=-3tan(A+B)+tanC=-3+3=0又因为A、B、C为锐角,所以A+B+C=180°而tan(A+B+C)=\frac{tan(A+B)+tanC}{1-tan(A+B)tanC}=0所以A+B+C=180°综上所述,A+B+C=180°.3.在三角形ABC中,a、b、c分别为角A、B、C的对边。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
正余弦定理及面积公式
一,,知识点回顾:
1、正弦定理:在C ∆AB 中,a 、b 、c 分别为角A 、B 、C 的对边,R 为C ∆AB 的外接圆的半径,则有2sin sin sin a
b
c
R C ===A B .
2、正弦定理的变形公式:①2sin a R =A ,2sin b R =B ,2sin c R C =; ②sin 2a
R A =,sin 2b
R B =,sin 2c
C R =;
③::sin :sin :sin a b c C =A B ; ④sin sin sin sin sin sin a b c a b c
C C ++===A +B +A B .
3、三角形面积公式:111
sin sin sin 222C S bc ab C ac ∆AB =A ==B .
4、余弦定理:在C ∆AB 中,有2222cos a b c bc =+-A ,2222cos b a c ac =+-B ,
2222cos c a b ab C =+-.
5、余弦定理的推论:222
cos 2b c a bc +-A =,222cos 2a c b ac +-B =,22
2
cos 2a b c C ab +-=.
6、设a 、b 、c 是C ∆AB 的角A 、B 、C 的对边,则:①若222a b c +=,则90C = ;
②若222a b c +>,则90C < ;③若222a b c +<,则90C > .
三角形内角和 π=++C B A
)
tan(tan )sin(sin )
cos()cos(cos C B A C B A C B C B A +-=+=+-=--=π
二,基础训练:
一,选择题
1、在△ABC 中,222a b c bc =++,则A 等于( )
A 、60°
B 、45°
C 、120
D 、30°
2、在△ABC 中,2a =,A =30°,C =45°,则△ABC 的面积ABC S ∆等于( )
A 、2
B 、22
C 、31+
D 、1
(31)2+
3、在△ABC 中,3a =,7b =,2c =,那么B ∠等于( )
A 、30°
B 、45°
C 、60°
D 、120°
4、在△ABC 中,10a =,B ∠=60°,C ∠=45°,则c 等于( )
A 、310+
B 、()1310-
C 、13+
D 、310
5、在△ABC 中,23a =,22b =,B ∠=45°,则A ∠等于( )
A 、30°
B 、60°
C 、60°或120°
D 、30°或150°
6、在△ABC 中,已知bc c b a ++=222,则A ∠为( )
A 、3π
B 、6π
C 、32π
D 、3π或32π
7、在△ABC 中,3=AB ,1=AC ,30A ∠=︒,则△ABC 面积为( )
A 、23
B 、43
C 、23或3
D 、43
或23
8、等差数列,B ∠=30°,△ABC 的面积为23
,那么b =( )
A 、13
2+ B 、31+ C 、23
2+ D 、32+
9、在△ABC 中,A =60°,43,42a b ==,则B 等于( )
A 、45°或135°
B 、135°
C 、45°
D 、以上答案都不对
10、在ABC ∆中,15,10,a b A ===60°,则cos B =( )
A 、-223
B 、223
C 、-63
D 、6
3
11、已知△ABC 的面积为23,且3,2==c b ,则A ∠等于( )
A 、30°
B 、30°或150°
C 、60°
D 、60°或120°
二,解答题
1,在∆ABC 中,已知23=a ,62=+c , 45=∠B ,求b 及A ;
2,已知△ABC 的三边长6,5,3===c b a ,则△ABC 的面积为
3,在∆ABC 中,53
cos ,135
cos =-=B A ,
(1)求C sin 的值;(2)设BC=5,求∆ABC 的面积
4,设锐角∆ABC 的内角 A,B,C的对边分别为a,b,c,
且A b a sin 2= (1)求B ∠的大小 (2)若b c a 求,5,33== 5,在∆ABC 中,已知54
cos ,3,2-===A a b
(1)求B sin 的值 (2)求)62sin(π
+B 的值
6,在∆ABC 中,53
tan ,41
tan ==B A
(1)求C ∠的大小 (2)若AB 的边长为17,求BC 边的长
7,设∆ABC 的内角 A,B,C的对边分别为a,b,c,若3,3,1π
=∠==c c a ,则A ∠ 的值
8,设∆ABC 的周长为12+,且C B A sin 2sin sin =+
(1)求边长AB 的长 (2)若∆ABC 的面积为C sin 6
1,求角C 9,在∆ABC 中,A,B,C的对边分别为a,b,c,若5
522cos ,4,2==∠=B C a π
,求∆ABC 的面积。
10,在∆ABC 中,5
52cos ,10,45===∠C AC B (1)求BC 边的长 (2)记AB 的中点为D ,求中线CD 的长
11,在∆ABC 中,已知 30,4,3
34=∠==A b a ,则=B sin 12,在∆ABC 中,A,B,C的对边分别为a,b,c,已知 ,1,3,3===∠b a A π
求c 的长度。
13,在∆ABC 中, 75,45,3=∠=∠=C A AC ,则 BC 的长。
14,在∆ABC 中,已知63,3
1cos ,3tan ==
=AC C B ,求∆ABC 的面积 15,在∆ABC 中,43cos ,1,2===C BC AB (1)求A sin (2)求AC 的值 16,在∆ABC 中,A,B,C的对边分别为a,b,c,若B A b a 2,2
5==, 则B cos 的值 17,在∆ABC 中,A,B,C的对边分别为a,b,c,若3,2π
=∠=C c
(1)若∆ABC 的面积为3,求a,b 的值 (2)设,2=AB 求AB 边上的高 18,在∆ABC 中,A,B,C的对边分别为a,b,c,且4sin ,3cos ==A b B a
(1)求边长a
(2)若∆ABC 的面积为10,求∆A B C
的周长 19.在∆A B C 中,s i n c o s A A +=22,A C =2,A B =3,求A tan 的值和∆A B C 的面积。
20,△ABC 中,,3,3A BC π=
=则△ABC 的周长为( ) A .43sin()33B π+
+ B .43sin()36B π++ C .6sin()33B π++ D .6sin()36B π
++。