动量原理在流体中的应用
动量定理中的流体模型

动量定理是物理学中的一个重要定理,它描述了物体的动量变化与作用力之间的关系。
在许多实际应用中,动量定理可以用于解决流体动力学问题,特别是在涉及到流体运动的情况。
在流体动力学中,流体模型是一个非常重要的概念,它可以帮助我们更好地理解流体的运动规律。
在动量定理中,流体模型通常指的是将流体视为连续介质,即流体是由无数个微小粒子组成的。
这种模型假设流体具有连续的物理性质,如密度、速度和压力等。
通过使用流体模型,我们可以将复杂的流体运动问题简化为一系列的微分方程,从而更容易地求解。
在流体动力学中,常见的流体模型有欧拉模型和有限差分模型等。
欧拉模型是一种基于欧拉方程的流体模型,它假设流体的密度、速度和压力等物理性质是时间、空间和流速的函数。
有限差分模型则是一种基于有限差分法的流体模型,它通过对流体区域的离散化,将流体的运动过程转化为一系列离散方程,从而更好地模拟流体运动。
对于流体模型的动量定理,我们需要考虑流体中的各个物体的相互作用。
这些相互作用可以表现为作用于物体上的力和作用于流体上的反作用力。
由于流体是连续的,所以流体的动量变化是由物体与流体的相互作用引起的。
在这个过程中,流体的动量定理起着关键作用。
动量定理的基本形式是:作用在物体上的力等于物体动量的变化率。
对于流体模型,这个定理可以表述为:作用于流体上的力等于流体质点的动量变化率。
这意味着,当流体受到外力作用时,流体的动量会发生改变,而这个改变量等于作用在流体上的力与时间间隔的乘积。
在实际应用中,流体模型的动量定理可以用于解决许多实际问题。
例如,在航空航天领域,飞机和火箭的飞行需要精确的计算流体动力学模型来预测气流的流动和阻力。
在水利工程中,工程师需要使用流体模型来模拟水流和波浪的运动,以评估水坝、河流改道等工程的可行性。
在化学工程中,流体模型的动量定理也被广泛应用,例如在管道输送、传热和燃烧等领域。
总之,流体模型的动量定理在许多实际应用中发挥着重要作用。
3动量定理流体问题

3动量定理流体问题动量定理在流体问题中的应用是解决质量连续变动问题的基本思路。
首先,我们可以建立“柱体”模型,选择一段柱形流体沿流速方向,通过某一横截面积为S的流体长度为Δl,流体的密度为ρ,那么在Δt时间内通过该截面的流体的质量为Δm=ρSΔl=ρSvΔt。
其次,当所取时间Δt足够短时,我们可以采用微元法,即以一微小段为研究对象的方法。
最后,我们可以应用动量定理,即流体微元所受的合外力的冲量等于微元动量的增量,即F合Δt=Δp。
解答质量连续变动问题的具体步骤是应用动量定理分析连续体相互作用问题的方法是微元法。
具体步骤为:首先,确定一小段时间Δt内的连续体为研究对象;其次,写出Δt内连续体的质量Δm与Δt的关系式;然后,分析连续体的受力情况和动量变化;最后,应用动量定理列式、求解。
举个例子,当飞船进入宇宙微粒尘区时,为了保持飞船速度不变,我们需要增加飞船的牵引力。
假设有一宇宙飞船,它的正面面积为S=0.98 m2,以v=2×103m/s的速度进入宇宙微粒尘区,尘区每1 m3空间有一微粒,每一微粒平均质量m=2×10-4g,若要使飞船速度保持不变,飞船的牵引力应增加多少?由于飞船速度保持不变,因此增加的牵引力应与微粒对飞船的作用力相等。
只要求出时间t内微粒的质量,再由动量定理求出飞船对微粒的作用力,即可得到飞船增加的牵引力。
时间t内附着到飞船上的微粒质量为M=m·S·vt,设飞船对微粒的作用力为F,由动量定理得Ft=Mv=mSvt·v,即F=mSv2,代入数据解得F=0.784 N,由牛顿第三定律得,微粒对飞船的作用力为0.784N,故飞船的牵引力应增加0.784 N。
另外,还有一个例子是一艘小船在静水中由于风力的推动作用做匀速直线运动,船体的迎风面积S=1 m2,风速v1=10 m/s,船速v2=4 m/s,空气密度ρ=1.29kg/m3.小船在匀速前进时船体受到的平均风力大小为多少?根据动量定理,我们可以求出小船受到的风力大小为46.4 N。
流体力学中的动量守恒定律

流体力学中的动量守恒定律流体力学是研究流体力学性质和运动规律的学科,其中动量守恒定律是流体力学中的基本原理之一。
本文将讨论流体力学中的动量守恒定律及其应用。
一、动量守恒定律的定义动量是物体的运动属性,它的大小与物体的质量和速度有关。
动量守恒定律指出,在一个封闭系统中,如果没有外力作用,系统总动量保持不变。
这意味着如果一个物体在一个方向上有动量的改变,那么另一个物体在相反方向上的动量将会有相应的改变,以使系统总动量保持恒定。
二、动量守恒定律的数学表达动量守恒定律可以通过数学方程来表示。
设在某一时刻,流体在某个截面上的速度为$v$,单位面积上的动量为$\rho v$,其中$\rho$是流体的密度。
如果在该截面将速度增加一个很小的量$\Delta v$,则单位面积上的动量增加了$\rho \Delta v$。
根据动量守恒定律,单位时间内通过该截面的动量变化与单位时间内外力对流体产生的冲量相等。
三、动量守恒定律的应用1. 流体管道中的动量守恒定律在流体管道中,可以利用动量守恒定律来分析管道中流体的运动。
根据动量守恒定律,如果管道中没有外力的作用,流体在管道内的运动速度不会发生改变。
这一原理在工程领域中广泛应用于水力学、石油工程等领域。
2. 流体力学中的扬力动量守恒定律也可以用来解释扬力的产生机制。
当流体通过一个曲面的时候,曲面会对流体施加一个力,这个力称为压力力。
根据动量守恒定律,由于流动速度的改变,流体分子对一个物体所产生的压力力要大于对另一个物体所产生的压力力。
这个压力差会引起物体受到一个往上的力,即扬力。
3. 航空航天中的动量守恒定律应用在航空航天领域,动量守恒定律被广泛应用于飞行器的设计和改进。
例如,喷气式发动机的工作原理就是利用了动量守恒定律。
燃料燃烧产生的气体向后喷出,在推力作用下,飞行器向前推进。
四、结论动量守恒定律是流体力学中一个重要的基本原理,它指出了在一个封闭系统中,动量总是守恒的。
动量定理在流体问题上的应用.pptx

vt
陨石的质量为:
S
m Svt
由动量定理得:
Ft m v
F Sv2
由牛顿第三定律,飞船 所受阻力:
F F Sv2 因此推力 F推 Sv2
例三、一艘帆船在静水中由于风力的推动做匀速直线运 动,帆面的面积为S,风速为v1,船速为v2(v2﹤v1), 空气密度为ρ,帆船在匀速前进时帆面受到的平均风力 大小为多少?(设空气碰到帆后随帆一起运动)
F
F1
F2
3m 2L
g 2t 2
当: t 2L g
F 3mg
动量定理在流体问题 上的应用
精品文档
例一、高压采煤水枪出水口的截面积为S,水的射速为
v,射到煤层上后,水速度为零,若水的密度为ρ,求
水对煤层的冲力。
Δt时间内冲到煤层上的
水的体积为
V Svt 这些水的质量为:
m Svt
由动量定理得:
vt
S
Ft m0 v
F Sv2
由牛顿第三定律,水对 煤层的冲力为:
F F Sv2
例二、最大截面S=5m2的一艘宇宙飞船,以速度v=
10km/s在太空中航行时,进入静止的、密度ρ=2×10-5
kg/m3的微陨石云中。如果微陨石与飞船相撞时都附着
在飞船上,要使飞船维微
例四、一质量为m,长为L的柔软绳自由悬垂,下端恰 与一台秤秤盘接触。某时刻放开柔软绳上端,求台秤的 最大示数。(重力加速度大小为g)
0—t时间内静止在台秤上的 绳子的长度为
L1
1 2
gt
2
质量为:
m1
m
L1 L
对台秤的压力为:
高中物理动量流体问题

高中物理动量流体问题动量定理是物理学里面的一个基本定理,它描述的是物体的运动状态。
根据动量定理,如果一个物体受到一个力,那么它的动量就会发生改变。
在流体力学中,动量定理被广泛应用,以描述液体或气体在运动中的一些特殊性质。
本文将详细介绍动量定理在流体力学中的应用,其中包括以下内容:1. 流体的概念和运动描述;2. 流体中的动量;3. 流体中动量的守恒定律;4. 流体力学中的动量流体问题。
一、流体的概念和运动描述流体是指可以流动的物质,一般分为液体和气体两大类。
在流体力学中,我们关心的是流体的运动状态和性质,因此我们需要对流体的运动方式进行描述。
在流体力学中,一般使用速度场来描述流体的运动。
速度场是一个描述物体在不同空间位置上的速度向量的函数,它可以用数学方式来表示出来。
在流体力学中,我们关心的是流体中不同位置的速度和流速的变化情况。
流速指的是单位时间内沿着流体的某一截面通过的流体质量。
为了描述流体的运动状态,我们需要研究流体中的动量和动量守恒定律。
二、流体中的动量动量在物理学中是一个非常重要的量,它描述的是物体的运动状态。
在流体力学中,动量同样是一个非常重要的物理量。
根据牛顿第二定律,物体所受的力等于其质量乘以加速度,可以写成以下公式:F = ma其中,F 是物体所受的力, m 是物体的质量, a 是物体的加速度。
根据牛顿第三定律,物体对另一个物体施加的力大小相等,方向相反。
因此,它们对彼此的动量产生相等大小、方向相反的作用,这被称为动量守恒。
在流体力学中,我们同样可以使用动量守恒来描述流体在运动中的特殊性质。
流体中的动量等于流体中的质量乘以流速,可以写成以下公式:p = mv其中, p 是流体的动量,m 是流体的质量, v 是流体的流速。
三、流体中动量的守恒定律在流体力学中,动量守恒定律有着非常重要的作用,可以帮助我们研究流体在运动中的特殊性质。
根据动量守恒定律,在一个封闭系统中,系统的总动量守恒。
应用动量定理分析流体问题

应用动量定理分析流体问题分析流体模型的思路(1)在极短时间Δt内,取一小段柱体作为研究对象,小柱体的体积ΔV=v SΔt;(2)小柱体的质量Δm=ρΔV=ρv SΔt;(3)小柱体的动量变化量大小Δp=Δm v=ρv2SΔt;(4)应用动量定理FΔt=Δp,列方程计算;(5)结合牛顿运动定律进行综合分析。
典例2021年7月25日台风“烟花”登陆舟山普陀区。
台风“烟花”登陆时的最大风速为38 m/s。
如图所示,某高层建筑顶部广告牌的尺寸为高5 m、宽20 m,空气密度ρ=1.2 kg/m3,空气吹到广告牌上后速度瞬间减为0,则该广告牌受到的最大风力约为()A. 1.7×104 NB. 1.7×105 NC. 2.7×104 ND. 9.0×104 NB解析:广告牌的面积S=5×20 m2=100 m2,设Δt时间内吹到广告牌上的空气质量为Δm,则有Δm=ρS vΔt,以风速的方向为正方向,根据动量定理有-FΔt=0-Δm v=0-ρS v2Δt,解得广告牌对空气的最大作用力的大小为F=ρS v2,代入数据得F=1.7×105 N,根据牛顿第三定律得,广告牌受到的最大风力大小约为1.7×105 N,故B正确。
2.(应用动量定理处理“流体冲击力问题”)如图所示为清洗汽车用的高压水枪。
设水枪喷出的水柱直径为D,水流速度为v,水柱垂直汽车表面,水柱冲击汽车后水的速度变为0。
手持高压水枪操作,进入水枪的水流速度可忽略不计,已知水的密度为ρ。
下列说法正确的是()A. 高压水枪单位时间内喷出的水的质量为ρπv D 2B. 高压水枪单位时间内喷出的水的质量为14ρv D 2 C. 水柱对汽车的平均冲力为14ρv 2D 2 D. 当高压水枪喷口的出水速度变为原来的2倍时,喷出的水对汽车的压强变为原来的4倍D 解析:高压水枪单位时间内喷出的水的质量等于单位时间内喷出的水柱的质量,即m 0=ρV =ρπ⎝ ⎛⎭⎪⎫D 22·v =14πρv D 2,故A 、B 错误;设水柱对汽车的平均冲力为F ,由动量定理得F Δt =m Δv ,即F Δt =14πρv D 2Δt v ,解得F =14πρv 2D 2,故C 错误;高压水枪喷出的水对汽车产生的压强p =F S =14πρv 2D 214πD 2=ρv 2,则当高压水枪喷口的出水速度变为原来的2倍时,喷出的水对汽车的压强变为原来的4倍,故D 正确。
动量定理解决连续流体问题

以N计算
[例 2] 宇宙飞船在飞行过程中有很多技术问题需要解 决,其中之一就是当飞船进入宇宙微粒尘区时如何保持速度 不变的问题。假设一宇宙飞船以 v=2.0×103 m/s的速度进入 密度 ρ=2.0×10-6 kg/m3 的微粒尘区,飞船垂直于运动方向上 的最大截面积 S=5 m2,且认为微粒与飞船相碰后都附着在飞 船上,则飞船要保持速度 v 不变,所需推力多大?
[反思领悟]
对于流体及微粒的动量连续发生变化这类问题,关键是 应用微元法正确选取研究对象,即选取很短时间 Δt 内动量发 生变化的那部分物质作为研究对象,建立“柱状模型”:研 究对象分布在以 S 为截面积、长为 vΔt 的柱体内,质量为 Δm =ρSvΔt,分析它在 Δt 时间内动量的变化情况,再根据动量定 理求出有关的物理量。
到达玩具底面时的速度大小为 v。对于 Δt 时间内喷出的水,由能量守
恒得21(Δm)v2+(Δm)gh=21(Δm)v02
④
在 h 高度处,Δt 时间内喷射到玩具底面的水沿竖直方向的动量变
化量的大小为 Δp=(Δm)v
⑤
设水对玩具的作用力的大小为 F,根据动量定理有 FΔt=Δp ⑥
由于玩具在空中悬停,由力的平衡条件得 F=Mg
3 建立方程,应用动量定理研究这段柱状流体
[例 1] (2016·全国卷Ⅰ)某游乐园入口旁有一喷泉,喷出 的水柱将一质量为 M 的卡通玩具稳定地悬停在空中。为计算 方便起见,假设水柱从横截面积为 S 的喷口持续以速度 v0 竖 直向上喷出;玩具底部为平板(面积略大于 S);水柱冲击到玩 具底板后,在竖直方向水的速度变为零,在水平方向朝四周 均匀散开。忽略空气阻力。已知水的密度为 ρ,重力加速度大 小为 g。求
微专题动量定理解决流体类问题

微专题:动量定理解决流体类问题题型一:液体、气体类解决方法:沿流速v 方向,任取一段流体,假设作用时间极短为Δt,流体横截面积为S ,密度为ρ,那么在极短时间内流体的长度:t L ∆⋅=v ,流体体积为:t S SL V ∆⋅==v ,流体质量为:t S V m ∆⋅==v ρρ根据动量定理:v m t F ∆⋅=∆⋅带入m 的值得:v S F ∆⋅=v ρ【例】如图所示,用高压水枪喷出的强力水柱洗车,设水柱截面半径为r ,水流速度大小为v 。
水柱垂直车窗,水柱冲击车窗后水的速度变为零,水的密度为ρ,水柱对车窗的平均冲击力大小为( )【解析】取Δt 时间内高压水枪喷出的水为研究对象,取喷出水的方向为正方向,根据动量定理解得,车窗对水柱的平均作用力为F =22r v πρ负号表示方向与正方向相反,根据牛顿第三定律,水柱对车窗的平均冲击力大小为22r v πρ。
故选D 。
题型二:粒子类(电子、光子、尘埃等)解决方法:沿流速v 方向,任取一段流体,假设作用时间极短为Δt,单位体积内粒子数目为n ,每个粒子的质量为m ,流体横截面积为S ,那么在极短时间内流体的长度:t L ∆⋅=v ,流体体积为:t S SL V ∆⋅==v ,流体内的粒子数目为:t S V N ∆⋅==v n n流体质量为:t S N M ∆⋅==vm n m根据动量定理:v M t F ∆⋅=∆⋅带入M 的值得:v vm n F ∆⋅=S【例】一宇宙飞船以v =1.0×104 m/s 的速度进入密度为ρ=2.0×107 kg/m 3的微陨石流中,如果飞船在垂直于运动方向的最大截面积为S =5m 2,且认为微陨石与飞船碰撞后都附着在飞船上。
为使飞船的速度保持不变,飞船的牵引力应为( )A .100 NB .200 NC .50 ND .150 N【解析】选在时间Δt 内与飞船碰撞的微陨石为研究对象,其质量应等于底面积为S ,高为v t ∆的直柱体内微陨石尘的质量,即 初动量为0,末动量为mv 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
动量原理在流体中的应用
什么是动量原理
动量原理是描述物体运动的一条基本定律。
根据动量原理,物体的动量变化等于作用在物体上的外力产生的冲量。
动量原理在流体力学中也有着重要的应用,特别是在分析和解决流体运动中的问题方面起着至关重要的作用。
动量原理在流体静力学中的应用
在流体静力学中,通常将动量原理应用于分析液体或气体的平衡状态。
根据动量原理,对于一静止的液体或气体系统,使其保持静止的力必须平衡。
这是因为如果有一个外力作用于液体或气体上,它会产生一个动量变化,并且液体或气体将开始运动。
动量原理在流体静力学中的应用可以通过以下列点来描述:
•当液体或气体静止时,在其表面上的压力必须处处相等,以保持其平衡状态。
•根据动量原理,液体或气体分子在静止的情况下会产生碰撞并相互传递动量,从而保持平衡。
•当在平衡状态下施加一个外力时,会破坏这种平衡,从而导致液体或气体开始运动。
动量原理在流体动力学中的应用
在流体动力学中,动量原理也有着广泛的应用。
流体动力学主要研究流体的运动状态,包括流体的速度、压力等参数的变化情况。
动量原理可以帮助我们分析和解决流体运动中的一些问题,包括以下方面:
•流体的动力学方程。
根据动量原理,可以得到流体运动的基本方程,如流体的动量守恒方程和动量输运方程。
•流体的流动性质。
通过应用动量原理,可以研究流体在不同速度和压力条件下的流动特性,如流速分布、压力梯度等。
•流体的流动控制。
动量原理对于解决流体流动控制中的一些问题也是至关重要的,例如通过改变流体的速度和方向来控制流体流动的位置和强度。
动量原理在流体力学中的实际应用
除了在流体静力学和流体动力学中的应用之外,动量原理在流体力学的许多实际应用中也起着关键的作用。
以下是一些流体力学中常见的应用领域:
•水力工程。
动量原理在水力工程中有着广泛的应用,例如通过应用动量原理可以分析和设计水流的流速、水压、水力泵站等。
•飞行器设计。
动量原理对于飞行器设计和研究也是非常重要的,它可以帮助工程师们分析和计算飞行器在空气中的动力学性能。
•污水处理。
在污水处理过程中,动量原理可以用于研究废水的流动方式和速度,从而优化污水处理设备的设计和运行。
总结
动量原理在流体力学中具有重要的应用价值。
通过应用动量原理,我们可以更好地理解和解决流体静力学和流体动力学中的问题。
在实际应用中,动量原理在水力工程、飞行器设计、污水处理等领域都有着广泛的应用。
通过深入研究和应用动量原理,我们可以更好地掌握和应用流体力学的基本原理和方法。