北师大九年级数学上册知识点汇总

合集下载

北师大版九年级数学上册知识点总结

北师大版九年级数学上册知识点总结

九(上)数学知识点第一章证明(一)1、你能证明它吗?(1)三角形全等的性质及判定全等三角形的对应边相等,对应角也相等判定:SSS、SAS、ASA、AAS、(2)等腰三角形的判定、性质及推论性质:等腰三角形的两个底角相等(等边对等角)判定:有两个角相等的三角形是等腰三角形(等角对等边)推论:等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合(即“三线合一”)(3)等边三角形的性质及判定定理性质定理:等边三角形的三个角都相等,并且每个角都等于60度;等边三角形的三条边都满足“三线合一”的性质;等边三角形是轴对称图形,有3条对称轴。

判定定理:有一个角是60度的等腰三角形是等边三角形。

或者三个角都相等的三角形是等边三角形。

(4)含30度的直角三角形的边的性质定理:在直角三角形中,如果一个锐角等于30度,那么它所对的直角边等于斜边的一半。

2、直角三角形(1)勾股定理及其逆定理定理:直角三角形的两条直角边的平方和等于斜边的平方。

逆定理:如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形。

(2)命题包括已知和结论两部分;逆命题是将倒是的已知和结论交换;正确的逆命题就是逆定理。

(3)直角三角形全等的判定定理定理:斜边和一条直角边对应相等的两个直角三角形全等(HL)3、线段的垂直平分线(1)线段垂直平分线的性质及判定性质:线段垂直平分线上的点到这条线段两个端点的距离相等。

判定:到一条线段两个端点距离相等的点在这条线段的垂直平分线上。

(2)三角形三边的垂直平分线的性质三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等。

(3)如何用尺规作图法作线段的垂直平分线分别以线段的两个端点A、B为圆心,以大于AB的一半长为半径作弧,两弧交于点M、N;作直线MN,则直线MN就是线段AB的垂直平分线。

4、角平分线(1)角平分线的性质及判定定理性质:角平分线上的点到这个角的两边的距离相等;判定:在一个角的内部,且到角的两边的距离相等的点,在这个角的平分线上。

北师大版初三(上)数学重点知识点汇总

北师大版初三(上)数学重点知识点汇总

初三(上)重点知识点汇总第1课 一元二次方程1. 一元二次方程的定义及一般形式:(1) 等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数式2(二次)的方程,叫做一元二次方程。

(2) 一元二次方程的一般形式:_________。

其中a 为二次项系数,b 为一次项系数,c为常数项。

注意:三个要点,①只含有一个未知数;②所含未知数的最高次数是2;③是整式方程。

2. 一元二次方程的解法(1)直接开平方法:形如2()(0)x a b b +=≥的方程可以用直接开平方法解,两边直接开平方得x a +=或者x a +=∴x a =-±注意:若b<0,方程无解(2)配方法:用配方法解一元二次方程20(0)ax bx c a ++=≠的一般步骤①二次项系数化为1:方程两边都除以二次项系数;②移项:使方程左边为二次项与一次项,右边为常数项;③配方:方程两边都加上一次项系数一般的平方,把方程化为2()(0)x m n n +=≥的形式;④用直接开平方法解变形后的方程。

注意:当0n <时,方程无解(3)公式法:一元二次方程20(0)ax bx c a ++=≠ 根的判别式:_________________0∆>⇔方程有两个不相等的实根:x =240b ac -≥)⇔()f x 的图像与x 轴有两个交点0∆=⇔方程_____________实根⇔()f x 的图像与x 轴有一个交点0∆<⇔方程无实根⇔()f x 的图像与x 轴没有交点(4)因式分解法通过因式分解,把方程变形为(-)(-)0a x m x n =,则有=x m 或x n =。

步骤:①将方程的右边化为0;②将方程的左边分解为两个一次因式的乘积;③另每一个因式分别为0,得到两个一元一次方程;④解这两个一元一次方程,他们的解救是原方程的根。

注:(1)因式分解常用的方法(提公因式、公式法、十字相乘法)在这里均可使用,其中十字相乘法是最方便、快捷的方法。

九年级上册数学知识点归纳总结北师大版

九年级上册数学知识点归纳总结北师大版

九年级上册数学知识点归纳总结北师大版3.九班级上册数学学问点归纳总结北师大版篇三1.直线与圆有公共点时,叫做直线与圆相切。

2.三角形的外接圆的圆心叫做三角形的外心。

3.弦切角等于所夹的弧所对的圆心角。

4.三角形的内切圆的圆心叫做三角形的内心。

5.垂直于半径的直线必为圆的切线。

6.过半径的外端点并且垂直于半径的直线是圆的切线。

7.垂直于半径的直线是圆的切线。

8.圆的切线垂直于过切点的半径。

4.九班级上册数学学问点归纳总结北师大版篇四单项式与多项式仅含有一些数和字母的乘法包括乘方运算的式子叫做单项式单独的一个数或字母也是单项式。

单项式中的数字因数叫做这个单项式或字母因数的数字系数,简称系数。

当一个单项式的系数是1或—1时,“1”通常省略不写。

一个单项式中,全部字母的指数的和叫做这个单项式的次数。

假如在几个单项式中,不管它们的系数是不是相同,只要他们所含的字母相同,并且相同字母的指数也分别相同,那么,这几个单项式就叫做同类单项式,简称同类项全部的常数都是同类项。

1、多项式有有限个单项式的代数和组成的式子,叫做多项式。

多项式里每个单项式叫做多项式的项,不含字母的项,叫做常数项。

单项式可以看作是多项式的特例把同类单项式的系数相加或相减,而单项式中的字母的乘方指数不变。

在多项式中,所含的不同未知数的个数,称做这个多项式的元数经过合并同类项后,多项式所含单项式的个数,称为这个多项式的项数所含个单项式中次项的次数,就称为这个多项式的次数。

2、多项式的值任何一个多项式,就是一个用加、减、乘、乘方运算把已知数和未知数连接起来的式子。

3、多项式的恒等对于两个一元多项式fx、gx来说,当未知数x同取任一个数值a 时,假如它们所得的值都是相等的,即fa=ga,那么,这两个多项式就称为是恒等的记为fx==gx,或简记为fx=gx。

性质1假如fx==gx,那么,对于任一个数值a,都有fa=ga。

性质2假如fx==gx,那么,这两个多项式的个同类项系数就肯定对应相等。

北师大九年级数学知识点

北师大九年级数学知识点

北师大版初中数学定理知识点汇总[ 九年级 (上册 )第一章证明 (二)※等腰三角形的“三线合一” :顶角平分线、底边上的中线、底边上的高互相重合。

※等边三角形是特殊的等腰三角形,作一条等边三角形的三线合一线,将等边三角形分成两个全等的直角三角形,其中一个锐角等于 30o,这它所对的直角边必然等于斜边的一半。

※有一个角等于 60o的等腰三角形是等边三角形。

※如果知道一个三角形为直角三角形首先要想的定理有:①勾股定理:a2 b 2c2(注意区分斜边与直角边)②在直角三角形中,如有一个内角等于30o,那么它所对的直角边等于斜边的一半③在直角三角形中,斜边上的中线等于斜边的一半(此定理将在第三章出现)※垂直平分线是垂直于一条线段并且平分这条线段的直线。

(注意着重号的意义).........<直线与射线有垂线,但无垂直平分线>※线段垂直平分线上的点到这一条线段两个端点距离相等。

※线段垂直平分线逆定理:到一条线段两端点距离相等的点,在这条线段的垂直平分线上。

※三角形的三边的垂直平分线交于一点,并且这个点到三个顶点的距离相等。

(如图1所示,A AAO=BO=CO )D FOOC CB B E图 1图 2※角平分线上的点到角两边的距离相等。

※角平分线逆定理:在角内部的,如果一点到角两边的距离相等,则它在该角的平分线上。

角平分线是到角的两边距离相等的所有点的集合。

※三角形三条角平分线交于一点,并且交点到三边距离相等,交点即为三角形的内心。

( 如图 2 所示, OD=OE=OF)第二章一元二次方程※只含有一个未知数的整式方程,且都可以化为ax 2bx c0 (a、b、c为常数, a≠ 0)的形式,这样的方程叫一元二次方程。

......※把 ax2bx c 0 (a、b、c为常数,a≠0)称为一元二次方程的一般形式, a 为二次项系数; b 为一次项系数; c 为常数项。

※解一元二次方程的方法:①配方法< 即将其变为(x m) 20的形式>b b24ac②公式法 x2a(注意在找 abc 时须先把方程化为一般形式)③分解因式法把方程的一边变成0,另一边变成两个一次因式的乘积来求解。

九年级北师大版数学上册

九年级北师大版数学上册

九年级北师大版数学上册一、教材章节内容概括。

1. 特殊平行四边形。

- 矩形:- 定义:有一个角是直角的平行四边形叫做矩形。

- 性质:四个角都是直角;对角线相等;具有平行四边形的一切性质。

- 判定:有三个角是直角的四边形是矩形;对角线相等的平行四边形是矩形。

- 菱形:- 定义:有一组邻边相等的平行四边形叫做菱形。

- 性质:四条边都相等;对角线互相垂直,并且每一条对角线平分一组对角;具有平行四边形的一切性质。

- 判定:四条边都相等的四边形是菱形;对角线互相垂直的平行四边形是菱形。

- 正方形:- 定义:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形。

- 性质:既是矩形又是菱形,所以它具有矩形和菱形的所有性质,如四个角都是直角、四条边都相等、对角线相等且互相垂直平分等。

- 判定:既是矩形又是菱形的四边形是正方形。

2. 一元二次方程。

- 定义:只含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程,一般形式为ax^2+bx + c=0(a≠0)。

- 解法:- 直接开平方法:对于形如x^2=k(k≥0)的方程,x=±√(k)。

- 配方法:将方程ax^2+bx + c = 0(a≠0)通过配方转化为(x+(b)/(2a))^2=frac{b^2-4ac}{4a^2}的形式,然后求解。

- 公式法:对于一元二次方程ax^2+bx + c = 0(a≠0),其解为x=frac{-b±√(b^2)-4ac}{2a},其中Δ=b^2-4ac(Δ叫做判别式)。

当Δ>0时,方程有两个不相等的实数根;当Δ = 0时,方程有两个相等的实数根;当Δ<0时,方程没有实数根。

- 因式分解法:将方程化为(mx + n)(px+q)=0的形式,则mx + n = 0或px+q = 0,进而求解。

- 实际应用:增长率问题、面积问题等。

3. 概率的进一步认识。

- 用列举法求概率:- 列表法:当一次试验要涉及两个因素(例如掷两枚骰子)并且可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,通常采用列表法。

北师大版九年级数学(上册)重点知识点归纳整理

北师大版九年级数学(上册)重点知识点归纳整理

九年级数学上册知识点归纳(北师大版)第一章特殊平行四边形第二章一元二次方程第三章概率的进一步认识第四章图形的相似第五章投影与视图第六章反比例函数(八下前情回顾)※平行四边的定义:两线对边分别平行的四边形叫做平行四边形.....,平行四边形不相邻的两顶点连成的线段叫做它的对角线...。

※平行四边形的性质:平行四边形的对边相等,对角相等,对角线互相平分。

※平行四边形的判别方法:两组对边分别平行的四边形是平行四边形。

两组对边分别相等的四边形是平行四边形。

一组对边平行且相等的四边形是平行四边形。

两条对角线互相平分的四边形是平行四边形。

※平行线之间的距离:若两条直线互相平行,则其中一条直线上任意两点到另一条直线的距离相等。

这个距离称为平行线之间的距离。

第一章特殊平行四边形1菱形的性质与判定菱形的定义:一组邻边相等的平行四边形叫做菱形。

※菱形的性质:具有平行四边形的性质,且四条边都相等,两条对角线互相垂直平分,每一条对角线平分一组对角。

菱形是轴对称图形,每条对角线所在的直线都是对称轴。

※菱形的判别方法:一组邻边相等的平行四边形是菱形。

对角线互相垂直的平行四边形是菱形。

四条边都相等的四边形是菱形。

2矩形的性质与判定※矩形的定义:有一个角是直角的平行四边形叫矩形..。

矩形是特殊的平行四边形。

※矩形的性质:具有平行四边形的性质,且对角线相等,四个角都是直角。

(矩形是轴对称图形,有两条对称轴)※矩形的判定:有一个内角是直角的平行四边形叫矩形(根据定义)。

对角线相等的平行四边形是矩形。

四个角都相等的四边形是矩形。

※推论:直角三角形斜边上的中线等于斜边的一半。

3正方形的性质与判定正方形的定义:一组邻边相等的矩形叫做正方形。

※正方形的性质:正方形具有平行四边形、矩形、菱形的一切性质。

(正方形是轴对称图形,有两条对称轴)※正方形常用的判定:有一个内角是直角的菱形是正方形;邻边相等的矩形是正方形;对角线相等的菱形是正方形;对角线互相垂直的矩形是正方形。

新版九年级数学上册知识点归纳北师大版

新版九年级数学上册知识点归纳北师大版新版九年级数学上册知识点归纳(北师大版)一、整数的运算1. 整数的加法和减法运算a) 同号数相加、相减b) 异号数相加、相减c) 加法的交换律和结合律d) 减法与加法的关系2. 整数的乘法和除法运算a) 同号数相乘、相除b) 异号数相乘、相除c) 乘法的交换律和结合律d) 除法的定义和性质3. 整数运算的综合应用a) 数线和整数运算b) 整数的乘方运算c) 分数与整数的运算d) 整数运算在解决实际问题中的应用二、平方根与立方根1. 平方根的定义和性质a) 平方根的概念b) 完全平方数和非完全平方数c) 求平方根的方法2. 平方根的运算a) 平方根的加法和减法b) 平方根的乘法和除法c) 求平方根的应用3. 立方根的定义和性质a) 立方根的概念b) 立方根的运算三、代数式的定义与运算1. 代数式的概念和基本性质a) 变量、常数和代数式的关系b) 代数式的展开与因式分解2. 代数式的加法和减法a) 同类项与合并同类项b) 代数式的加减运算规则c) 根据题意列代数式3. 代数式的乘法和除法a) 代数式的乘法规则b) 代数式的除法规则c) 根据题意列代数式四、一次函数1. 一次函数的定义和性质a) 一次函数的概念b) 一次函数的图象特点c) 一次函数的斜率和截距2. 一次函数的图象与方程a) 一次函数的图象和方程的关系b) 根据图象写出方程c) 根据方程画出图象3. 一次函数的应用a) 一次函数在实际问题中的应用b) 利润、成本和收入的关系五、二次根式1. 二次根式的定义和性质a) 二次根式的概念b) 二次根式的化简与还原c) 二次根式的近似计算2. 二次根式的加法和减法a) 同类项的概念和加减运算b) 多个二次根式的相加相减3. 二次根式的乘法和除法a) 二次根式的乘法运算b) 二次根式的除法运算4. 二次根式的应用a) 二次根式在图形的计算中的应用b) 二次根式在实际问题中的应用六、三角形的性质1. 三角形的基本概念a) 三角形的定义b) 三角形的分类2. 三角形的角度与边的关系a) 三角形内部角的性质b) 三角形外角的性质3. 三角形的边与边的关系a) 三角形边长的大小关系b) 三角形边长的和差关系4. 三角形的中线与垂直平分线a) 三角形的中线性质b) 三角形的垂直平分线性质七、相似三角形1. 相似三角形的概念和性质a) 相似三角形的定义b) 相似三角形的判定条件c) 相似三角形的性质2. 相似三角形的比例关系a) 相似三角形的边比例b) 相似三角形的角度对应关系3. 相似三角形的应用a) 相似三角形在图形中的应用b) 相似三角形在实际问题中的应用以上是新版九年级数学上册的知识点归纳,包括整数的运算、平方根与立方根、代数式的定义与运算、一次函数、二次根式、三角形的性质以及相似三角形等内容。

北师大版九上数学九年级上册知识点总结(共22张ppt)

过反比例函数 y k (k 0) 图像上任一点 P(x,y)作 x 轴、y 轴的垂线 PM,PN ,垂 x
足分别是 M、N,则所得的矩形 PMON 的面积 S=PM PN= y x xy 。
y k , xy k, S k 。 x
※一. 正切:
第一章 直角三角形边的关系
正方形 对边平行,四边相等
四个角都是直角 互相垂直平分且相等,每条对角线平 分一组对角
·是矩形,且有一组邻边相等; ·是菱形,且有一个角是直角。
对称性
既是轴对称图形,又是中心对称图形
一.矩形
矩形定义:有一角是直角的平行四边形叫做矩形. 【强调】 矩形(1)是平行四边形;(2)一一个角是直角.
矩形的性质 性质 1 矩形的四个角都是直角;性质 2 矩形的对角线相等,具有平行四边形的所以
b a

x1x2

c a

第四章 图形相似与相似三角形知识点解读
知识点 1..相似图形的含义 把形状相同的图形叫做相似图形。(即对应角相等、对应边的比也相等的图形)
知识点 2.比例线段[来源: 学&科&网 Z&X&X&K] 对于四条线段 a,b,c,d ,如果其中两条线段的长度的比与另两条线段的长度的比相等,
当 b 0时, x a b , x a b ;当 b<0 时,方程没有实数根。
2、配方法 一般步骤:
(1) 方程ax2 bx c 0(a 0) 两边同时除以 a,将二次项系数化为 1.
(2) 将所得方程的常数项移到方程的右边。 (3) 所得方程的两边都加上一次项系数一半的平方
知识点 3.相似多边形的性质 相似多边形的性质:相似多边形的对应角相等,对应边的比相等. 知识点 4.相似三角形的概念 对应角相等,对应边之比相等的三角形叫做相似三角形.解读:(1)相似三角形是相似多边 形中的一种;(2)应结合相似多边形的性质来理解相似三角形;(3)相似三角形应满足形状 一样,但大小可以不同;(4)相似用“∽”表示,读作“相似于”;(5)相似三角形的对应 边之比叫做相似比.

北师大版九年级上册数学全册各章知识点汇总

北师大版九年级数学(上册)知识点汇总第一章特殊平行四边形第二章一元二次方程第三章概率的进一步认识第四章图形的相似第五章投影与视图第六章反比例函数第一章特殊平行四边形1.1菱形的性质与判定菱形的定义:一组邻边相等的平行四边形叫做菱形.※菱形的性质:具有平行四边形的性质,且四条边都相等,两条对角线互相垂直平分,每一条对角线平分一组对角.菱形是轴对称图形,每条对角线所在的直线都是对称轴.※菱形的判别方法:一组邻边相等的平行四边形是菱形.对角线互相垂直的平行四边形是菱形.四条边都相等的四边形是菱形.1.2 矩形的性质与判定※矩形的定义:有一个角是直角的平行四边形叫矩形.矩形是特殊的平行四边形...※矩形的性质:具有平行四边形的性质,且对角线相等,四个角都是直角.(矩形是轴对称图形,有两条对称轴)※矩形的判定:有一个内角是直角的平行四边形叫矩形(根据定义).对角线相等的平行四边形是矩形.四个角都相等的四边形是矩形.※推论:直角三角形斜边上的中线等于斜边的一半.1.3 正方形的性质与判定正方形的定义:一组邻边相等的矩形叫做正方形.※正方形的性质:正方形具有平行四边形、矩形、菱形的一切性质.(正方形是轴对称图形,有两条对称轴)※正方形常用的判定:有一个内角是直角的菱形是正方形;邻边相等的矩形是正方形;对角线相等的菱形是正方形;对角线互相垂直的矩形是正方形.正方形、矩形、菱形和平行边形四者之间的关系(如图3所示):※梯形定义:一组对边平行且另一组对边不平行的四边形叫做梯形.※※鹏翔教图3※等腰梯形的性质:等腰梯形同一底上的两个内角相等,对角线相等.同一底上的两个内角相等的梯形是等腰梯形.※三角形的中位线平行于第三边,并且等于第三边的一半.※夹在两条平行线间的平行线段相等.※在直角三角形中,斜边上的中线等于斜边的一半第二章 一元二次方程2.1 认识一元二次方程......2.2 ...用.配方法求解.....一元二次方程......2.3 用公式法求解一元二次方程2.4 用因式分解法求解一元二次方程2.5 一元二次方程的跟与系数的关系2.6 应用一元二次方程※只含有一个未知数的整式方程,且都可以化为02=++c bx ax (a 、b 、c 为常数,a ≠0)的形式,这样的方程叫一元二次方程....... ※把02=++c bx ax (a 、b 、c 为常数,a ≠0)称为一元二次方程的一般形式,a 为二次项系数;b 为一次项系数;c 为常数项.※解一元二次方程的方法:①配方法 <即将其变为0)(2=+m x 的形式> ②公式法 aac b b x 242-±-= (注意在找abc 时须先把方程化为一般形式)③分解因式法 把方程的一边变成0,另一边变成两个一次因式的乘积来求解.(主要包括“提公因式”和“十字相乘”)※配方法解一元二次方程的基本步骤:①把方程化成一元二次方程的一般形式;②将二次项系数化成1;③把常数项移到方程的右边;④两边加上一次项系数的一半的平方;⑤把方程转化成0)(2=+m x 的形式; ⑥两边开方求其根.※根与系数的关系:当b 2-4ac>0时,方程有两个不等的实数根;当b 2-4ac=0时,方程有两个相等的实数根;当b 2-4ac<0时,方程无实数根.※如果一元二次方程02=++c bx ax 的两根分别为x 1、x 2,则有:ac x x a bx x =⋅-=+2121. ※一元二次方程的根与系数的关系的作用:(1)已知方程的一根,求另一根;(2)不解方程,求二次方程的根x 1、x 2的对称式的值,特别注意以下公式:①2122122212)(x x x x x x -+=+ ②21212111x x x x x x +=+ ③212212214)()(x x x x x x -+=- ④21221214)(||x x x x x x -+=- ⑤||22)(|)||(|2121221221x x x x x x x x +-+=+⑥)(3)(21213213231x x x x x x x x +-+=+ ⑦其他能用21x x +或21x x 表达的代数式.(3)已知方程的两根x 1、x 2,可以构造一元二次方程:0)(21221=++-x x x x x x (4)已知两数x 1、x 2的和与积,求此两数的问题,可以转化为求一元二次方程0)(21221=++-x x x x x x 的根※在利用方程来解应用题时,主要分为两个步骤:①设未知数(在设未知数时,大多数情况只要设问题为x ;但也有时也须根据已知条件及等量关系等诸多方面考虑);②寻找等量关系(一般地,题目中会含有一表述等量关系的句子,只须找到此句话即可根据其列出方程).※处理问题的过程可以进一步概括为: 解答检验求解方程抽象分析问题→→ 第三章 概率的进一步认识3.1 用树状图或表格求概率3.2 用频率估计概率※在频率分布表里,落在各小组内的数据的个数叫做频数..; 每一小组的频数与数据总数的比值叫做这一小组的频率..; 即:实验次数频数数据总数频数频率== 在频率分布直方图中,由于各个小长方形的面积等于相应各组的频率,而各组频率的和等于1.因此,各个小长方形的面积的和等于1.※频率分布表和频率分布直方图是一组数据的频率分布的两种不同表示形式,前者准确,后者直观.用一件事件发生的频率来估计这一件事件发生的概率.可用列表的方法求出概率,但此方法不太适用较复杂情况.※假设布袋内有m 个黑球,通过多次试验,我们可以估计出布袋内随机摸出一球,它为白球的概率;※要估算池塘里有多少条鱼,我们可先从池塘里捉上100条鱼做记号,再放回池塘,之后再从池塘中捉上200条鱼,如果其中有10条鱼是有标记的,再设池塘共有x 条鱼,则可依照20010100 x 估算出鱼的条数.(注意估算出来的数据不是确切的,所以应谓之“约是XX ”)※生活中存在大量的不确定事件,概率是描述不确定现象的数学模型,它能准确地衡量出事件发生的可能性的大小,并不表示一定会发生.概率的求法:(1)一般地,如果在一次试验中,有n 种可能的结果,并且它们发生的可能性都相等,事件A 包含其中的m 个结果,那么事件A 发生的概率为P (A )=nm (2)、列表法用列出表格的方法来分析和求解某些事件的概率的方法叫做列表法.(3)树状图法通过列树状图列出某事件的所有可能的结果,求出其概率的方法叫做树状图法.(当一次试验要设计三个或更多的因素时,用列表法就不方便了,为了不重不漏地列出所有可能的结果,通常采用树状图法求概率.)第四章 图形的相似4.1 成正比线段4.2 平行线段成比例4.3 形似多边形4.4 探索三角形相似的条件4.5 相似三角形判定定理的证明4.6 利用相似三角形测高4.7 相似三角形的性质4.8 图形的位似一. 线段的比※1. 如果选用同一个长度单位量得两条线段AB , CD 的长度分别是m 、n ,那么就说这两条线段的比AB:CD=m:n ,或写成nm B A =. ※2. 四条线段a 、b 、c 、d 中,如果a 与b 的比等于c 与d 的比,即d c b a =,那么这四条线段a 、b 、c 、d 叫做成比例线段,简称比例线段.※3. 注意点:①a:b=k ,说明a 是b 的k 倍;②由于线段 a 、b 的长度都是正数,所以k 是正数;③比与所选线段的长度单位无关,求出时两条线段的长度单位要一致; ④除了a=b 之外,a:b ≠b:a ,b a 与a b 互为倒数; ⑤比例的基本性质:若d c b a =, 则ad=bc; 若ad=bc , 则d c b a = 二. 黄金分割_ 图1 _ B_ C _ A※1. 如图1,点C 把线段AB 分成两条线段AC 和BC ,如果ACBC AB AC =,那么称线段AB 被点C 黄金分割,点C 叫做线段AB 的黄金分割点,AC 与AB 的比叫做黄金比. 1:618.0215:≈-=AB AC ※2.黄金分割点是最优美、最令人赏心悦目的点.四. 相似多边形¤1. 一般地,形状相同的图形称为相似图形.※2. 对应角相等、对应边成比例的两个多边形叫做相似多边形.相似多边形对应边的比叫做相似比.五. 相似三角形※1. 在相似多边形中,最为简简单的就是相似三角形.※2. 对应角相等、对应边成比例的三角形叫做相似三角形.相似三角形对应边的比叫做相似比.※3. 全等三角形是相似三角的特例,这时相似比等于1. 注意:证两个相似三角形,与证两个全等三角形一样,应把表示对应顶点的字母写在对应的位置上.※4. 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比.※5. 相似三角形周长的比等于相似比.※6. 相似三角形面积的比等于相似比的平方.六.探索三角形相似的条件※1. 相似三角形的判定方法:_ D _A _l基本定理:平行于三角形的一边且和其他两边(或两边的延长线)相交的直线,所截得的三角形与原三角形相似.※2. 平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.如图2, l 1 // l 2 // l 3,则EF BC DE AB . ※3. 平行于三角形一边的直线与其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似.八. 相似的多边形的性质※相似多边形的周长等于相似比;面积比等于相似比的平方. 九. 图形的放大与缩小※1. 如果两个图形不仅是相似图形,而且每组对应点所在的直线都经过同一点,那么这样的两个图形叫做位似图形; 这个点叫做位似中心; 这时的相似比又称为位似比.※2. 位似图形上任意一对对应点到位似中心的距离之比等于位似比.◎3. 位似变换:①变换后的图形,不仅与原图相似,而且对应顶点的连线相交于一点,并且对应点到这一交点的距离成比例.像这种特殊的相似变换叫做位似变换.这个交点叫做位似中心.②一个图形经过位似变换后得到另一个图形,这两个图形就叫做位似形.③利用位似的方法,可以把一个图形放大或缩小.第五章投影与视图5.1 投影5.2 视图※三视图包括:主视图、俯视图和左视图.三视图之间要保持长对正,高平齐,宽相等.一般地,俯视图要画在主视图的下方,左视图要画在正视图的右边.主视图:基本可认为从物体正面视得的图象俯视图:基本可认为从物体上面视得的图象左视图:基本可认为从物体左面视得的图象※视图中每一个闭合的线框都表示物体上一个表面(平面或曲面),而相连的两个闭合线框一定不在一个平面上.※在一个外形线框内所包括的各个小线框,一定是平面体(或曲面体)上凸出或凹的各个小的平面体(或曲面体).※在画视图时,看得见的部分的轮廓线通常画成实线,看不见的部分轮廓线通常画成虚线..物体在光线的照射下,会在地面或墙壁上留下它的影子,这就是投影..太阳光线可以看成平行的光线,像这样的光线所形成的投影称为平行投影..... 探照灯、手电筒、路灯的光线可以看成是从一点出发的,像这样的光线所形成的投影称为中心投影..... ※区分平行投影和中心投影:①观察光源;②观察影子.眼睛的位置称为视点..;由视点发出的线称为视线..;眼睛看不到的地方称为盲区... ※从正面、上面、侧面看到的图形就是常见的正投影,是当光线与投影垂直时的投影. ①点在一个平面上的投影仍是一个点;②线段在一个面上的投影可分为三种情况:线段垂直于投影面时,投影为一点;线段平行于投影面时,投影长度等于线段的实际长度;线段倾斜于投影面时,投影长度小于线段的实际长度.③平面图形在某一平面上的投影可分为三种情况:平面图形和投影面平行的情况下,其投影为实际形状;平面图形和投影面垂直的情况下,其投影为一线段;平面图形和投影面倾斜的情况下,其投影小于实际的形状.第六章 反比例函数6.1 反比例函数6.2 反比例函数的图像与性质6.3 反比例函数的应用※反比例函数的概念:一般地,xk y =(k 为常数,k ≠0)叫做反比例函数,即y 是x 的反比例函数. (x 为自变量,y 为因变量,其中x 不能为零)※反比例函数的等价形式:y 是x 的反比例函数 ←→ )0(≠=k xk y ←→ )0(1≠=-k kx y ←→ )0(≠=k k xy ←→ 变量y 与x 成反比例,比例系数为k.※判断两个变量是否是反比例函数关系有两种方法:①按照反比例函数的定义判断;②看两个变量的乘积是否为定值<即k xy =>.(通常第二种方法更适用)※反比例函数的图象由两条曲线组成,叫做双曲线※反比例函数的画法的注意事项:①反比例函数的图象不是直线,所“两点法”是不能画的;②选取的点越多画的图越准确;③画图注意其美观性(对称性、延伸特征).※反比例函数性质:①当k>0时,双曲线的两支分别位于一、三象限;在每个象限内,y 随x 的增大而减小; ②当k<0时,双曲线的两支分别位于二、四象限;在每个象限内,y 随x 的增大而增大; ③双曲线的两支会无限接近坐标轴(x 轴和y 轴),但不会与坐标轴相交.※反比例函数图象的几何特征:(如图4所示)点P(x ,y)在双曲线上都有|21||||S k xy S AOB OAPB ===∆矩形。

北师大版九年级数学知识点汇总

一、数与代数1.数的概念与数的读法2.数的比较大小3.整数的四则运算4.分数的概念与分数的四则运算5.小数的概念与小数的四则运算6.百分数的概念与百分数的四则运算7.有理数的概念与有理数的四则运算8.正数、负数与绝对值9.代数式与代数方程10.一次代数方程的解11.二次根式的概念与运算12.分式的概念与运算13.根式的概念与运算14.简单的函数与函数的图象二、几何1.平行线与平行四边形2.相交线与相交角3.三角形的分类与性质4.角的概念与角的分类5.直角三角形与斜角三角形6.相似三角形与比例7.圆的概念与性质8.圆内接四边形与正多边形9.三视图与棱柱、棱锥、棱台、圆柱、圆锥、圆台的概念三、统计与概率1.统计调查与统计图表2.频率分布直方图与频率分布折线图3.统计数据的分析与统计平均数、中位数、众数4.概率的概念与概率的计算四、函数与方程1.函数的概念与函数的性质2.函数关系与函数图象3.函数与方程的思想与方法4.一次函数的概念与性质5.一次函数图象与应用6.一次函数方程与问题7.二次函数的概念与性质8.二次函数的图象与应用9.二次函数方程与问题的解法五、计量与单位1.长度、面积与体积2.常用度量单位与换算3.时间与速度4.英制单位与国际单位六、解析几何初步1.平面直角坐标系2.点的坐标与位置关系3.直线的方程与性质4.圆的方程与性质5.解直线与圆的方程及几何应用七、三角函数的初步研究1.角的三要素2.角度与弧度3.正弦定理与余弦定理4.解三角形的问题以上是北师大版九年级数学的主要知识点汇总,涵盖了数与代数、几何、统计与概率、函数与方程、计量与单位、解析几何初步、三角函数的初步研究等各个方面。

对于学生来说,掌握这些知识点将有助于他们在九年级数学学习中取得更好的成绩。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年級上冊所有知識點匯總三角形有關性質、定理及反證法知識要點三角形の性質與判定:序號必記專案必記知識必記內容巧記方法1 公理三角形全等の判定公理三邊對應相等の兩個三角形全等兩邊及夾角對應相等の兩個三角形全等;兩角及其夾邊對應相等の兩個三角形全等SSSSASASA2 定理三角形全等の判定定理兩角及其中一角の對邊對應相等の兩個三角形全等AAS3 公理三角形全等の性質全等三角形の對應邊相等、對應角相等4 定理等腰三角形の性質の推論等腰三角形の兩個底角相等等邊對等角5 定理等腰三角形の判定定理等腰三角形頂角の平分線、底邊上の中線底邊上の高互相重合“三線合一”6 定理等邊三角形の判定定理有一個角等於60°の等腰三角形是等邊三角形7 定理有一個角等於30°の直角三角形の性質在直角三角形中,如果有一個銳角等於30°,那麼它所對の直角邊等於斜邊の一半8 定理等邊三角形の判定定理三個角都相等の三角形是等邊三角形等角對等邊9 定理畢氏定理直角三角形兩條直角邊の平方和等於斜邊の平方符號語言:若∠C=90°,則c2=a2+b210 概念互逆定理如果一個定理の逆命題經過證明是真命題,那麼它也是一個定理,這兩個定理稱為互逆定理11 定理畢氏定理の逆定理如果三角形の兩邊の平方和等於第三邊の平方,那麼這個三角形為直角三角形符號語言若,則a2+b2=c2,∠C=90°。

12 定理直角三角形全等の判定定理斜邊和直角邊對應相等の兩個直角三角形全等HL證明方法:綜合法、反證法綜合法:①審題:找出已知、求證の各量之間の關係;②分析解題思路:一般採用逆向思考,即從結論入手,追溯結論成立の理由。

③書寫推理過程,從已知入手,將分析過程倒著寫出來反證法:在證明時,先假設命題の結論不成立,然後推導出與定義、公理、已證定理或已知條件相矛盾の結果,從而證明命題の結論一定成立の方法稱為反證法。

(步驟:①提假設:假設命題の結論不成立,②推矛盾:從假設出發,應用正確の推論方法,得出與定義、公理、已證定理或已知條件相矛盾の結果;③得結論:從而肯定命題の結論)幾種常見の結論和它の否定形式: “a >b ” “a ≤b ”“a=b ” “a ≠b ”或“a <b ,a >b ” “a ∥b ” “a 與b 相交” “點在直線上” “點在直線外” “至少有一個” “一個都沒有” “至少有兩個” “至多有一個”互逆命題:如果一個命題の條件和結論分別是另一個命題の結論和條件,那麼這兩個命題稱為互逆命題。

(“條件”與“結論”交換)互逆定理:如果一個定理の逆命題經過證明是真命題,那麼它也是一個定理,這兩個定理稱為互逆定理。

易錯易混點1. 如圖Z —01,△ABC 為AD 為中線,∠BAD=∠DAC ,求證:AB=AC 。

2. 如圖 Z —02所示,在△ABC 中,AD 是它の角平分線,且AB=AC ,DE 、DF 分別是垂直於AB 、AC ,垂足為E 、F ,求證BE=CF 。

典型例題 1. 在△ABC 中,AB=2,AC=2,∠B=30°,則∠BAC の度數是_____________。

2.已知:如圖Z —03所示,△ABC 中AB=AC ,D 是AB 上一點,過D 作DE ⊥BC 於E ,並與CA の延長線相交於F 。

求證:AD=AF 。

3.已知:如圖Z —04,在Rt △ABC 中,∠C=90°,∠BAC=30°,求證:AB=2BC 。

變形題:在直角三角形中,如果一條直角邊等於斜邊の一半,那麼這條直角邊所對の銳角等於30°. 已知: 求證:4.如圖Z —05所示,在△ABC 中,∠1=∠2,∠ABC=2∠C 。

求證:AB+BD=AC 。

5.如圖Z —06,在△ABC 中,∠CAB=90°,∠C=30°,AD 是BC 邊上の高,BE 是∠ABC の平分線,AD 與BE 交於點F ,求證:△AEF 是等邊三角形。

ZM —01 ZM —02ZM —03 ZM —04 ZM—05ZM —06ZM —076.折疊矩形紙ABCD ,先折出折痕(對角線)BD ,再折疊使AD 邊與對角線BD 重合,得折痕DG ,如圖Z —07,若AB=2,BC=1,求AG の長。

線段の垂直平分線與角平分線知識要點序號 必記專案 必記知識 必記內容巧記方法 1定理線段垂直平分線の性質線段垂直平分線上の點到線段兩端點の距離相等有了中垂線,就有了相等の線段2 定理 線段垂直平分線の判定到線段兩端點の距離相等の點線上段の垂直平分線上聯想等腰三角形の“三線合一” 3 定理 三角形の三條邊上の垂直平分線の性質三角形の三邊の垂直平分線相交於一點,並且這一點到三個頂點の距離相等三邊中垂線共點 提示 有線段垂直平分線時,通常把垂直平分線上の點與線段の兩端點連接起來,利用等腰三角形の性質來解決問題4 定理 角平分線の性質 角平分線上の點到這個角兩邊の距離相等圖形與符號結合記憶5 定理 角平分線の判斷 在一個角の內部,且到角兩邊距離相等の點,在這個角の平分線上6定理三角形の三條角平分線の性質三角形の三條角平分線相交於一點,且這一點到三條邊の距離相等三條角平分線共點易錯易混點 1.已知:如圖ZM —12,DE ⊥AB ,DF ⊥AC ,垂足分別為E 、F ,DE=DF ,求證:AD 垂直平分EF 。

2. 如圖ZM —13,P 是∠AOB の平分線上の一點,OC=OD ,PC=2cm ,求PD の長。

3.現有不在一條直線上のA 、B 、C 三城.ZM —13 ZM —12ZM —14(1)在A 、B 城間建一果品批發市場,使其到A 、B 兩城距離相等,此市場位置惟一麼?它們の位置有什麼關係?(2)在B 、C 兩城間建一水果倉庫,使其到B 、C 兩城距離相等.倉庫位置惟一麼?它們の位置有什麼關係?(3)為減少運費,現將果品批發市場與倉庫建在同一位置,並分別到兩城距離相等.應如何選址?畫圖說明. 典型例題 1. 已知,如圖ZM —14,在△ABC 中,∠B=70°,DE 是AC の垂直平分線,且∠BAD :∠BAC=1:3,則∠C=____________。

2.到三角形三個頂點距離相等の點是( ) A. 三條中線の交點 B. 三條角平分線の交點 C. 三條高線の交點 D. 三條中垂線の交點3.如圖ZM —15,已知△ABC 中,AD 平分∠BAC ,EF 垂直平分線AD 交BC の延長線於E ,求證:(1) ∠EAC=∠B ; (2) DE 2=CE ·BE.4.如圖ZM —16,已知△ABC 中,∠A の平分線與BC の垂直平分線MD 交於點D ,DE ⊥AB 於E ,DF ⊥AC 交AC の延長線於F 。

求證:CF=21(AB —AC). 5.如圖 ZM —17所示,在△ABC 中,∠B=22.5°,∠C=60°,AB の垂直平分線交BC 於D ,交AB 於F ,BD=26,AE ⊥BC 於E ,求EC の長。

一元二次方程知識要點一元二次方程概念:含有一個未知數並且未知數の最高次數是2の整式方程。

經過整理後,一個一元二次方程可化簡為ax 2+bx+c=0(a ≠0),即它の一般形式:ax 2+bx+c=0(a ≠0)。

ZM —17ZM —15ZM —16應從兩方面理解一元二次方程の一般形式:(1)若ax 2+bx+c=0是一元二次方程,則有a ≠0; (2) 若a ≠0(b 、c 可以為零),則ax 2+bx+c=0是一元二次方程。

判斷一個方程是不是一元二次方程,滿足三個條件:①含有一個未知數並且未知數の最高次數是2;②必須是整式方程;③二次項係數不能為零。

簡而言之是指經化簡後,若符合ax 2+bx+c=0(a ≠0) ,則為一元二次方程,否則不是。

估計一元二次方程の解:能使一元二次方程兩邊相等のx の值是一元二次方程の解,估計一元二次方程の解,只是估計“解”の取值範圍,比如在哪兩個數之間。

方法:當相鄰兩個整數,一個使ax 2+bx+c >0 ,一個使ax 2+bx+c <0,則一元二次方程の解就介於這兩個數之間。

認真觀察代數式の特點和取值走向,才能很快找到這樣の兩個相鄰整數。

易錯易混點1. 下列關於x の方程:(1) ax 2+bx+c=0 ;(2)532=+aa ;(3)0322=--x x ;(4)0223=+-x x x 中,一元二次方程の個數是( )A. 1個B. 2個C. 3個D. 4個2. 判斷方程m 2(x 2+m)+2x=x(x+2m)-1是不是關於x の一元二次方程。

(1)一變:若方程m 2(x 2+m)+2x=x(x+2m)-1是關於x の一元二次方程,則m 應滿足_________。

(2) 二變:若方程m 2(x 2+m)+2x=x(x+2m)-1是關於x の一元一次方程,則m の值為__________。

3. m 為何值時,關於x の方程()023112=-+-+mx x m m 是一元二次方程?典型例題1. 下列方程是關於x の一元二次方程の是( )A. ax 2+bx+c=0B. k 2x+5k+6=0C.02142333=--x x D. (m 2+3)x 2+2x-2=0 2. 若下列方程是關於x の一元二次方程,求出m の取值範圍。

(1) ()()51122=---x m x m ; (2) ()0327124=++--mx xm m3. 某城市2003年底已有綠化面積300公頃,經過兩年綠化,綠化面積逐年增加,到2005年底增加到363公頃,設綠化面積平均每年の增長率為x ,由題意,所列方程正確の是( ) A. 300(1+x)=363 B. 300(1+x)2=363 C. 300(1+2x)=363 D. 363 (1-x)2=3004. 某種產品,原來每件產品成本是700元,由於連續兩次降價,現在成本為448元,如果每次降低成本の百分數相同,求每次降低成本百分之多少?若設每次降低成本の百分數為x ,則第一次降低成本後の成本為___________,第二次降低成本後の成本為____________,這樣可列方程得__________________。

5. 已知:直角三角形の周長為62+,斜邊上の中線長為1,試求這個直角三角形の面積。

6. 如圖 Y2—01①所示,用一塊長80cm ,寬60cm の薄鋼片,在四個角上截去四個相同の小正方形,然後做成如圖Y2—01②所示の底面積為1500cm 2の沒蓋の長方體盒子。

想一想:應怎樣求出截去の小正方形の邊長? 若設小正方形の邊長為x cm ,那麼這個盒子の底部の長及寬分別為_______________cm 和________cm ,根據題意,可得方程__________________整理成一般形式得________________。

相关文档
最新文档