河南省郑州市2015-2016学年高二上学期期末考试数学(文)试题含答案
(完整版)郑州市2016-2017高二上学期期末考试数学(文)试题含答案,推荐文档

2016-2017学年上学期期末考试高二数学(文)试题第Ⅰ卷(选择题)一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求.1.不等式的解集为11x> A. B. C. D.(),1-∞()0,1()1,+∞()0,+∞2. 在中,若,则ABC ∆11,2,sin 3a b A ===sin B =A.B. 23133. 等比数列中,,则{}n a 243520,40a a a a +=+=6a = A. 128 B. 64 C. 32 D. 164. 两座灯塔A 和B 与海洋观测站C 的距离分别是和,灯塔A 在观测站C 的北偏东,akm 2akm 20 灯塔B 在观测站C 的南偏东,则灯塔A 与灯塔B 之间的距离为40B. 2akm 5. “”是“”的a b >22a b > A. 充要条件 B. 充分不必要条件C. 必要不充分条件D.既不充分也不必要条件6.函数的最小值为-2,则的最大值为()[]3239,2,2f x x x x a x =-+++∈-()f xA. 25B. 23C. 21D. 207. 等差数列的前项和为,若,则{}n a n n S 100010182a a +=2017S A. 1008 B. 1009 C. 2016 D.20178. 的内角分别为,已知,则ABC ∆,,A B C ,,a b c 24,cos 3a c A ===b =A. 9.已知直线与曲线相切,则的值为y x k =+xy e =k A. B. 2 C. 1 D. 0e10. 过抛物线的焦点作直线交抛物线于A,B 两点,若O 为坐标原点,则24y x =OA OB ⋅=A. B. C. D.1-2-3-4-11. 在中,若,则有ABC ∆2,60BC A ==AB CA ⋅A. 最大值-2B. 最小值-2C.最大值D.最小值12..圆O 的半径为定长,A 是平面上一定点,P 是圆上任意一点,线段AP 的垂直平分线和直线OP l 相交于点Q,当点P 在圆上运动时,点Q 的轨迹为A. 一个点B. 椭圆C. 双曲线D.以上选项都有可能第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题5分,共20分.13.若命题,则为 .2:,20xp x R x ∀∈+>p ⌝14. 若满足,则的取值范围为 .,x y 2,1,x y x x y ≤≤⎧⎨+≤⎩2z x y =+15. 数列满足,且,则 .{}n a 121,2a a ==()2117n n n a a n N a *++-=∈1001i i a ==∑16. 已知F 为双曲线的左焦点,,P 是C 右支上一点,当周长最小时,22:1412x y C -=()1,4A APF ∆点F 到直线AP 的距离为 .三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明或推理、验算过程.17.(本题满分10分)已知是等差数列,是等比数列,且{}n a {}n b 2311842,4,,.b b a b a b ==== (1)求数列的通项公式;{}n a (2)设,求数列的前项和.n n n c a b =+{}n c n18. 在中,a,b,c 的对角分别为A,B,C 的对边,ABC ∆22284,6,sin .55bc a c b a B -=-== (1)求角A 的正弦值; (2)求的面积.ABC ∆19.(本题满分12分)已知命题函数的定义域为R,命题对于,不等式:p ()()2lg 2f x x x a =-+:q []1,3x ∈恒成立,若为真命题,为假命题,求实数a 的取值范围.260ax ax a --+<p q ∨p q ∧20.(本题满分12分)为数列的前项和,已知n S {}n a n 20,2.n n n n a a a S >+= (1)求数列的通项公式;{}n a (2)若,求数列的前项和.22n n n b a a +=⋅{}n b n n T21.(本题满分12分) 已知函数()ln .f x x = (1)若与相切,求k 的值;y kx =()f x (2)证明:当时,对任意不等式恒成立.1a ≥0x >()11a f x ax x-≤+-22.(本题满分12分)在圆上任取一动点P ,过P 作轴的垂线PD ,D 为垂足,动点M 的223x y +=x PD =轨迹为曲线C. (1)求C 的方程及其离心率;(2)若直线交曲线C 交于A,B 两点,且坐标原点到直线,求面积的最l l AOB ∆大值.2016—2017学年度郑州市上期期末考试高二数学(文科)参考答案1-12 BABCA ADDCC BD13. 14. 15. 1;16.17.解:(Ⅰ)因为是等比数列,且,所以………….2分所以………….5分(Ⅱ)由(1)可知,………….7分设的前n项和为,则………….10分18.(Ⅰ)可得………….3分所以………..6分(Ⅱ)因为,解得…………..8分将…………..10分由面积公式或勾股定理可得面积为24或.…………..12分19.解:当P真时,的定义域为R,有,解得 .………..2分当q真时,对任意实数x,不等式成立,所以,解得…………..4分又因为“”为真,“”为假,所以p,q一真一假,…………..6分当p真q假时,解得………..8分当p假q真时,解得………..10分所以实数a的取值范围是. ………..12分20.解:(Ⅰ)由题得两式子相减得:…………..2分结合得…………..4分令n=1得,即所以是首项为1,公差为1的等差数列,即…………..6分(Ⅱ)因为…………..8分所以即数列的前项和…………..12分21.(Ⅰ)解:由,设切点坐标为,则解得………..5分(Ⅱ)证明:只需证即恒成立,当时,记则在上,,, ………..9分时,单调递减;时,单调递增,,即恒成立………..12分22.解:(Ⅰ)设,,由得…………..2分因为,所以,即其离心率…………..5分(Ⅱ)当AB垂直x轴时,.当AB不垂直x轴时,设直线AB的方程为由题意得,即…………..7分联立得设,则…………..9分所以当时,;当时,当且仅当即时,去等号,此时满足.综上所述,,此时的最大值为…………..12分。
河南省郑州市高二上学期期末数学试卷(文科)参考答案与试题解析

河南省郑州市2014-2015学年高二上学期期末数学试卷(文科)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)抛物线x2=2y的焦点坐标是()A.B.C.(1,0)D.(0,1)考点:抛物线的简单性质.专题:计算题.分析:根据抛物线的定义可得,x2=2py(p>0)的焦点坐标(0,)可直接求解解答:解:根据抛物线的定义可得,x2=2y的焦点坐标(0,)故选B.点评:本题主要考查了抛物线的简单的性质,属于基础试题.2.(5分)设a,b∈R,则a>b是(a﹣b)b2>0的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断.专题:规律型.分析:结合不等式的性质,利用充分条件和必要条件的定义进行判断.解答:解:当a>b,b=0时,不等式(a﹣b)b2>0不成立.若(a﹣b)b2>0,则b≠0,且a﹣b>0,∴a>b成立.即a>b是(a﹣b)b2>0的必要不充分条件.故选:B.点评:本题主要考查充分条件和必要条件的判断,利用不等式的性质是解决本题的关键,比较基础.3.(5分)不等式x2+2014x﹣2015>0的解集为()A.{x|﹣2015<x<1} B.{x|x>1或x<﹣2015}C.{x|﹣1<x<2015} D.{x|x<﹣1或x>2015}考点:一元二次不等式的解法.专题:不等式的解法及应用.分析:把不等式化为(x+2015)(x﹣1)>0,求出解集即可.解答:解:不等式x2+2014x﹣2015>0可化为(x+2015)(x﹣1)>0,解得x<﹣2015或x>1;∴不等式的解集为{x|x>1或x<﹣2015}.故选:B.点评:本题考查了一元二次不等式的解法与应用问题,是基础题目.4.(5分)等差数列{a n}的前n项和为S n,且S3=6,a3=0,则公差d等于()A.﹣1 B.1 C.2 D.﹣2考点:等差数列的前n项和.专题:等差数列与等比数列.分析:由题意结合等差数列的性质和求和公式可得a2的值,进而可得公差d.解答:解:∵等差数列{a n}的前n项和为S n,且S3=6,a3=0,∴S3=a1+a2+a3=3a2=6,∴a2=2,∴公差d=a3﹣a2=0﹣2=﹣2故选:D点评:本题考查等差数列的求和公式和通项公式,属基础题.5.(5分)如图所示,为了测量某障碍物两侧A,B间的距离,给定下列四组数据,不能确定A,B间距离的是()A.α,a,b B.α,β,a C.a,b,γD.α,β,b考点:解三角形的实际应用.专题:应用题;解三角形.分析:给定α,a,b,由正弦定理,β不唯一确定,故不能确定A,B间距离.解答:解:给定α,a,b,由正弦定理,β不唯一确定,故不能确定A,B间距离.故选:A.点评:本题考查解三角形的实际应用,考查学生的计算能力,比较基础.6.(5分)下列关于星星的图案构成一个数列,该数列的一个通项公式是()A.a n=n2﹣n+1 B.a n=C.a n=D.a n=考点:数列递推式.专题:规律型.分析:由图中所给的星星个数:1,1+2,1+2+3,…,1+2+3+…+n;得出数列第n项,即通项公式.解答:解析:从图中可观察星星的构成规律,n=1时,有1个;n=2时,有3个;n=3时,有6个;n=4时,有10个;∴a n=1+2+3+4+…+n=.答案:C点评:这是一个简单的自然数求和公式,由观察得出猜想,一般不需要证明.考查学生的观察猜想能力.7.(5分)设变量x,y满足约束条件:,则目标函数z=2x+3y的最小值为()A.6 B.7 C.8 D.23考点:简单线性规划的应用.专题:不等式的解法及应用.分析:本题考查的知识点是线性规划,处理的思路为:根据已知的约束条件.画出满足约束条件的可行域,再用角点法,求出目标函数的最小值.解答:解:画出不等式.表示的可行域,如图,让目标函数表示直线在可行域上平移,知在点B自目标函数取到最小值,解方程组得(2,1),所以z min=4+3=7,故选B.点评:用图解法解决线性规划问题时,分析题目的已知条件,找出约束条件和目标函数是关键,可先将题目中的量分类、列出表格,理清头绪,然后列出不等式组(方程组)寻求约束条件,并就题目所述找出目标函数.然后将可行域各角点的值一一代入,最后比较,即可得到目标函数的最优解.8.(5分)已知a>0,b>0,且2是2a与b的等差中项,则的最小值为()A.B.C.2 D.4考点:基本不等式;等差数列.专题:不等式的解法及应用.分析:利用等差中项及基本不等式的性质即可求出答案.解答:解:∵2是2a与b的等差中项,∴2a+b=4,又∵a>0,b>0,∴=,当且仅当2a=b=2,即a=1,b=2时取等号,∴.故选B.点评:充分理解基本不等式及其变形是解题的关键.9.(5分)已知点(2,1)和(﹣1,3)在直线3x﹣2y+a=0的两侧,则a的取值范围是()A.﹣4<a<9 B.﹣9<a<4 C.a<﹣4或a>9 D.a<﹣9或a>4考点:直线的斜率.专题:直线与圆.分析:由点(2,1)和(﹣1,3)在直线3x﹣2y+a=0的两侧,把两点的坐标代入3x﹣2y+a 所得的值异号,由此列不等式求得a的范围.解答:解:∵点(2,1)和(﹣1,3)在直线3x﹣2y+a=0的两侧,∴(3×2﹣2×1+a)(﹣1×3﹣2×3+a)<0,即(a+4)(a﹣9)<0.解得﹣4<a<9.故选:A.点评:本题考查了简单的线性规划,考查了二元一次不等式所表示的平面区域,是基础题.10.(5分)已知各项为正的等比数列{a n}中,a4与a14的等比中项为,则2a7+a11的最小值为()A.16 B.8 C.D.4考点:等比数列的通项公式.专题:计算题;等差数列与等比数列.分析:由各项为正的等比数列{a n}中,a4与a14的等比中项为,知a4•a14=(2)2=8,故a7•a11=8,利用均值不等式能够求出2a7+a11的最小值.解答:解:∵各项为正的等比数列{a n}中,a4与a14的等比中项为,∴a4•a14=(2)2=8,∴a7•a11=8,∵a7>0,a11>0,∴2a7+a11≥2=2=8.故选B.点评:本题考查等比数列的通项公式的应用,是中档题.解题时要认真审题,仔细解答.11.(5分)已知f(x)=x2+2xf′(1),则f′(0)等于()A.0 B.﹣2 C.﹣4 D.2考点:导数的运算.专题:导数的概念及应用.分析:把给出的函数求导得其导函数,在导函数解析式中取x=1可求2f′(1)的值.解答:解:由f(x)=x2+2xf′(1),得:f′(x)=2x+2f′(1),取x=1得:f′(1)=2×1+2f′(1),所以,f′(1)=﹣2.所以f′(x)=2x﹣4故f′(0)=2f′(1)=﹣4,故选:C.点评:本题考查了导数运算,解答此题的关键是理解原函数解析式中的f′(1),在这里f′(1)只是一个常数,此题是基础题.12.(5分)已知方程=k在(0,+∞)上有两个不同的解α,β(α<β),则下面结论正确的是()A.sinα=﹣αcosβB.sinα=αcosβC.cosα=βsinβD.sinβ=βsinα考点:根的存在性及根的个数判断.专题:计算题;作图题;函数的性质及应用;导数的综合应用.分析:由题意,方程=k可化为|sinx|=kx,作函数y=|sinx|与y=kx的图象,从而可求得y′|x=β=﹣cosβ,即k=﹣cosβ,从而可得=﹣cosβ,化简即可.解答:解:在(0,+∞)上,方程=k可化为|sinx|=kx,作函数y=|sinx|与y=kx的图象如下,在x=β时,==k,又∵在x=β处直线与y=|sinx|相切,∴y′|x=β=﹣cosβ,故k=﹣cosβ,则=﹣cosβ,即sinα=﹣αcosβ;故选A.点评:本题考查了导数的几何意义的应用及方程的根与函数图象的关系应用,同时考查了数形结合的思想应用,属于中档题.二、填空题(共4小题,每小题5分,满分20分)13.(5分)命题“∃x<0,有x2>0”的否定是∀x<0,有x2≤0.考点:命题的否定.分析:对特称命题的否定是一个全称命题,对一个全称命题的否定是全称命题,即:对命题“∃x∈A,P(X)”的否定是:“∀x∈A,¬P(X)”;对命题“∀x∈A,P(X)”的否定是:“∃x∈A,¬P(X)”,由此不难得到对命题“∃x<0,有x2>0”的否定.解答:解:∵对命题“∃x∈A,P(X)”的否定是:“∀x∈A,¬P(X)”∴对命题“∃x<0,有x2>0”的否定是“∀x<0,有x2≤0”故答案为:∀x<0,有x2≤0点评:对命题“∃x∈A,P(X)”的否定是:“∀x∈A,¬P(X)”;对命题“∀x∈A,P(X)”的否定是:“∃x∈A,¬P(X)”,即对特称命题的否定是一个全称命题,对一个全称命题的否定是全称命题14.(5分)若2、a、b、c、9成等差数列,则c﹣a=.考点:等差数列的性质.专题:等差数列与等比数列.分析:由等差数列的性质可得2b=2+9,解之可得b值,再由等差中项可得a,c的值,作差即可得答案.解答:解:由等差数列的性质可得2b=2+9,解得b=,又可得2a=2+b=2+=,解之可得a=,同理可得2c=9+=,解得c=,故c﹣a=﹣==故答案为:点评:本题考查等差数列的性质和通项公式,属基础题.15.(5分)在△ABC中,角A,B,C所对的边分别为a,b,c,若sinA=sinC,B=30°,b=2,则边c=2.考点:正弦定理;余弦定理.专题:解三角形.分析:在△ABC中,由正弦定理求得a=c,结合余弦定理,即可求出c的值解答:解:∵在△ABC中,sinA=sinC∴a= c又∵B=30°,由余弦定理,可得:cosB=cos30°===解得c=2故答案为:2.点评:本题考查的知识点是正弦定理和余弦定理,熟练掌握定理是解题的关键,属于中档题.16.(5分)现有甲、乙两人相约到登封爬嵩山,若甲上山的速度为v1,下山的速度为v2(v1≠v2),乙上山和下山的速度都是(甲、乙两人中途不停歇且下山时按原路返回),则甲、乙两人上下山所用的时间t1、t2的大小关系为t1>t2.考点:有理数指数幂的化简求值.专题:计算题;函数的性质及应用.分析:由题意,甲用的时间t1=+=S;乙用的时间t2=2×=;从而作差比较大小即可.解答:解:由题意知,甲用的时间t1=+=S•;乙用的时间t2=2×=;∴t1﹣t2=S﹣=S(﹣)=S>0;故t1>t2;故答案为:t1>t2.点评:本题考查了有理指数幂的化简求值,属于基础题.三、解答题(共6小题,满分70分)17.(10分)设等差数列{a n}满足a3=5,a10=﹣9.(Ⅰ)求{a n}的通项公式;(Ⅱ)求{a n}的前n项和S n的最大值.考点:等差数列的前n项和;等差数列的通项公式.专题:计算题;等差数列与等比数列.分析:(Ⅰ)运用等差数列的通项公式,列出方程,解得首项和公差,即可得到通项公式;(Ⅱ)运用前n项和的公式,配方,结合二次函数的最值,即可得到.解答:解:(Ⅰ)由a n=a1+(n﹣1)d,及a3=5,a10=﹣9得,,解得,数列{a n}的通项公式为a n=11﹣2n.(Ⅱ)由(1)知.因为.所以n=5时,S n取得最大值25.点评:本题考查等差数列的通项公式和前n项和公式的运用,考查解方程组和二次函数的最值的求法,属于基础题.18.(12分)命题p:关于x的不等式x2+2ax+4>0,对一切x∈R恒成立.命题q:抛物线y2=4ax 的焦点在(1,0)的左侧,若p或q为真命题,p且q为假命题,求实数a的取值范围.考点:复合命题的真假.专题:计算题;简易逻辑.分析:先分别求出p,q为真时实数a的取值范围,再由p或q为真,p且q为假,可知p 和q一真一假,从而解得.解答:解:设g(x)=x2+2ax+4,由于关于x的不等式x2+2ax+4>0对一切x∈R恒成立,故△=4a2﹣16<0,∴﹣2<a<2.又∵抛物线y2=4ax的焦点在(1,0)的左侧,∴a<1.a≠0.又由于p或q为真,p且q为假,可知p和q一真一假.(1)若p真q假,则∴1≤a<2;或a=0.(2)若p假q真,则∴a≤﹣2.综上可知,所求实数a的取值范围为1≤a<2,或a≤﹣2.或a=0.点评:本题考查了复合命题的真假性的应用,属于基础题.19.(12分)在锐角△ABC中,角A,B,C的对边分别为a,b,c,且b=2csinB(1)求角C的大小;(2)若c2=(a﹣b)2+6,求△ABC的面积.考点:余弦定理;正弦定理.专题:解三角形.分析:(1)已知等式利用正弦定理化简,根据sinB不为0求出sinC的值,由C为锐角求出C的度数即可;(2)利用余弦定理列出关系式,把cosC的值代入并利用完全平方公式变形,结合已知等式求出ab的值,再由sinC的值,利用三角形面积公式求出三角形ABC面积即可.解答:解:(1)由正弦定理==,及b=2csinB,得:sinB=2sinCsinB,∵sinB≠0,∴sinC=,∵C为锐角,∴C=60°;(2)由余弦定理得:c2=a2+b2﹣2abcosC=a2+b2﹣ab=(a﹣b)2+ab,∵c2=(a﹣b)2+6,∴ab=6,则S△ABC=absinC=.点评:此题考查了正弦、余弦定理,三角形面积公式,以及特殊角的三角函数值,熟练掌握定理是解本题的关键.20.(12分)汽车在行驶中,由于惯性的作用,刹车后还要继续向前滑行一段距离才能停住,我们称这段距离为“刹车距离”.刹车距离是分析事故的一个重要因素.某市的一条道路在一个限速为40km/h的弯道上,甲、乙两辆汽车相向而行,发现情况不对,同时刹车,但还是相撞了.事后现场勘查测得甲车刹车距离刚好12m,乙车刹车距离略超过10m.又知甲、乙两种车型的刹车距离 S(m)与车速x(km/h)之间分别有如下关系:S甲=0.1x+0.01x2,S乙=0.05x+0.005x2.问:甲、乙两车有无超速现象?考点:函数模型的选择与应用.专题:函数的性质及应用.分析:由题意列出不等式组,分别求解两种车型的事发前的车速,判断它们是不是超速行驶,即可得到结论.解答:解:由题意知,对于甲车,有0.1x+0.01x2=12.即x2+10x﹣1200=0,…(2分)解得x=30或x=﹣40(x=﹣40不符合实际意义,舍去).…(4分)这表明甲车的车速为30km/h.甲车车速不会超过限速40km/h.…(6分)对于乙车,有0.05x+0.005x2>10,即x2+10x﹣2000>0,…(8分)解得x>40或x<﹣50(x<﹣50不符合实际意义,舍去).…(10分)这表明乙车的车速超过40km/h,超过规定限速.…(12分)点评:本题的考点是函数模型的选择与应用,考查不等式模型的构建,考查利用数学知识解决实际问题.解题的关键是利用函数关系式构建不等式.21.(12分)已知函数f(x)=e x﹣2x(e为自然对数的底数)(1)求函数f(x)的单调区间(2)若存在使不等式f(x)<mx成立,求实数m的取值范围.考点:利用导数研究函数的单调性;利用导数求闭区间上函数的最值.专题:导数的综合应用.分析:(Ⅰ)先求出函数的导数,令f′(x)=0,解得x=ln2,从而求出函数的单调区间;(Ⅱ)问题转化为求的最小值.令,通过求导得到函数g(x)的最小值,从而求出m的范围.解答:解:(Ⅰ)f′(x)=e x﹣2,令f′(x)=0,即e x﹣2=0,解得x=ln2,x∈(﹣∞,ln2)时,f′(x)<0,x∈(ln2,+∞)时,f′(x)>0,∴f(x)的单调递减区间为(﹣∞,ln2),单调递增区间为(ln2,+∞).(Ⅱ)由题意知使f(x)<mx成立,即使成立;所以的最小值.令,,所以g(x)在上单调递减,在上单调递增,则g(x)min=g(1)=e﹣2,所以m∈(e﹣2,+∞).点评:本题考查了函数的单调性,函数的最值问题,考查了导数的应用,考查转化思想,是一道中档题.22.(12分)已知圆C:x2+y2=3的半径等于椭圆E:+=1(a>b>0)的短半轴长,椭圆E的右焦点F在圆C内,且到直线l:y=x﹣的距离为﹣,点M是直线l与圆C的公共点,设直线l交椭圆E于不同的两点A(x1,y1),B(x2,y2).(Ⅰ)求椭圆E的方程;(Ⅱ)求证:|AF|﹣|BF|=|BM|﹣|AM|.考点:直线与圆锥曲线的综合问题.专题:圆锥曲线中的最值与范围问题.分析:(Ⅰ)设点F(c,0)(c>0),由已知条件得,圆C的半径等于椭圆E的短半轴长,由此能求出椭圆方程.(Ⅱ)由圆心O到直线l的距离为,得,由已知条件推导出|AF|+|AM|=2,|BF|+|BM|=2,由此能证明|AF|﹣|BF|=|BM|﹣|AM|.解答:(Ⅰ)解:设点F(c,0)(c>0),则F到直线l的距离为,即,…(2分)因为F在圆C内,所以,故c=1;…(4分)因为圆C的半径等于椭圆E的短半轴长,所以b2=3,椭圆方程为.…(6分)(Ⅱ)证明:因为圆心O到直线l的距离为,所以直线l与圆C相切,M是切点,故△AOM为直角三角形,所以,又,得,…(7分),又,得,…(9分)所以|AF|+|AM|=2,同理可得|BF|+|BM|=2,…(11分)所以|AF|+|AM|=|BF|+|BM|,即|AF|﹣|BF|=|BM|﹣|AM|.…(12分)点评:本题考查椭圆方程的求法,考查两组线段差相等的证明,解题时要认真审题,注意点到直线的距离公式的合理运用.。
郑州市2014-2015学年上期期末高二文科数学试卷(含答案)

郑州市2014-2015学年上期期末考试高二文科数学试卷一、选择题(本大题共12小题,每小题5分,共60分。
在每小题所给出的四个选项中,只有一项是符合题目要求的)1. 抛物线22x y = 的焦点坐标是( )A. 1(,0)2B. 1(0,)2C. (1,0)D. (0,1) 2. 设,a b R ∈ ,则“a b > ”是“2()0a b b -> ”的( ) A.充分不必要条件 B. 必要不充分条件 C.充要条件 D.既不充分也不必要条件 3.不等式2201420150x x +->的解集为( )A. {20151}x x -<<B. {12015}x x x ><-或C. {12015}x x -<<D. {-12015}x x x 或<>4. 等差数列{}n a 的前n 项和为n S ,且336,0S a ==,则公差d 等于( ) A. 1- B. 1 C.2 D. 2-5.如图所示,为了测量某障碍物两侧,A B 间的距离,给定下列四组数据,不能确定,A B 间距离的是( )A.,,a b αB.,,a αβC. ,,a b γD.,,b αβ6.如图所示,是古希腊人用小石子在沙滩上摆成的星星图案,它构成一个数列,该数列的一个通项公式是( )A. 21n a n n =-+B. (1)2n n n a -=C. (1)2n n n a +=D. (2)2n n n a +=7.设变量,x y 满足约束条件3123x y x y x y +≥⎧⎪-≥-⎨⎪-≤⎩,则目标函数23z x y =+ 的最小值为( )A. 6B. 7C.8D.23γβαCBA8.已知0,0a b >> ,且2是2a 与b 的等差中项 ,则1ab的最小值为( ) A.14 B. 12C. 2D.4 9.已知点2,1()和-1,3()在直线320x y a -+=的两侧,则a 的取值范围是( )A. 49a -<<B. 94a -<<C. 4a <- 或 9a >D. 9a <- 或 4a >10. 已知各项均为正数的等比数列{}n a 中,4a 与14a 的等比中项为7112a a +的最小值为( )A.16B. 4C.D.8 11.已知2()2(1)f x x xf '=+,则(0)f '等于( )A.0B. 2-C. 4-D.212.已知方程sin xk x=在(0,)+∞上有两个不同的解,()αβαβ<,则下面结论正确的是( ) A. sin cos ααβ=- B. sin cos ααβ= C. cos sin αββ= D. sin sin ββα= 二、填空题(本大题共4小题,每小题5分,共20分) 13. 命题2:0,0p x x ∃<>的否定是_______________ 14.若2,,,,9a b c 成等差数列,则_______c a -=15.在ABC ∆中,角,,A B C 的对边分别为,,a b c ,若sinA 30,2b ===, 则边长______c =16.现有甲、乙两人相约到登封爬嵩山,若甲上山的速度为1v ,下山的速度为212()v v v ≠,乙上山和下山的速度都是122v v +(甲、乙两人中途不停歇且下山时按原路返回),则甲、乙两人上下山所用的时间12,t t 的大小关系为________三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分10分)设等差数列{}n a 满足3105,9a a ==- (1)求{}n a 的通项公式;(2)求{}n a 的前n 项和n S 的最大值18.(本小题满分12分)命题p :关于x 的不等式2240x ax ++>,对一切x R ∈恒成立。
2015--2016年度高二第一学期数学文科期末试卷参考答案

2015--2016年度高二数学文科期末试卷参考答案一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
题号 1 2 3 4 5 6 7 8 9 10 11 12 选项A A D D A A C B C A D C 二、填空题:本大题共4小题,每小题5分,共20分。
13.5314.22 15.-216.8三、解答题:本大题共6小题,共70分。
解答应写出文字说明、证明过程或演算步骤。
17.解:(1)由正弦定理得,sinsinABACCB=∠∠再由三角形内角平分线定理得∴==,21BDDCABAC.21sinsin=∠∠CB(2)︒=∠+∠∴︒=∠120,60CBBAC.30,33tan,sin2)120sin(,sin2sin.21sinsin1︒=∠∴=∠=∠-︒∴∠=∠∴=∠∠BBBBBCCB展开得)得由(19.(本题12分)本题主要考查等比数列的通项公式及等差、等比数列的求和公式、不等式等基础知识,同时考查运算求解能力。
解:(Ⅰ)设等比数列}{na的首项为)0(11>aa,公比为)0(>qq,则由条件得⎪⎩⎪⎨⎧=+=⋅41312151311112q a q a q a q a q a q a , ……………… 3分 解得211==q a ,则n n a 21= ………… 5分 由等比数列前n 项和公式得1(1)1112n nna q S q ………………7分 (Ⅱ)由(Ⅰ)知1(1)1112n nna q S q又2)1()21(+=n n nT ………………10分若存在正整数k ,使得不等式14<++nk n T S 对任意的n ∈N *都成立, 则1)21(21122)1(<+-+++n n kn ,即22)1(+-<n n k ,正整数k 只有取1=k ………………14分 20. 解:(I )设BD 交AC 于点O ,连结EO 。
河南省郑州市2015-2016学年高二数学下学期期末试卷理(含解析)

2015-2016学年河南省郑州市高二(下)期末数学试卷(理科)一、选择题(共12小题,每小题5分,满分60分.在每小题所给的四个答案中,只有一项是符合题目要求的)1.已知复数z满足z+3i﹣3=6﹣3i,则z=()A.9 B.3﹣6i C.﹣6i D.9﹣6i2.函数f(x)=2x+1在(1,2)内的平均变化率()A.3 B.2 C.1 D.03.将5本不同的数学用书放在同一层书架上,则不同的放法有()A.50 B.60 C.120 D.904.在2013年9月15日,某市物价部门对本市的5家商场的某种商品的一天销售量及其价格进行调查,5家商场的售价x元和销售量y件之间的一组数据如下表所示:价格x 9 9.5 10 10.5 11销售量y 11 10 8 6 5由散点图可知,销售量y与价格x之间有较好的线性相关关系,其线性回归方程是:y=﹣3.2x+a,则a=()A.﹣24 B.35.6 C.40.5 D.405.下列说法错误的是()A.自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系叫做相关关系B.在线性回归分析中,相关系数r的值越大,变量间的相关性越强C.在残差图中,残差点分布的带状区域的宽度越狭窄,其模型拟合的精度越高D.在回归分析中,R2为0.98的模型比R2为0.80的模型拟合的效果好6.设(2﹣x)6=a0+a1x+a2x+…+a6x6则|a1|+|a2|+…+|a6|的值是()A.665 B.729 C.728 D.637.若x=2是函数f(x)=x(x﹣m)2的极大值点,则m的值为()A.3 B.6 C.2或6 D.28.由曲线y2=2x和直线y=x﹣4所围成的图形的面积()A.21 B.16 C.20 D.189.对标有不同编号的6件正品和4件次品的产品进行检测,不放回地依次摸出2件.在第一次摸出正品的条件下,第二次也摸到正品的概率是()A.B.C.D.10.对于R上的可导函数f(x),若a>b>1且有(x﹣1)f′(x)≥0,则必有()A.f(a)+f(b)<2f(1)B.f(a)+f(b)≤2f(1)C.f(a)+f(b)≥2f(1)D.f(a)+f(b)>2f(1)11.以下数表的构造思路源于我国南宋数学家杨辉所著的《详解九章算术》一书中的“杨辉三角性”.该表由若干行数字组成,从第二行起,每一行中的数字均等于其“肩上”两数之和,表中最后一行仅有一个数,则这个数为()A.2017×22015B.2017×22014C.2016×22015D.2016×2201412.定义在R上的函数f(x)满足:f(x)+f′(x)>1,f(0)=4,则不等式e x f(x)>e x+3(其中e为自然对数的底数)的解集为()A.(0,+∞)B.(﹣∞,0)∪(3,+∞)C.(﹣∞,0)∪(0,+∞)D.(3,+∞)二、填空题(共4小题,每小题5分,满分20分)13.若随机变量ξ~N(2,1),且P(ξ>3)=0.158 7,则P(ξ>1)= .14.已知函数f(x)=+x+1有两个极值点,则实数a的取值范围是.15.把5件不同产品摆成一排,若产品A与产品B相邻,且产品A与产品C不相邻,则不同的摆法有种.16.观察下列等式:+=1+++=12+++++=39…则当m<n且m,n∈N时, =(最后结果用m,n表示)三、解答题(共6小题,满分70分.解答时应写出文字说明、证明过程或演算步骤)17.已知(+)n展开式中的倒数第三项的系数为45.求:(1)含x5的项;(2)系数最大的项.18.已知数列{a n}满足S n+a n=2n+1.(1)写出a1,a2,a3,并推测a n的表达式;(2)用数学归纳法证明所得的结论.19.某商场举行有奖促销活动,顾客购买一定金额商品后即可抽奖,每次抽奖都从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出1个球,在摸出的2个球中,若都是红球,则获一等奖,若只有1个红球,则获二等奖;若没有红球,则不获奖.(1)求顾客抽奖1次能获奖的概率;(2)若某顾客有3次抽奖机会,记该顾客在3次抽奖中获一等奖的次数为X,求X的分布列和数学期望.20.已知函数f(x)=x3+(1﹣a) x2﹣a(a+2)x+b(a,b∈R).(Ⅰ)若函数f(x)的图象过原点,且在原点处的切线斜率是﹣3,求a,b的值;(Ⅱ)若函数f(x)在区间(﹣1,1)上不单调,求a的取值范围.21.近年空气质量逐步恶化,雾霾天气现象出现增多,大气污染危害加重,大气污染可引起心悸、呼吸困难等心肺疾病,为了解某市心肺疾病是否与性别有关,在某医院随机的对入院50人进行了问卷调查,得到如下的列联表.患心肺疾病不患心肺疾病合计男 5女10合计50已知在全部50人中随机抽取1人,抽到患心肺疾病的人的概率为,(1)请将上面的列联表补充完整;(2)是否有99.5%的把握认为患心肺疾病与性别有关?说明你的理由;(3)已知在患心肺疾病的10位女性中,有3位又患有胃病,现在从患心肺疾病的10位女性中,选出3名进行其它方面的排查,记选出患胃病的女性人数为ξ,求ξ的分布列、数学期望以及方差.下面的临界值表仅供参考:P(K2≥k)0.15 0.10 0.05 0.025 0.010 0.005 0.001K 2.072 2.706 3.841 5.024 6.635 7.879 10.828 22.已知f(x)=ax﹣lnx,x∈(0,e],g(x)=,其中e是自然常数,a∈R.(1)讨论a=1时,函数f(x)的单调性和极值;(2)求证:在(1)的条件下,f(x)>g(x)+;(3)是否存在实数a使f(x)的最小值是3?若存在,求出a的值;若不存在,说明理由.2015-2016学年河南省郑州市高二(下)期末数学试卷(理科)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分.在每小题所给的四个答案中,只有一项是符合题目要求的)1.已知复数z满足z+3i﹣3=6﹣3i,则z=()A.9 B.3﹣6i C.﹣6i D.9﹣6i【考点】复数代数形式的乘除运算.【分析】直接移向变形得答案.【解答】解:由z+3i﹣3=6﹣3i,得z=6﹣3i+3﹣3i=9﹣6i.故选:D.2.函数f(x)=2x+1在(1,2)内的平均变化率()A.3 B.2 C.1 D.0【考点】变化的快慢与变化率.【分析】求出在区间(1,2)上的增量△y=f(2)﹣f(1),再利用平均变化率的公式,求出平均变化率.【解答】解:函数f(x)在区间(1,2)上的增量为:△y=f(2)﹣f(1)=2×2+1﹣3=2,所以f(x)在区间(1,2)上的平均变化率为:==2.故选:B.3.将5本不同的数学用书放在同一层书架上,则不同的放法有()A.50 B.60 C.120 D.90【考点】计数原理的应用.【分析】本题属于排列问题,全排即可.【解答】解:5本不同的数学用书,全排列,故有A55=120种,故选:C4.在2013年9月15日,某市物价部门对本市的5家商场的某种商品的一天销售量及其价格进行调查,5家商场的售价x元和销售量y件之间的一组数据如下表所示:价格x 9 9.5 10 10.5 11销售量y 11 10 8 6 5由散点图可知,销售量y与价格x之间有较好的线性相关关系,其线性回归方程是:y=﹣3.2x+a,则a=()A.﹣24 B.35.6 C.40.5 D.40【考点】线性回归方程.【分析】先求出横标和纵标的平均数,根据a=y﹣bx,把所求的平均数和方程中出现的b的值代入,求出a的值,题目中给出公式,只要代入求解即可得到结果.【解答】解: ==10,==8,∵y=﹣3.2x+a,∴a=3.2x+y=3.2×10+8=40.故选D.5.下列说法错误的是()A.自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系叫做相关关系B.在线性回归分析中,相关系数r的值越大,变量间的相关性越强C.在残差图中,残差点分布的带状区域的宽度越狭窄,其模型拟合的精度越高D.在回归分析中,R2为0.98的模型比R2为0.80的模型拟合的效果好【考点】相关系数.【分析】A根据相关关系的定义,判断命题A正确;B线性回归分析的相关系数r的绝对值越接近1,线性相关性越强,判断命题B错误;C一组数据拟合程度的好坏,是残差点分布的带状区域宽度越狭窄,其模型拟合的精度越高,判断命题C正确;D用相关指数R2刻画回归效果时,R2的值越大说明模型拟合效果越好,由此判断命题D正确.【解答】解:对于A,根据相关关系的定义,即可判断自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系是相关关系,∴命题A正确;对于B,线性回归分析中,相关系数r的绝对值越接近1,两个变量的线性相关性越强,反之,线性相关性越弱,∴命题B错误;对于C,残差图中,对于一组数据拟合程度的好坏评价,是残差点分布的带状区域宽度越狭窄,其模型拟合的精度越高,∴命题C正确;对于D,回归分析中,用相关指数R2刻画回归效果时,R2的值越大说明模型拟合效果越好,∴R2为0.98的模型比R2为0.80的模型拟合效果好,命题D正确.故选:B.6.设(2﹣x)6=a0+a1x+a2x+…+a6x6则|a1|+|a2|+…+|a6|的值是()A.665 B.729 C.728 D.63【考点】二项式定理的应用.【分析】由二项式定理可知a0,a2,a4,a6均为正数,a1,a3,a5均为负数,可得|a0|+|a1|+|a2|+…+|a6|=a0﹣a1+a2﹣a3+a4﹣a5+a6,把x=﹣1,x=0代入已知式子计数可得结果.【解答】解:∵(2﹣x)6=a0+a1x+a2x+…+a6x,由二项式定理可知a0,a2,a4,a6均为正数,a1,a3,a5均为负数,令x=﹣1可得:∴|a0|+|a1|+|a2|+…+|a6|=a0﹣a1+a2﹣a3+a4﹣a5+a6=(2+1)6=729,x=0时,a0=26=64.∴|a1|+|a2|+…+|a6|=665.故选:A.7.若x=2是函数f(x)=x(x﹣m)2的极大值点,则m的值为()A.3 B.6 C.2或6 D.2【考点】利用导数研究函数的极值.【分析】由题意可知:求导,f′(2)=0,求得m的值,再分别利用函数极值的判断,求得m的值.【解答】解:f(x)=x(x﹣m)2=x3﹣2mx2+m2x,则f′(x)=3x2﹣4mx+m2,x=2是函数f(x)的极大值点,f′(2)=0,12﹣8m+m2=0,解得m=2或6,当m=2时,f(x)=x(x﹣2)2,f′(x)=3x2﹣8x+4,f′(x)>0,解得:x>2或x<,f′(x)<0,解得:<x<2,∴f(x)的单调递增区间为:(﹣∞,),(2,+∞),单调递减区间为:(,2),∴x=是f(x)的极大值,x=2是f(x)的极小值;当m=6时,f(x)=x(x﹣6)2,f′(x)=3x2﹣24x+36,f′(x)>0,解得:x>6或x<2,f′(x)<0,解得:2<x<6,∴f(x)的单调递增区间为:(﹣∞,2),(6,+∞),单调递减区间为:(2,6),∴x=2是f(x)的极大值,x=6是f(x)的极小值;所以m=6,故答案选:B.8.由曲线y2=2x和直线y=x﹣4所围成的图形的面积()A.21 B.16 C.20 D.18【考点】定积分在求面积中的应用.【分析】先求出曲线y2=2x 和直线y=x﹣4的交点坐标,从而得到积分的上下限,然后利用定积分表示出图形面积,最后根据定积分的定义求出即可.【解答】解:由解得曲线y2=2x 和直线y=x﹣4的交点坐标为:(2,﹣2),(8,4)选择y为积分变量∴由曲线y2=2x 和直线y=x﹣4所围成的图形的面积S=(y+4﹣y2)=(y2+4y﹣y3)|﹣24=18,故选:D.9.对标有不同编号的6件正品和4件次品的产品进行检测,不放回地依次摸出2件.在第一次摸出正品的条件下,第二次也摸到正品的概率是()A.B.C.D.【考点】条件概率与独立事件.【分析】因为第一次抽出正品,所以剩下的9件中有5件正品,所以第二次也摸到正品的概率是,据此解答即可.【解答】解:设“第一次摸出正品”为事件A,“第二次摸出正品”为事件B,则事件A和事件B相互独立,在第一次摸出正品的条件下,第二次也摸到正品的概率为:P(B|A)===.故选:D.10.对于R上的可导函数f(x),若a>b>1且有(x﹣1)f′(x)≥0,则必有()A.f(a)+f(b)<2f(1)B.f(a)+f(b)≤2f(1)C.f(a)+f(b)≥2f(1)D.f(a)+f(b)>2f(1)【考点】利用导数研究函数的单调性.【分析】由不等式,通过分类讨论可以得出f(x)的单调性,即可得出f(a),f(b),f (1)的大小关系.【解答】解:由(x﹣1)f′(x)≥0可以得知,若(x﹣1)f′(x)>0,则有以下两种情况:①当x>1时,有f′(x)>0;②当x<1时,有f′(x)<0,∴可以得知当x>1时,f(x)单调递增,当x<1时,f(x)单调递减,∵a>b>1,∴f(a)>f(b)>f(1)∴f(a)+f(b)>2f(1),而当(x﹣1)f′(x)=0时,可以得知,f(a)=f(b)=f(1),∴f(a)+f(b)=2f(1),综上,可得f(a)+f(b)≥2f(1),故选:C.11.以下数表的构造思路源于我国南宋数学家杨辉所著的《详解九章算术》一书中的“杨辉三角性”.该表由若干行数字组成,从第二行起,每一行中的数字均等于其“肩上”两数之和,表中最后一行仅有一个数,则这个数为()A.2017×22015B.2017×22014C.2016×22015D.2016×22014【考点】归纳推理.【分析】数表的每一行都是等差数列,且第一行公差为1,第二行公差为2,第三行公差为4,…,第2015行公差为22014,第2016行只有M,由此可得结论【解答】解:由题意,数表的每一行都是等差数列,且第一行公差为1,第二行公差为2,第三行公差为4,…,第2015行公差为22014,故第1行的第一个数为:2×2﹣1,第2行的第一个数为:3×20,第3行的第一个数为:4×21,…第n行的第一个数为:(n+1)×2n﹣2,第2016行只有M,则M=(1+2016)•22014=2017×22014故选:B.12.定义在R上的函数f(x)满足:f(x)+f′(x)>1,f(0)=4,则不等式e x f(x)>e x+3(其中e为自然对数的底数)的解集为()A.(0,+∞)B.(﹣∞,0)∪(3,+∞)C.(﹣∞,0)∪(0,+∞)D.(3,+∞)【考点】利用导数研究函数的单调性;导数的运算.【分析】构造函数g(x)=e x f(x)﹣e x,(x∈R),研究g(x)的单调性,结合原函数的性质和函数值,即可求解【解答】解:设g(x)=e x f(x)﹣e x,(x∈R),则g′(x)=e x f(x)+e x f′(x)﹣e x=e x[f(x)+f′(x)﹣1],∵f(x)+f′(x)>1,∴f(x)+f′(x)﹣1>0,∴g′(x)>0,∴y=g(x)在定义域上单调递增,∵e x f(x)>e x+3,∴g(x)>3,又∵g(0)═e0f(0)﹣e0=4﹣1=3,∴g(x)>g(0),∴x>0故选:A.二、填空题(共4小题,每小题5分,满分20分)13.若随机变量ξ~N(2,1),且P(ξ>3)=0.158 7,则P(ξ>1)= 0.8413 .【考点】正态分布曲线的特点及曲线所表示的意义.【分析】根据随机变量ξ~N(2,1),得到正态曲线关于x=2对称,由P(ξ>1)=P(ξ<3),即可求概率.【解答】解:∵随机变量ξ~N(2,1),∴正态曲线关于x=2对称,∵P(ξ>3)=0.1587,∴P(ξ>1)=P(ξ<3)=1﹣0.1587=0.8413.故答案为:0.841314.已知函数f(x)=+x+1有两个极值点,则实数a的取值范围是(﹣∞,﹣1)∪(1,+∞).【考点】利用导数研究函数的极值.【分析】求出函数的导数,令导数为0,由题意可得,判别式大于0,解不等式即可得到.【解答】解:函数f(x)=+x+1的导数f′(x)=x2+2ax+1由于函数f(x)有两个极值点,则方程f′(x)=0有两个不相等的实数根,即有△=4a2﹣4>0,解得,a>1或a<﹣1.故答案为:(﹣∞,﹣1)∪(1,+∞)15.把5件不同产品摆成一排,若产品A与产品B相邻,且产品A与产品C不相邻,则不同的摆法有36 种.【考点】排列、组合的实际应用;排列、组合及简单计数问题.【分析】分3步进行分析:①用捆绑法分析A、B,②计算其中A、B相邻又满足A、C相邻的情况,即将ABC看成一个元素,与其他产品全排列,③在全部数目中将A、B相邻又满足A、C相邻的情况排除即可得答案.【解答】解:先考虑产品A与B相邻,把A、B作为一个元素有种方法,而A、B可交换位置,所以有2=48种摆法,又当A、B相邻又满足A、C相邻,有2=12种摆法,故满足条件的摆法有48﹣12=36种.故答案为:36.16.观察下列等式:+=1+++=12+++++=39…则当m<n且m,n∈N时, = n2﹣m2(最后结果用m,n表示)【考点】归纳推理.【分析】通过观察,第一个式子为m=0,n=1.第二个式子为m=2,n=4.第三个式子为m=5,n=8,然后根据结果值和m,n的关系进行归纳得到结论.【解答】解:当m=0,n=1时,为第一个式子+=1,此时1=12﹣0,当m=2,n=4时,为第二个式子+++=12,此时12=42﹣22当m=5,n=8时,为第三个式子+++++=39,此时39,=82﹣52由归纳推理可知, =n2﹣m2.故答案为:n2﹣m2三、解答题(共6小题,满分70分.解答时应写出文字说明、证明过程或演算步骤)17.已知(+)n展开式中的倒数第三项的系数为45.求:(1)含x5的项;(2)系数最大的项.【考点】二项式定理的应用.【分析】(1)由题意知=45,求得 n=10,在二项展开式的通项公式中,令x的幂指数等于0,求得k的值,可得含x3的项.(2)本题即求二项式系数最大的项,利用通项公式求得结果.【解答】解:(1)由题意知=45,∴n=10,T k+1=•,令=5,得k=2.所以含x3的项为 T3=•x3=45x3.(2)系数最大的项,即二项式系数最大的项,即T6=•=252•.18.已知数列{a n}满足S n+a n=2n+1.(1)写出a1,a2,a3,并推测a n的表达式;(2)用数学归纳法证明所得的结论.【考点】数列递推式;数学归纳法.【分析】(1)取n=1,2,3,分别求出a1,a2,a3,然后仔细观察,总结规律,猜测a n的值.(2)用数学归纳法进行证明,①当n=1时,命题成立;②假设n=k时,命题成立,即a k=2﹣,当n=k+1时,a1+a2+…+a k+a k+1+a k+1=2(k+1)+1,a k+1=2﹣,当n=k+1时,命题成立.故a n=2﹣都成立.【解答】解:(1)当n=1,时S1+a1=2a1=3∴a1=当n=2时,S2+a2=a1+a2+a2=5∴a2=,同样令n=3,则可求出a3=∴a1=,a2=,a3=猜测a n=2﹣(2)①由(1)已得当n=1时,命题成立;②假设n=k时,命题成立,即a k=2﹣,当n=k+1时,a1+a2+…+a k+2a k+1=2(k+1)+1,且a1+a2+…+a k=2k+1﹣a k∴2k+1﹣a k+2a k+1=2(k+1)+1=2k+3,∴2a k+1=2+2﹣,即a k+1=2﹣,即当n=k+1时,命题成立.根据①②得n∈N+,a n=2﹣都成立.19.某商场举行有奖促销活动,顾客购买一定金额商品后即可抽奖,每次抽奖都从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出1个球,在摸出的2个球中,若都是红球,则获一等奖,若只有1个红球,则获二等奖;若没有红球,则不获奖.(1)求顾客抽奖1次能获奖的概率;(2)若某顾客有3次抽奖机会,记该顾客在3次抽奖中获一等奖的次数为X,求X的分布列和数学期望.【考点】离散型随机变量的期望与方差;离散型随机变量及其分布列.【分析】(1)记事件A1={从甲箱中摸出一个球是红球},事件A2={从乙箱中摸出一个球是红球},事件B1={顾客抽奖1次获一等奖},事件A2={顾客抽奖1次获二等奖},事件C={顾客抽奖1次能获奖},利用A1,A2相互独立,,互斥,B1,B2互斥,然后求出所求概率即可.(2)顾客抽奖1次可视为3次独立重复试验,判断X~B.求出概率,得到X的分布列,然后求解期望.【解答】解:(1)记事件A1={从甲箱中摸出一个球是红球},事件A2={从乙箱中摸出一个球是红球},事件B1={顾客抽奖1次获一等奖},事件B2={顾客抽奖1次获二等奖},事件C={顾客抽奖1次能获奖},由题意A1,A2相互独立,,互斥,B1,B2互斥,且B1=A1A2,B2=+,C=B1+B2,因为P(A1)=,P(A2)=,所以,P(B1)=P(A1)P(A2)==,P(B2)=P()+P()=+==,故所求概率为:P(C)=P(B1+B2)=P(B1)+P(B2)=.(2)顾客抽奖1次可视为3次独立重复试验,由(1)可知,顾客抽奖1次获一等奖的概率为:所以.X~B.于是,P(X=0)==,P(X=1)==,P(X=2)==,P(X=3)==.故X的分布列为:X 0 1 2 3PE(X)=3×=.20.已知函数f(x)=x3+(1﹣a) x2﹣a(a+2)x+b(a,b∈R).(Ⅰ)若函数f(x)的图象过原点,且在原点处的切线斜率是﹣3,求a,b的值;(Ⅱ)若函数f(x)在区间(﹣1,1)上不单调,求a的取值范围.【考点】利用导数研究函数的单调性;导数的几何意义.【分析】(Ⅰ)先求导数:f′(x)=3x2+2(1﹣a)x﹣a(a+2),再利用导数求出在x=0处的导函数值,再结合导数的几何意义即可求出切线的斜率.列出关于a,b等式解之,从而问题解决.(Ⅱ)根据题中条件:“函数f(x)在区间(﹣1,1)不单调,”等价于“导函数f′(x)在(﹣1,1)既能取到大于0的实数,又能取到小于0的实数”,由于导函数是一个二次函数,有两个根,故问题可以转化为到少有一根在区间(﹣1,1)内,先求两根,再由以上关系得到参数的不等式,解出两个不等式的解集,求其并集即可;【解答】解析:(Ⅰ)由题意得f′(x)=3x2+2(1﹣a)x﹣a(a+2)又,解得b=0,a=﹣3或a=1(Ⅱ)函数f(x)在区间(﹣1,1)不单调,等价于导函数f′(x)[是二次函数],在(﹣1,1有实数根但无重根.∵f′(x)=3x2+2(1﹣a)x﹣a(a+2)=(x﹣a)[3x+(a+2)],令f′(x)=0得两根分别为x=a与x=若a=即a=﹣时,此时导数恒大于等于0,不符合题意,当两者不相等时即a≠﹣时有a∈(﹣1,1)或者∈(﹣1,1)解得a∈(﹣5,1)且a≠﹣综上得参数a的取值范围是(﹣5,﹣)∪(﹣,1)21.近年空气质量逐步恶化,雾霾天气现象出现增多,大气污染危害加重,大气污染可引起心悸、呼吸困难等心肺疾病,为了解某市心肺疾病是否与性别有关,在某医院随机的对入院50人进行了问卷调查,得到如下的列联表.患心肺疾病不患心肺疾病合计男 5女10合计50已知在全部50人中随机抽取1人,抽到患心肺疾病的人的概率为,(1)请将上面的列联表补充完整;(2)是否有99.5%的把握认为患心肺疾病与性别有关?说明你的理由;(3)已知在患心肺疾病的10位女性中,有3位又患有胃病,现在从患心肺疾病的10位女性中,选出3名进行其它方面的排查,记选出患胃病的女性人数为ξ,求ξ的分布列、数学期望以及方差.下面的临界值表仅供参考:P(K2≥k)0.15 0.10 0.05 0.025 0.010 0.005 0.001K 2.072 2.706 3.841 5.024 6.635 7.879 10.828 【考点】独立性检验;离散型随机变量的期望与方差.【分析】(1)根据在全部50人中随机抽取1人抽到患心肺疾病的概率为,可得患心肺疾病的人数,即可得到列联表;(2)利用公式求得K2,与临界值比较,即可得到结论.(3)在患心肺疾病的10位女性中,有3位又患有胃病,记选出患胃病的女性人数为ξ,则ξ服从超几何分布,即可得到ξ的分布列、数学期望以及方差.【解答】解:(1)根据在全部50人中随机抽取1人抽到患心肺疾病生的概率为,可得患心肺疾病的为30人,故可得列联表补充如下患心肺疾病不患心肺疾病合计男20 5 25女10 15 25合计30 20 50(2)因为 K2=,即K2==,所以 K2≈8.333又 P(k2≥7.879)=0.005=0.5%,所以,我们有 99.5%的把握认为是否患心肺疾病是与性别有关系的.(3)现在从患心肺疾病的10位女性中,选出3名进行胃病的排查,记选出患胃病的女性人数为ξ,则ξ=0,1,2,3.故P(ξ=0)==,P(ξ=1)==,P(ξ=2)==,P(ξ=3)=,则ξ的分布列:ξ0 1 2 3P则Eξ=1×+2×+3×=0.9,Dξ=×(0﹣0.9)2+×(1﹣0.9)2+×(2﹣0.9)2+×(3﹣0.9)2=0.4922.已知f(x)=ax﹣lnx,x∈(0,e],g(x)=,其中e是自然常数,a∈R.(1)讨论a=1时,函数f(x)的单调性和极值;(2)求证:在(1)的条件下,f(x)>g(x)+;(3)是否存在实数a使f(x)的最小值是3?若存在,求出a的值;若不存在,说明理由.【考点】利用导数研究函数的单调性;利用导数研究函数的极值;导数在最大值、最小值问题中的应用.【分析】(1)当a=1时,求函数的定义域,然后利用导数求函数的极值和单调性.(2)利用(1)的结论,求函数f(x)的最小值以及g(x)的最大值,利用它们之间的关系证明不等式.(3)利用导数求函数的最小值,让最小值等于3,解参数a.【解答】解:(1)因为,所以当0<x<1时,f'(x)<0,此时函数f(x)单调递减.当1<x≤e时,f'(x)>0,此时函数f(x)单调递增.所以函数f(x)的极小值为f (1)=1.(2)因为函数f(x)的极小值为1,即函数f(x)在(0,e]上的最小值为1.又,所以当0<x<e时,g'(x)>0,此时g(x)单调递增.所以g(x)的最大值为g(e)=,所以,所以在(1)的条件下,f(x)>g(x)+.(3)假设存在实数a,使f(x)=ax﹣lnx,x∈(0,e],有最小值3,则,①当a≤0时,f'(x)<0,f(x)在(0,e]上单调递减,,(舍去),此时函数f(x)的最小值不是3.②当0时,f(x)在(0,]上单调递减,f(x)在(,e]上单调递增.所以f,满足条件.③当时,f(x)在(0,e]上单调递减,,(舍去),此时函数f(x)的最小值是不是3.综上可知存在实数a=e2,使f(x)的最小值是3.。
学年上学期高二数学(文科)参考答案

依题设得椭圆的方程为
x2 y2 1, 4
ห้องสมุดไป่ตู้
直线 AB、EF 的方程分别为 x 2 y 2, y kx ( k 0)
y kx 由 x2 消去 y 得 2 y 1 4
故 x2 x1
(1 4k 2 ) x 2 4
2 1 4k 2
, y2 y1
10 3 ]. 3
19. 解:(Ⅰ)由S n 2an 2知 S n 1 2an 1 2
S n S n 1 2 an an 1 an 即an 2an 1 而S1 2a1 2a1 2 数列an 为等比数列,且an 2n 6分
(Ⅱ)由(Ⅰ)可得bn log 2 an n cn Tn
bn n n 7分 an 2
1 2 3 n 2 3 n 2 2 2 2 1 1 2 3 n Tn 2 3 4 n 1 9分 2 2 2 2 2 1 1 1 1 1 n Tn Tn 2 3 n n 1 2 2 2 2 2 2 1 1 n Tn 1 n n 1 11分 2 2 2 1 n Tn 2 n 1 n 12分 2 2
2k 1 4k 2
,
由 ED 6 DF 知 x0 x1 6( x2 x0 ) 得 x0 由 D 在 AB 上,知 x0 2kx0 2 ,得 x0
1 5 10 . (6 x2 x1 ) x2 7 7 7 1 4k 2
2 . 1 2k
20. 解(Ⅰ)设捕捞 n 年后开始盈利,盈利为 y 万元,则
y 50n (12n
郑州市2015-2016年高二下期数学(文)期末试题卷及答案
2016高二文科数学答案一、选择题:1.B ;2.A ;3.D ;4.B ;5.D ;6.A ;7.A ;8.C ;9.B ;10. C ; 11.D ; 12.A . 二、填空题:13. 1 4.4m=; 15.201622-;16.(4-1) (4-4)()2,4;-(4-5) 3. 三、解答题17.(本小题满分10分)(4-1) 设AP =k ,PB =5k ,由相交弦定理:CP·PD=AP·PB,……………………2分 即2CD ⎛⎫⎪⎝⎭2=k ·5k .∴k =5,……………………5分 ∴2AB =2AP PB +=35,………………………8分 即⊙O 的半径为35 cm .……………………………10分(4-4)解析:(1)C 的直角坐标方程为222)(a y a x =+-,………………2分l 的方程为:033=-+y x ,………………4分由已知得32a a -=………………7分 1a ⇒=……………………………10分(4-5)由柯西不等式有9)3]()2(1[)32()26(2222=-++≤-⋅+=-+x x x x x x ………6分当且仅当x x ⋅=-⋅231,即1=x 时,等号成立。
………………………8分所以,)(x f 最大值的是3. ………………………10分 18.(1)()22321z a a a i =-++-, ……………………… 2分 由z z =知,210a -=,故1a =±. ……………………… 4分当1a =时,0z =,0z =;当1a =-时,6z =,6z =. ……………………… 6分(2)由已知得,复数的实部和虚部皆大于0,即22320,10⎧-+>⎪⎨->⎪⎩a a a ……… 8分21;212;+i即21,11><⎧⎨-<<⎩a a a 或 ……………………… 10分 所以11a -<<. ……………………… 12分 19.(1)设各组的频率为(1,2,3,4,5,6)i f i =,由图可知,第一组有3人,第二组7人,第三组27人,…………………2分因为后四组的频数成等差数列,所以后四组频数依次为27,24,21,18…………………4分 所以视力在5.0以下的频率为3+7+27+24+21=82人, 故全年级视力在5.0以下的人数约为821000820100⨯=。
2015-2016学年河南省郑州市高二(下)期末数学试卷(文科)(解析版)
在此流程图中,①②两条流程线与“推理与证明”中的思维方法匹配正确的是( A.①﹣综合法,②﹣分析法 C.①﹣综合法,②﹣反证法 B.①﹣分析法,②﹣综合法 D.①﹣分析法,②﹣反证法
)
9. (5 分)如图是某同学为求 50 个偶数:2,4,6,…,100 的平均数而设计的程序框图的 部分内容,则在该程序框图中的空白判断框和处理框中应填入的内容依次是( )
①相关系数 r,|r|值越小,变量之间的相关性越强. ②命题“存在 x∈R,x +x﹣1<0”的否定是“不存在 x∈R,x +x﹣1≥0” . ③“p∨q”为真是“¬p”为假的必要不充分条件. ④ 若回归直线的斜率估计值是 1.23 ,样本点的中心为( 4 , 5 ) ,则回归直线方程是 1.23x+0.08. A.4 B.2 + C.3 的最大值为( C.3 D.1 ) D.2 =
17.直线
(t 为参数)被曲线
所截的弦长为(
)
A. [选修 4-5:不等式选讲]
B.
C.
D.
18.不等式|x+3|﹣|x﹣1|≤2 对任意实数 x 恒成立,则实数 a 的取值范围是( A. (﹣∞,﹣2] C.[2,+∞) B. (﹣∞,﹣2]∪[2,+∞) D.a∈R
a
)
二.填空题: (本大题共 4 题,每小题 5 分,共 20 分) 19. (5 分)若复数 z 满足(2﹣i)z=4+3i(i 为虚数单位) ,则 z= 20. (5 分)具有线性相关关系的变量 x,y,满足一组数据如下表所示: X y 0 ﹣1 1 1 2 m 3 8 . .
ቤተ መጻሕፍቲ ባይዱD.8062
[选修 4-1:几何证明选讲] 16. (5 分)如图,锐角三角形 ABC 中,以 BC 为直径的半圆分别交 AB、AC 于点 D、E,则
河南省郑州市高二数学上学期期末试卷 理(含解析)
河南省郑州市2014-2015学年高二上学期期末数学试卷(理科)一、选择题(本大题共12小题,每小题5分,共60分.在每小题所给出的四个选项中,只有一项是符合题目要求的)1.(5分)已知命题p:∃x<0,x2>0,那么¬p是()A.∀x≥0,x2≤0B.∃x≥0,x2≤0C.∀x<0,x2≤0D.∃x≥0,x2≤02.(5分)等差数列{a n}的前n项和为S n,且S3=6,a3=0,则公差d等于()A.﹣1 B.1 C.2 D.﹣23.(5分)设a,b∈R,则a>b是(a﹣b)b2>0的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件4.(5分)已知抛物线y2=mx的焦点坐标为(2,0),则m的值为()A.B.2 C.4 D.85.(5分)已知=(2,4,x),=(2,y,2),若||=6,⊥,则x+y的值是()A.﹣3或1 B.3或﹣1 C.﹣3 D.16.(5分)如图所示,为了测量某障碍物两侧A,B间的距离,给定下列四组数据,不能确定A,B间距离的是()A.α,a,b B.α,β,a C.a,b,γD.α,β,b7.(5分)设变量x,y满足约束条件:,则目标函数z=2x+3y的最小值为()A.6 B.7 C.8 D.238.(5分)若△ABC 的三个内角A、B、C满足6sinA=4sinB=3sinC,则△ABC()A.一定是锐角三角形B.一定是直角三角形C.一定是钝角三角形D.可能是锐角三角形,也可能是钝角三角形9.(5分)已知点(2,1)和(﹣1,3)在直线3x﹣2y+a=0的两侧,则a的取值范围是()A.﹣4<a<9 B.﹣9<a<4 C.a<﹣4或a>9 D.a<﹣9或a>410.(5分)在平面直角坐标系xOy中,已知△ABC的顶点A(﹣5,0)和C(5,0),顶点B在双曲线﹣=1,则的值为()A.B.C.D.11.(5分)已知各项为正的等比数列{a n}中,a4与a14的等比中项为,则2a7+a11的最小值为()A.16 B.8 C.D.412.(5分)已知m、n、s、t为正数,m+n=2,=9其中m、n是常数,且s+t最小值是,满足条件的点(m,n)是椭圆=1一弦的中点,则此弦所在的直线方程为()A.x﹣2y+1=0 B.2x﹣y﹣1=0 C.2x+y﹣3=0 D.x+2y﹣3=0二、填空题(本大题共4小题,每小题5分,共20分)13.(5分)已知等比数列{a n}是递增数列,S n是{a n}的前n项和.若a1,a3是方程x2﹣10x+9=0的两个根,则S6=.14.(5分)设x,y均为正数,且+=,则xy的最小值为.15.(5分)在△ABC中,内角A、B、C的对边长分别为a、b、c、,已知a2﹣c2=2b,且sinAcosC=3cosAsinC 则b=.16.(5分)若直线y=k(x+1)(k>0)与抛物线y2=4x相交于A,B两点,且A,B两点在抛物线的准线上的射影分别是M,N,若|BN|=2|AM|,则k的值是.三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(10分)命题p:关于x的不等式x2+2ax+4>0,对一切x∈R恒成立.命题q:抛物线y2=4ax 的焦点在(1,0)的左侧,若p∨q为真命题,p∧q为假命题,求实数a的取值范围.18.(12分)在锐角△ABC中,角A,B,C的对边分别为a,b,c,且b=2csinB(1)求角C的大小;(2)若c2=(a﹣b)2+6,求△ABC的面积.19.(12分)为了防止洪水泛滥,保障人民生命财产安全,今年冬天,某水利工程队计划在黄河边选择一块矩形农田,挖土以加固河堤,为了不影响农民收入,挖土后的农田改造成面积为40000m2的矩形鱼塘,其四周都留有宽3m的路面,问所选的农田的长和宽各为多少时,才能使占有农田的面积最小.20.(12分)设{a n}是等差数列,{b n}是各项都为正数的等比数列,且a1=b1=1,a3+b5=21,a5+b3=13 (Ⅰ)求{a n}、{b n}的通项公式;(Ⅱ)求数列的前n项和S n.21.(12分)如图,在长方体ABCD﹣A1B1C1D1中,AD=AA1=1,AB=2,点E在棱AB上移动(1)证明:A1D⊥平面D1EC1;(2)AE等于何值时,二面角D1﹣EC﹣D的大小为.22.(12分)已知圆C:x2+y2=3的半径等于椭圆E:+=1(a>b>0)的短半轴长,椭圆E的右焦点F在圆C内,且到直线l:y=x﹣的距离为﹣,点M是直线l与圆C的公共点,设直线l交椭圆E于不同的两点A(x1,y1),B(x2,y2).(Ⅰ)求椭圆E的方程;(Ⅱ)求证:|AF|﹣|BF|=|BM|﹣|AM|.河南省郑州市2014-2015学年高二上学期期末数学试卷(理科)参考答案与试题解析一、选择题(本大题共12小题,每小题5分,共60分.在每小题所给出的四个选项中,只有一项是符合题目要求的)1.(5分)已知命题p:∃x<0,x2>0,那么¬p是()A.∀x≥0,x2≤0B.∃x≥0,x2≤0C.∀x<0,x2≤0D.∃x≥0,x2≤0考点:命题的否定.专题:简易逻辑.分析:将存在量词改写为全称量词,再否定结论,从而得到答案.解答:解:已知命题p:∃x<0,x2>0,那么¬p是:∀x<0,x2≤0,故选:C.点评:本题考查了命题的否定,将命题的否定和否命题区分开,本题属于基础题.2.(5分)等差数列{a n}的前n项和为S n,且S3=6,a3=0,则公差d等于()A.﹣1 B.1 C.2 D.﹣2考点:等差数列的前n项和.专题:等差数列与等比数列.分析:由题意结合等差数列的性质和求和公式可得a2的值,进而可得公差d.解答:解:∵等差数列{a n}的前n项和为S n,且S3=6,a3=0,∴S3=a1+a2+a3=3a2=6,∴a2=2,∴公差d=a3﹣a2=0﹣2=﹣2故选:D点评:本题考查等差数列的求和公式和通项公式,属基础题.3.(5分)设a,b∈R,则a>b是(a﹣b)b2>0的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断.专题:规律型.分析:结合不等式的性质,利用充分条件和必要条件的定义进行判断.解答:解:当a>b,b=0时,不等式(a﹣b)b2>0不成立.若(a﹣b)b2>0,则b≠0,且a﹣b>0,∴a>b成立.即a>b是(a﹣b)b2>0的必要不充分条件.故选:B.点评:本题主要考查充分条件和必要条件的判断,利用不等式的性质是解决本题的关键,比较基础.4.(5分)已知抛物线y2=mx的焦点坐标为(2,0),则m的值为()A.B.2 C.4 D.8考点:抛物线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:由抛物线y2=2px的焦点坐标为(,0),结合条件可得=2,即可求得m的值.解答:解:由抛物线y2=2px的焦点坐标为(,0),又抛物线y2=mx的焦点坐标为(2,0),即有=2,解得m=8.故选:D.点评:本题考查抛物线的方程和性质,主要考查抛物线的焦点,属于基础题.5.(5分)已知=(2,4,x),=(2,y,2),若||=6,⊥,则x+y的值是()A.﹣3或1 B.3或﹣1 C.﹣3 D.1考点:平面向量数量积的运算.专题:计算题;空间向量及应用.分析:运用向量的模的公式,可得x,再由向量垂直的条件:数量积为0,可得y,进而得到x+y的值.解答:解:由=(2,4,x),||=6,则=6,解得x=±4,又=(2,y,2),且⊥,则=0,即有4+4y+2x=0,即y=﹣.当x=4时,y=﹣3,有x+y=1;当x=﹣4时,y=1,有x+y=﹣3.故选A.点评:本题考查空间向量的数量积的性质,考查向量的模的公式,考查向量垂直的条件,考查运算能力,属于基础题.6.(5分)如图所示,为了测量某障碍物两侧A,B间的距离,给定下列四组数据,不能确定A,B间距离的是()A.α,a,b B.α,β,a C.a,b,γD.α,β,b考点:解三角形的实际应用.专题:应用题;解三角形.分析:给定α,a,b,由正弦定理,β不唯一确定,故不能确定A,B间距离.解答:解:给定α,a,b,由正弦定理,β不唯一确定,故不能确定A,B间距离.故选:A.点评:本题考查解三角形的实际应用,考查学生的计算能力,比较基础.7.(5分)设变量x,y满足约束条件:,则目标函数z=2x+3y的最小值为()A.6 B.7 C.8 D.23考点:简单线性规划的应用.专题:不等式的解法及应用.分析:本题考查的知识点是线性规划,处理的思路为:根据已知的约束条件.画出满足约束条件的可行域,再用角点法,求出目标函数的最小值.解答:解:画出不等式.表示的可行域,如图,让目标函数表示直线在可行域上平移,知在点B自目标函数取到最小值,解方程组得(2,1),所以z min=4+3=7,故选B.点评:用图解法解决线性规划问题时,分析题目的已知条件,找出约束条件和目标函数是关键,可先将题目中的量分类、列出表格,理清头绪,然后列出不等式组(方程组)寻求约束条件,并就题目所述找出目标函数.然后将可行域各角点的值一一代入,最后比较,即可得到目标函数的最优解.8.(5分)若△ABC 的三个内角A、B、C满足6sinA=4sinB=3sinC,则△ABC()A.一定是锐角三角形B.一定是直角三角形C.一定是钝角三角形D.可能是锐角三角形,也可能是钝角三角形考点:三角形的形状判断.专题:计算题;解三角形.分析:根据题意,结合正弦定理可得a:b:c=4:6:8,再由余弦定理算出最大角C的余弦等于﹣,从而得到△ABC是钝角三角形,得到本题答案.解答:解:∵角A、B、C满足6sinA=4sinB=3sinC,∴根据正弦定理,得6a=4b=3c,整理得a:b:c=4:6:8设a=4x,b=6x,c=8x,由余弦定理得:cosC===﹣∵C是三角形内角,得C∈(0,π),∴由cosC=﹣<0,得C为钝角因此,△ABC是钝角三角形故选:C点评:本题给出三角形个角正弦的比值,判断三角形的形状,着重考查了利用正、余弦定理解三角形的知识,属于基础题.9.(5分)已知点(2,1)和(﹣1,3)在直线3x﹣2y+a=0的两侧,则a的取值范围是()A.﹣4<a<9 B.﹣9<a<4 C.a<﹣4或a>9 D.a<﹣9或a>4考点:直线的斜率.专题:直线与圆.分析:由点(2,1)和(﹣1,3)在直线3x﹣2y+a=0的两侧,把两点的坐标代入3x﹣2y+a 所得的值异号,由此列不等式求得a的范围.解答:解:∵点(2,1)和(﹣1,3)在直线3x﹣2y+a=0的两侧,∴(3×2﹣2×1+a)(﹣1×3﹣2×3+a)<0,即(a+4)(a﹣9)<0.解得﹣4<a<9.故选:A.点评:本题考查了简单的线性规划,考查了二元一次不等式所表示的平面区域,是基础题.10.(5分)在平面直角坐标系xOy中,已知△ABC的顶点A(﹣5,0)和C(5,0),顶点B在双曲线﹣=1,则的值为()A.B.C.D.考点:双曲线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:根据双曲线的定义,以及正弦定理,即可得到结论.解答:解:∵在双曲线﹣=1,∴a=4,b=3,c=5,即A,C是双曲线的两个焦点,∵顶点B在双曲线﹣=1,∴|BA﹣BC|=2a=8,AC=10,则由正弦定理得=,故选:C.点评:本题主要考查双曲线的定义的应用,利用正弦定理将条件转化是解决本题的关键.11.(5分)已知各项为正的等比数列{a n}中,a4与a14的等比中项为,则2a7+a11的最小值为()A.16 B.8 C.D.4考点:等比数列的通项公式.专题:计算题;等差数列与等比数列.分析:由各项为正的等比数列{a n}中,a4与a14的等比中项为,知a4•a14=(2)2=8,故a7•a11=8,利用均值不等式能够求出2a7+a11的最小值.解答:解:∵各项为正的等比数列{a n}中,a4与a14的等比中项为,∴a4•a14=(2)2=8,∴a7•a11=8,∵a7>0,a11>0,∴2a 7+a11≥2=2=8.故选B.点评:本题考查等比数列的通项公式的应用,是中档题.解题时要认真审题,仔细解答.12.(5分)已知m、n、s、t为正数,m+n=2,=9其中m、n是常数,且s+t最小值是,满足条件的点(m,n)是椭圆=1一弦的中点,则此弦所在的直线方程为()A.x﹣2y+1=0 B.2x﹣y﹣1=0 C.2x+y﹣3=0 D.x+2y﹣3=0考点:椭圆的简单性质.专题:计算题.分析:由题设知()(s+t)=n+m+≥=,满足时取最小值,由此得到m=n=1.设以(1,1)为中点的弦交椭圆=1于A(x1,y1),B(x2,y2),由中点从坐标公式知x1+x2=2,y1+y2=2,把A(x1,y1),B(x2,y2)分别代入x2+2y2=4,得,①﹣②,得2(x1﹣x2)+4(y1﹣y2)=0,k=,由此能求出此弦所在的直线方程.解答:解:∵sm、n、s、t为正数,m+n=2,=9,s+t最小值是,∴()(s+t)的最小值为4∴()(s+t)=n+m+≥=,满足时取最小值,此时最小值为=2+2=4,得:mn=1,又:m+n=2,所以,m=n=1.设以(1,1)为中点的弦交椭圆=1于A(x1,y1),B(x2,y2),由中点从坐标公式知x1+x2=2,y1+y2=2,把A(x1,y1),B(x2,y2)分别代入x2+2y2=4,得,①﹣②,得2(x1﹣x2)+4(y1﹣y2)=0,∴k=,∴此弦所在的直线方程为,即x+2y﹣3=0.故选D.点评:本题考查椭圆的性质和应用,解题时要认真审题,注意均值不等式和点差法的合理运用.二、填空题(本大题共4小题,每小题5分,共20分)13.(5分)已知等比数列{a n}是递增数列,S n是{a n}的前n项和.若a1,a3是方程x2﹣10x+9=0的两个根,则S6=364.考点:等比数列的性质.专题:计算题;等差数列与等比数列.分析:通过解方程求出等比数列{a n}的首项和第三项,然后求出公比,直接利用等比数列前n项和公式求前6项和.解答:解:解方程x2﹣10x+9=0,得x1=1,x2=9.∵数列{a n}是递增数列,且a1,a3是方程x2﹣10x+9=0的两个根,∴a1=1,a3=9.设等比数列{a n}的公比为q,则q2=9,所以q=3.∴S6==364.故答案为:364.点评:本题考查了等比数列的通项公式,考查了等比数列的前n项和,属于基础题.14.(5分)设x,y均为正数,且+=,则xy的最小值为9.考点:基本不等式.专题:不等式的解法及应用.分析:由已知式子变形可得xy=x+y+3,由基本不等式可得xy≥2+3,解关于的一元二次不等式可得.解答:解:∵x,y均为正数,且+=,∴=,整理可得xy=x+y+3,由基本不等式可得xy≥2+3,整理可得()2﹣2﹣3≥0,解得≥3,或≤﹣1(舍去)∴xy≥9,当且仅当x=y时取等号,故答案为:9点评:本题考查基本不等式和不等式的解法,属基础题.15.(5分)在△ABC中,内角A、B、C的对边长分别为a、b、c、,已知a2﹣c2=2b,且sinAcosC=3cosAsinC 则b=4.考点:余弦定理;正弦定理.专题:计算题;解三角形.分析:利用余弦定理、正弦定理化简sinAcosC=3cosAsinC,结合a2﹣c2=2b,即可求b的值.解答:解:∵sinAcosC=3cosAsinC,∴∴2c2=2a2﹣b2∵a2﹣c2=2b,∴b2=4b∵b≠0∴b=4故答案为:4点评:本题考查余弦定理、正弦定理的运用,考查学生的计算能力,属于中档题.16.(5分)若直线y=k(x+1)(k>0)与抛物线y2=4x相交于A,B两点,且A,B两点在抛物线的准线上的射影分别是M,N,若|BN|=2|AM|,则k的值是.考点:抛物线的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:直线y=k(x+1)(k>0)恒过定点P(﹣1,0),由此推导出|OA|=|BF|,由此能求出点A的坐标,从而能求出k的值.解答:解:设抛物线C:y2=4x的准线为l:x=﹣1直线y=k(x+1)(k>0)恒过定点P(﹣1,0),过A、B分别作AM⊥l于M,BN⊥l于N,由|BN|=2|AM|,则|BF|=2|AF|,∴点A为BP的中点.连接OA,则|OA|=|BF|,∴|OA|=|AF|,∴点A的横坐标为,∴点A的坐标为(,),把(,)代入直线l:y=k(x+1)(k>0),解得k=.故答案为:.点评:本题考查直线与圆锥曲线中参数的求法,考查抛物线的性质,是中档题,解题时要注意等价转化思想的合理运用.三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(10分)命题p:关于x的不等式x2+2ax+4>0,对一切x∈R恒成立.命题q:抛物线y2=4ax 的焦点在(1,0)的左侧,若p∨q为真命题,p∧q为假命题,求实数a的取值范围.考点:复合命题的真假.专题:简易逻辑.分析:分别求出关于p,q的a的范围,通过讨论p真q假,p假q真,从而得到a的范围.解答:解:设g(x)=x2+2ax+4,由于关于x的不等式x2+2ax+4>0,对一切x∈R恒成立,∴△=4a2﹣16<0,∴﹣2<a<2,又抛物线y2=4ax的焦点在(1,0)的左侧,∴a<1,a≠0,又∵p∨q为真命题,p∧q为假命题,∴p和q一真一假,若p真q假,则1≤a<2,或a=0,若p假q真,则a≤﹣2,综上,a的范围是:1≤a<2或a≤﹣2或a=0.点评:本题考查了复合命题的真假,考查了不等式以及抛物线的性质,是一道基础题.18.(12分)在锐角△ABC中,角A,B,C的对边分别为a,b,c,且b=2csinB(1)求角C的大小;(2)若c2=(a﹣b)2+6,求△ABC的面积.考点:余弦定理;正弦定理.专题:解三角形.分析:(1)已知等式利用正弦定理化简,根据sinB不为0求出sinC的值,由C为锐角求出C的度数即可;(2)利用余弦定理列出关系式,把cosC的值代入并利用完全平方公式变形,结合已知等式求出ab的值,再由sinC的值,利用三角形面积公式求出三角形ABC面积即可.解答:解:(1)由正弦定理==,及b=2csinB,得:sinB=2sinCsinB,∵sinB≠0,∴sinC=,∵C为锐角,∴C=60°;(2)由余弦定理得:c2=a2+b2﹣2abcosC=a2+b2﹣ab=(a﹣b)2+ab,∵c2=(a﹣b)2+6,∴ab=6,则S△ABC=absinC=.点评:此题考查了正弦、余弦定理,三角形面积公式,以及特殊角的三角函数值,熟练掌握定理是解本题的关键.19.(12分)为了防止洪水泛滥,保障人民生命财产安全,今年冬天,某水利工程队计划在黄河边选择一块矩形农田,挖土以加固河堤,为了不影响农民收入,挖土后的农田改造成面积为40000m2的矩形鱼塘,其四周都留有宽3m的路面,问所选的农田的长和宽各为多少时,才能使占有农田的面积最小.考点:不等式的实际应用.专题:应用题;不等式的解法及应用.分析:设矩形鱼塘长为am,宽为bm,面积ab=40000m2,由所选农田的长为(a+6)m,宽为(b+6)m,农田面积(a+6)•(b+6)=40036+6(a+b)(m2),由此利用均值不等式能求出农田的长为206米,宽为206米时,才能使占有农田的面积最小.解答:解:设矩形鱼塘长为am,宽为bm,面积ab=40000m2,由所选农田的长为(a+6)m,宽为(b+6)m,农田面积(a+6)•(b+6)=40036+6(a+b)(m2),由不等式a+b≥2,知当且仅当a=b时,a+b最小,即农田面积最小,∵ab=40000 所以a=b=200m.所以农田的长为206米,宽为206米时,才能使占有农田的面积最小.点评:本题考查函数在生产生活中的实际应用,解题时要认真审题,仔细解答,注意等价转化思想的合理运用.20.(12分)设{a n}是等差数列,{b n}是各项都为正数的等比数列,且a1=b1=1,a3+b5=21,a5+b3=13 (Ⅰ)求{a n}、{b n}的通项公式;(Ⅱ)求数列的前n项和S n.考点:等差数列的通项公式;等比数列的通项公式;数列的求和.专题:等差数列与等比数列.分析:(Ⅰ)设{a n}的公差为d,{b n}的公比为q,根据等比数列和等差数列的通项公式,联立方程求得d和q,进而可得{a n}、{b n}的通项公式.(Ⅱ)数列的通项公式由等差和等比数列构成,进而可用错位相减法求得前n项和S n.解答:解:(Ⅰ)设{a n}的公差为d,{b n}的公比为q,则依题意有q>0且解得d=2,q=2.所以a n=1+(n﹣1)d=2n﹣1,b n=q n﹣1=2n﹣1.(Ⅱ),,①S n=,②①﹣②得S n=1+2(++…+)﹣,则===.点评:本题主要考查等差数列的通项公式和用错位相减法求和.21.(12分)如图,在长方体ABCD﹣A1B1C1D1中,AD=AA1=1,AB=2,点E在棱AB上移动(1)证明:A1D⊥平面D1EC1;(2)AE等于何值时,二面角D1﹣EC﹣D的大小为.考点:直线与平面垂直的判定;二面角的平面角及求法.专题:空间向量及应用.分析:以D为坐标原点,DA,DC,DD1所在的直线分别为x,y,z轴建立空间直角坐标系,设AE=x,则A1(1,0,1),D1(0,0,1),E(1,x,0),A(1,0,0),C(0,2,0).(1)利用数量积只要判断A1D⊥D1E,A1D⊥D1C1,(2)设平面D1EC的法向量=(a,b,c),利用法向量的特点求出x.解答:证明(1):以D为坐标原点,DA,DC,DD1所在的直线分别为x,y,z轴建立空间直角坐标系,设AE=x,则A1(1,0,1),D1(0,0,1),E(1,x,0),A(1,0,0),C(0,2,0).=(﹣1,0,﹣1),=(1,x,﹣1),=(0,2,0),所以=0,=0,所以A1D⊥D1E,A1D⊥D1C1,所以A1D⊥平面D1EC1;解:(2)设平面D1EC的法向量=(a,b,c),∴=(1,x﹣2,0),=(0,2,﹣1),=(0,0,1).由.所以令b=1,∴c=2,a=2﹣x.∴=(2﹣x,1,2).依题意,cos==⇒.解得x1=2+(舍去),x1=2﹣所以AE=2﹣时,二面角D1﹣EC﹣D的大小为.点评:本题考查了利用空间直角坐标系,判断线面垂直以及求解二面角,注意法向量的求法是解题的关键,考查计算能力.22.(12分)已知圆C:x2+y2=3的半径等于椭圆E:+=1(a>b>0)的短半轴长,椭圆E的右焦点F在圆C内,且到直线l:y=x﹣的距离为﹣,点M是直线l与圆C的公共点,设直线l交椭圆E于不同的两点A(x1,y1),B(x2,y2).(Ⅰ)求椭圆E的方程;(Ⅱ)求证:|AF|﹣|BF|=|BM|﹣|AM|.考点:直线与圆锥曲线的综合问题.专题:圆锥曲线中的最值与范围问题.分析:(Ⅰ)设点F(c,0)(c>0),由已知条件得,圆C的半径等于椭圆E的短半轴长,由此能求出椭圆方程.(Ⅱ)由圆心O到直线l的距离为,得,由已知条件推导出|AF|+|AM|=2,|BF|+|BM|=2,由此能证明|AF|﹣|BF|=|BM|﹣|AM|.解答:(Ⅰ)解:设点F(c,0)(c>0),则F到直线l的距离为,即,…(2分)因为F在圆C内,所以,故c=1;…(4分)因为圆C的半径等于椭圆E的短半轴长,所以b2=3,椭圆方程为.…(6分)(Ⅱ)证明:因为圆心O到直线l的距离为,所以直线l与圆C相切,M是切点,故△AOM为直角三角形,所以,又,得,…(7分),又,得,…(9分)所以|AF|+|AM|=2,同理可得|BF|+|BM|=2,…(11分)所以|AF|+|AM|=|BF|+|BM|,即|AF|﹣|BF|=|BM|﹣|AM|.…(12分)点评:本题考查椭圆方程的求法,考查两组线段差相等的证明,解题时要认真审题,注意点到直线的距离公式的合理运用。
2015-2016年高二数学(文)上学期期末试卷及答案
2015-2016年高二数学(文)上学期期末试卷及答案2015-2016学年度上学期期末考试高二数学(文科)试卷考试时间:120分钟。
试题分数:150分卷Ⅰ一、选择题:本大题共12小题,每题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.对于常数m、n,“mn”是“方程mx^2ny^21的曲线是双曲线”的A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件2.命题“所有能被2整除的数都是偶数”的否定是A.所有不能被2整除的数都是偶数 B.所有能被2整除的数都不是偶数 C.存在一个不能被2整除的数是偶数 D.存在一个能被2整除的数不是偶数3.若椭圆x^2/25+y^2/16=1上的一点P到椭圆一个焦点的距离为7,则P到另一焦点距离为A.2 B.3 C.5 D.74.在一次跳伞训练中,甲、乙两位学员各跳一次,设命题p是“甲降落在指定范围”,q是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为A.p q B.p qC.p q D.p q5.若双曲线a^2(x^2-y^2)=b^2的离心率为3,则其渐近线的斜率为A.±2 B.±1/2 C.±1/3 D.±36.曲线y=πsinx/(4sinx+cosx)^2在点M(π/2,0)处的切线的斜率为A.1/2B.−1/2C.1D.−17.已知椭圆2a^2(x^2+y^2)+2b^2xy=b^2的焦点与双曲线a^2(x^2-y^2)=b^2的焦点恰好是一个正方形的四个顶点,则抛物线ay=bx^2的焦点坐标为A.(3/4.3/4b)B.(3/4.−3/4b)C.(−3/4.3/4b)D.(−3/4.−3/4b)8.设z1,z2是复数,则下列命题中的假命题是A.若|z1|=|z2|,则z1^2=z2^2 B.若z1=z2,则z1=z2 C.若|z1|=|z2|,则z1·z1=z2·z2 D.若|z1−z2|=1,则z1=z29.已知命题“若函数f(x)=ex−mx在(0,+∞)上是增函数,则m≤1”,则下列结论正确的是A.若m=0,则f(x)在(0,+∞)上是减函数 B.若m>1,则f(x)在(0,+∞)上是减函数 C.若m=1,则f(x)在(0,+∞)上是常数函数 D.若m<0,则f(x)在(0,+∞)上是减函数A。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015—2016学年郑州市上期末考试高一数学试题说明: 1、试卷分第Ⅰ卷和第Ⅱ卷,满分150分,时间120分钟.2、将第Ⅰ卷的答案填在第Ⅱ卷的答题栏中.第Ⅰ卷 (选择题、填空题,共80分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设集合{1,0,1}M =-,2{|}N x x x =≤,则M N = ( ) A.{0} B.{0,1} C.{-1,1} D.{-1,0,1} 2.下列函数中,在()1,∞-内是增函数的是( ) A .31x y -= B.x x y +=2 C.xx y -=1 D.x y -=13.已知0.6122log 5,log 3,1,3a b c d -====,那么( )A .a c b d <<<B .a d c b <<<C .a b c d <<<D .a c d b <<<4.若函数12)(2--=x ax x f 在区间(0,1)内恰有一个零点,则实数a 的取值范围是( ) A .)1,(--∞B .(1,)+∞C .(1,1)-D .)1,0[5.下列命题中正确的是( )A .有两个面平行,其余各面都是平行四边形的几何体叫棱柱B .有一个面是多边形,其余各面都是三角形的几何体叫棱锥C .由五个面围成的多面体一定是是四棱锥D .棱台各侧棱的延长线交于一点6.四面体ABCD 中,E 、F 分别是AC 、BD 的中点,若CD=2AB ,EF ⊥AB ,则EF 与CD 所成的角等于( )A .30°B .45°C .60°D .90°7.在正方体ABCD —A 1B 1C 1D 1中,A 1B 与平面BB 1D 1D 所成的角的大小是 ( )A .90°B .30°C .45°D .60°8.矩形中,沿将矩形折成一个直二面角,则四面体的外接球的体积是( )A .B .C .D . 9.函数()l o g (2)a f x a x =-在[1,3]上单调递增,则a 的取值范围是( )A .(1,)+∞B .(0,2) C.2(0,)3D .(2,)+∞10.数学家欧拉在1765年提出定理:三角形的外心、重心、垂心依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半,这条直线被后人称之为三角形的欧拉线.已知ABC ∆的顶点(2,0),(0,A B ,AC BC =,则ABC ∆的欧拉线方程为( )A .230x y -+=B .230x y ++=C . 230x y ++=D .230x y -+=11.(1)2k x =-+有两个不等实根,则k 的取值范围是( ) A .3(,)4+∞ B .1(,1]3C .3(0,)4D .3(,1]412.设集合{}22(,)|||||,,A x y x y x y x y R =+≤+∈,则集合A 所表示图形的ABCD 4,3,AB BC ==AC ABCD B AC D --ABCD π12125π9125π6125π3125面积为( )A. 1π+B. 2C. 2π+D. π二、填空题:本大题共4小题,每小题5分,共20分.13. 一个几何体的三视图如右图所示,且其侧视图是一个等边三角形,则这个几何体的体积为________. 14.3342log 220.25log 3log 41(--++=______.15.当(1,3)x ∈时,不等式240x mx ++<恒成立,则m 的取值范围是________.16.圆C 的方程为22680x y x +-+=,若直线2y kx =-上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值是________.第Ⅱ卷三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.(本题满分10分)已知集合,集合{}2120A x x x =--<,集合22{|430}(0)C x x ax a a =-+<>. (Ⅰ)求;(Ⅱ)若,试确定正实数的取值范围.18.(本小题满分12分)分别求出适合下列条件的直线方程: (Ⅰ)经过点(3,2)P -且在x 轴上的截距等于在y 轴上截距的2倍; (Ⅱ)经过直线2x +7y -4=0与7x -21y -1=0的交点,且和A (-3,1),B (5,7)等距离.19.(本小题满分12分)一片森林原来面积为a ,计划每年砍伐一些树,且每年砍伐面积的百分比相等,当砍伐到面积的一半时,所用时间是10年,为保护生态环境,森林面积至少要保留原面积的,已知到今年为止,森林剩余面积为原来的. (Ⅰ)求每年砍伐面积的百分比;(Ⅱ)到今年为止,该森林已砍伐了多少年? (III )今后最多还能砍伐多少年?{}0822>-+=x x x B ()R A C B )(B A C ⊇a 14220.(本小题满分12分)如图,已知矩形ABCD 中,10AB =,6BC =,将矩形沿对角线BD 把ABD ∆ 折起,使A 移到1A点,且1A 在平面BCD 上的射影O 恰在CD 上,即1A O ⊥平面DBC .(Ⅰ)求证:1BC A D ⊥;(Ⅱ)求证:平面1A BC ⊥平面1A BD ;(III )求点C 到平面1A BD 的距离. 21.(本小题满分12分)如图,已知圆心坐标为的圆M 与x 轴及直线y =分别相切于A 、B 两点,另一圆N 与圆M 外切,且与x 轴及直线y =分别相切于C 、D 两点. (Ⅰ)求圆M 和圆N 的方程;(Ⅱ)过点B 作直线MN 的平行线l ,求直线l 被圆N 截得的弦的长度.22.(本小题满分12分)已知函数1()()2x f x =, 其反函数为().y g x =(Ⅰ) 若)12(2++x mx g 的定义域为R ,求实数m 的取值范围;DCAB OA 1(Ⅱ) 当[]1,1x ∈-时,求函数[]2()2()3y f x af x =-+的最小值)(a h ; (III ) 是否存在实数2m n >>,使得函数)(x h y =的定义域为[],n m ,值域为22,n m ⎡⎤⎣⎦,若存在,求出m 、n 的值;若不存在,则说明理由.郑州市2015—2016学年上学期期末考试高一数学试题 参考答案一、选择题:1-5 BCBBD 6-10 ABCDA 11-12 DC 二、填空题 13.14.5415. 5m ≤- 16. 125三、解答题:17.解:(Ⅰ)依题意得,或,.……5分(Ⅱ)(2,4)A B = ,由于0a >则,由得2,34,a a ≤⎧⎨≥⎩所以42.3a ≤≤ (10)18. (Ⅰ)解:当直线不过原点时,设所求直线方程为x 2a +ya=1,将(-3,2)代入所设方程,解得a =12,此时,直线方程为x +2y -1=0.{}{34,4A x x B x x =-<<=<-}2x >()(3,2]RA CB =- {}3C x a x a =<<()C A B ⊇当直线过原点时,斜率k =-23,直线方程为y =-23x ,即2x +3y =0,综上可知,所求直线方程为x +2y -1=0或2x +3y =0. ……6分 (Ⅱ) 解:有274072110x y x y +-=⎧⎨--=⎩解得交点坐标为(1,72),当直线l 的斜率k 存在时,设l 的方程是y -72=k (x -1),即7kx -7y +(2-7k )=0,由A 、B 两点到直线l=解得k =43,当斜率k 不存在时,即直线平行于y 轴,方程为x =1时也满足条件.所以直线l 的方程是21x -28y -13=0或x =1. ……12分19.解:(Ⅰ)设每年降低的百分比为(01)x x <<. 则,即,解得. ……4分(Ⅱ)设经过年剩余面积为原来的,则, 即,,解得,故到今年为止,已砍伐了5年. ……8分(III )设从今年开始,以后砍了年,则年后剩余面积为, a x a 21)1(10=-21)1(10=-x 101)21(1-=xm 2a x a m 22)1(=-2110)21()21(=m2110=m 5=m n n n x a )1(22-令≥,即≥,≥,≤,解得≤故今后最多还能砍伐15年. ……12分 20.解:(Ⅰ)∵ 1A O ⊥平面DBC ,∴ 1A O ⊥BC ,又 ∵ BC DC ⊥,1AO DC O = ,∴ BC ⊥平面1A DC ,∴ 1BC A D ⊥. ……4分(Ⅱ)∵ 1BC A D ⊥,11A D A B ⊥,1BC A B B = ,∴ 1A D ⊥平面1A BC , 又 ∵ 1A D ⊂平面1A BD , ∴平面1A B C⊥平面1A B D . ……8分(III )设C 到平面1A BD 的距离为h ,则∵ 11C A BD A DBC V V --=, ∴ 111133A BD DBC S h S AO ∆∆⋅=⋅, 又 ∵ 1A BDDBC S S ∆∆=,16824105AO ⨯==,∴ 245h =. ……12分21.解:(Ⅰ)由于⊙M 与∠BOA 的两边均相切,故M 到OA 及OB 的距离均为⊙M 的半径,则M 在∠BOA 的平分线上,同理,N 也在∠BOA 的平分线上,即O ,M ,N 三点共线,且OMN 为∠BOA 的平分线.∵M 的坐标为(3,1),∴M 到x 轴的距离为1,即⊙M 的半径为1,则⊙M 的方程为(x -3)2+(y -1)2=1,设⊙N 的半径为r ,其与x 轴的切点为C ,连接MA 、NC , 由Rt △OAM ∽Rt △OCN 可知,OM ∶ON =MA ∶NC ,即23+r =1r⇒r =3,则OC =33, n x a )1(22-a 41n x )1(-4210)21(n 23)21(10n 23n 15故⊙N 的方程为(x -33)2+(y -3)2=9. ……6分(Ⅱ)由对称性可知,所求的弦长等于点过A 的直线MN 的平行线被⊙N 截得的弦长,此弦的方程是y =33(x -3),即x -3y -3=0,圆心N 到该直线的距离d =32,则弦长为2r 2-d 2=33. ……12分 22.解 :(Ⅰ)12()log g x x =,2212(21)log (21)g mx x mx x ++=++定义域为R ,2210mx x ++>恒成立,所以0,440,m m >⎧⎨∆=-<⎩(1,)m ∈+∞. ……4分(Ⅱ)令11(),[,2]22x t t =∈,22223()3y t at t a a =-+=-+-, 当2,2a t >=时,min 74.y a =-当2,2a t >=时,min 74.y a =- 当2,2a t >=时,min 74.y a =-274,21()3,22131,42a a h a a a a a ⎧⎪->⎪⎪=-≤≤⎨⎪⎪-<⎪⎩. ……8分(III )()74,(2,)h x x x =-∈+∞,且()h x 在(2,)x ∈+∞上单调递增.所以22()74,()74,h n n m h m m n ⎧=-=⎪⎨=-=⎪⎩两式相减得,4m n +=,与2m n >>矛盾,所以不存在,m n满足条件. ……12分。