相似三角形提高练习30题

合集下载

三角形相似测试题及答案

三角形相似测试题及答案

三角形相似测试题及答案1. 已知三角形ABC和三角形DEF相似,且AB/DE = 2/3,求AC/DF的比值。

答案:AC/DF = 2/3。

2. 若三角形ABC与三角形DEF相似,且∠A = ∠D,∠B = ∠E,那么∠C与∠F的关系是什么?答案:∠C = ∠F。

3. 在一个三角形中,如果两个角的度数分别为50度和60度,那么第三个角的度数是多少?答案:第三个角的度数是70度。

4. 一个三角形的三边长分别为3cm,4cm,5cm,另一个三角形的三边长分别为6cm,8cm,10cm,这两个三角形是否相似?答案:这两个三角形相似,因为它们的边长比相等,即3/6 = 4/8 = 5/10 = 1/2。

5. 已知三角形ABC与三角形DEF相似,且AB = 6cm,DE = 9cm,那么AC与DF的比值是多少?答案:AC/DF = AB/DE = 6/9 = 2/3。

6. 如果一个三角形的两边长分别为8cm和15cm,且这两个边的夹角为90度,那么这个三角形的第三边长是多少?答案:根据勾股定理,第三边长为17cm。

7. 两个相似三角形的对应高的比为3:4,那么它们的周长比是多少?答案:周长比也是3:4。

8. 一个三角形的三个内角的度数分别为30度,60度,90度,那么这个三角形与另一个三角形相似,其三个内角的度数分别为15度,30度,45度,这两个三角形是否相似?答案:这两个三角形不相似,因为它们的内角不相等。

9. 已知三角形ABC与三角形DEF相似,且BC = 2cm,EF = 4cm,那么AB与DE的比值是多少?答案:AB/DE = BC/EF = 2/4 = 1/2。

10. 一个三角形的三边长分别为2cm,3cm,4cm,另一个三角形的三边长分别为4cm,6cm,8cm,这两个三角形是否相似?答案:这两个三角形相似,因为它们的边长比相等,即2/4 = 3/6 = 4/8 = 1/2。

相似三角形应用题专项练习30题有答案

相似三角形应用题专项练习30题有答案

相似三角形应用题专项练习30题〔有答案〕1.如图,某一时刻一根2米长的竹竿EF影长GE为1.2米,此时,小红测得一颗被风吹斜的柏树与地面成30°角,树顶端B在地面上的影子点D与B到垂直地面的落点C的距离是3.6米,那么树长AB是多少米.2.铁血红安?在中央一台热播后,吸引了众多游客前往影视基地游玩.某天小明站在地面上给站在城楼上的小亮照相时发现:他的眼睛、凉亭顶端、小亮头顶三点恰好在一条直线上〔如图〕.小明的眼睛离地面1.65米,凉亭顶端离地面2米,小明到凉亭的距离为2米,凉亭离城楼底部的距离为40米,小亮身高1.7米.请根据以上数据求出城楼的高度.3.如图,△ABC是一锐角三角形的硬纸片,AD是边BC上的高,BC=40cm,AD=30cm.从这硬纸片上剪下一个长HG是宽HE的2倍的矩形EFGH,使它的一边EF在BC上,顶点G,H分别在AC,AB上,AD与HG的交点为M.〔1〕试说明:;〔2〕求这个矩形EFGH的宽HE的长.4.如下图,某测量工作人员的眼睛A与标杆顶端F,电视塔顶端E在同一直线上,此人眼睛距地面1.6米,标杆为3.2米,且BC=1米,CD=19米,求电视塔的高ED.5.如图,要测量某建筑物的高度AB,立两根高为2m的标杆BC和DE,两竿相距BD=38m,D、B、H三点共线,从BC退行3m,到达点F,从点F看点A,A、C、F三点共线,从DE退行5m到达点G,从点G看点A,A、E、G三点也共线,试算出建筑物的高度AB及HB的长度.6.如图,路灯A离地8米,身高1.6米的小王〔C D〕的影长DB与身高一样,现在他沿OD方向走10米,到达E 处.〔1〕请画出小王在E处的影子EH;〔2〕求EH的长.7.:如图,一人在距离树21米的点A处测量树高,将一长为2米的标杆BE在与人相距3米处垂直立于地面,此时,观察视线恰好经过标杆顶点E及树的顶点C,求此树的高.8.如图,一电线杆AB的影子分别落在了地上和墙上.同一时刻,小明竖起1米高的直杆MN,量得其影长MF为0.5米,量得电线杆AB落在地上的影子BD长3米,落在墙上的影子CD的高为2米.你能利用小明测量的数据算出电线杆AB的高吗?9.如图,大刚在晚上由灯柱A走向灯柱B,当他走到M点时,觉察他身后影子的顶部刚好接触到灯柱A的底部,当他向前再走12米到N点时,觉察他身前的影子刚好接触到灯柱B的底部,大刚的身高是1.6米,两根灯柱的高度都是9.6米,设AM=NB=x米.求:两根灯柱之间的距离.10.如图,小晚上由路灯A下的B处走到C时,测得影子CD的长为2米,继续往前走3米到达E处时,测得影子EF的长为2米,小的身高CM为1.5米,求路灯A的高度AB.11.如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上.纸板的两条直角边DE=40cm,EF=20cm,测得边DF离地面的高度AC=1.5m,CD=10m,求树高AB.12.为了测量被池塘隔开的A,B两点之间的距离.根据实际情况,作出如下列图形,其中AB⊥BE,EF⊥BE,AF 交BE于D,C在BD上,实际可测量①BC;②CD;③DE;④EF;⑤DB;⑥∠ACB;⑦∠ADB等数据.你会选择测量哪些数据?请说出你的方案,并列出求AB长的表达式.13.如图,要测量河宽,可在两岸找到相对的两点A、B,先从B出发与AB成90°方向向前走50米,到C处立一标杆,然前方向不变继续朝前走10米到D处,在D处转90°,沿DE方向走到E处,假设A、C、E三点恰好在同一直线上,且DE=17米,你能根据题目提供的数据和图形求出河宽吗?14.在一次测量旗杆高度的活动中,某小组使用的方案如下:AB表示某同学从眼睛到脚底的距离,CD表示一根标杆,EF表示旗杆,AB、CD、EF都垂直于地面,假设AB=1.6m,CD=2m,人与标杆之间的距离BD=1m,标杆与旗杆之间的距离DF=30m,求旗杆EF的高度.15.我们知道当人的视线与物体外表互相垂直时的视觉效果最正确.如图是小明站在距离墙壁1.60米处观察装饰画时的示意图,此时小明的眼睛与装饰画底部A处于同一水平线上,视线恰好落在装饰画中心位置E处,且与AD垂直.装饰画的高度AD为0.66米,求:〔1〕装饰画与墙壁的夹角∠CAD的度数〔准确到1°〕;〔2〕装饰画顶部到墙壁的距离DC〔准确到0.01米〕.16.如图,学校的围墙外有一旗杆AB,甲在操场上C处直立3m高的竹竿CD,乙从C处退到E处恰好看到竹竿顶端D,与旗杆顶端B重合,量得CE=3m,乙的眼睛到地面的距离FE=1.5m;丙在C1处也直立3m高的竹竿C1D l,乙从E处退后6m到E l处,恰好看到两根竹竿和旗杆重合,且竹竿顶端D l与旅杆顶端B也重合,测得C l E l=4m.求旗杆AB的高.17.如图,一个三角形钢筋框架三边长分别为20cm、50cm、60cm,要做一个与其相似的钢筋框架.现有长为30cm 和50cm的两根钢筋,要求以其中一根为一边,从另一根上截下两段〔允许有余料〕作为另外两边,你认为有几种不同的截法?并分别求出.18.某校初三年级数学兴趣小组的同学准备在课余时间测量校园一棵树的高度.一天,在下,一名同学测得一根长为l米的竹竿的影长为0.6米,同一时刻另一名同学测量树的高度时,发现树的影子不全落在地面上,有一局部落在实验楼的第一级台阶上,此时测得落在地面上的影长为4.6米,落在台阶上的影长为0.2米,假设一级台阶高为0.3米〔如图〕,求树的高度?19.如图,小明站在灯光下,投在地面上的身影AB=1.125m,蹲下来,那么身影AC=0.5m,小明的身高AD=1.6m,蹲下时的高度等于站立高度的一半,求灯离地面的高度PH.20.如图,通过窗口照到室,在地面上留下一段亮区.亮区一边到窗下的墙脚距离CE=3.6m,窗高AB=1.2m,窗口底边离地面的高度BC=1.5m,求亮区ED的长.21.如图,△ABC是一块三角形余料,AB=AC=13cm,BC=10cm,现在要把它加工成正方形零件,使正方形的一边在△ABC的边上,其余两个顶点分别在三角形另外两条边上.试求正方形的边长是多少?22.通过窗口照射到室,在地面上留下2.7m宽的亮区〔如下图〕,亮区到窗口下的墙脚距离EC=8.7m,窗口高AB=1.8m,求窗口底边离地面的高BC.23.:CD为一幢3米高的温室,其南面窗户的底框G距地面1米,CD在地面上留下的最大影长CF为2米,现欲在距C点7米的正南方A点处建一幢12米高的楼房AB〔设A,C,F在同一水平线上〕.〔1〕按比例较准确地作出高楼AB及它的最大影长AE;〔2〕问假设大楼AB建成后是否影响温室CD的采光,试说明理由.24.一个钢筋三角架三边长分别是30厘米、75厘米、90厘米,现在再做一个与其相似的钢筋三角架,而只有长为45厘米和75厘米的两根钢筋,要求以其中一根为一边,从另一根上截下两段〔允许有余料〕作为两边,那么不同的截法有多少种?写出你的设计方案,并说明理由.25.有一块两直角边长分别为3cm和4cm的直角三角形铁皮,要利用它来裁剪一个正方形,有两种方法:一种是正方形的一边在直角三角形的斜边上,另两个顶点在两条直角边上,如图〔1〕;另一种是一组邻边在直角三角形的两直角边上,另一个顶点在斜边上,如图〔2〕.两种情形下正方形的面积哪个大?26.求证:一个人在两个高度一样的路灯之间行走,他前后的两个影子的长度之和是一个定值.27.某居民小区有一朝向为正南的居民楼〔如图〕,该居民楼的一楼是高为6米的小区超市,超市以上是居民住房.在该楼的前面15米处要盖一栋高20米的新楼.当冬季正午的与水平线的夹角是30°时.〔1〕超市以上的居民住房采光是否有影响,影响多高?〔2〕假设要使采光不受影响,两楼相距至少多少米?〔结果保存根号〕28.如图,有一路灯杆AB〔底部B不能直接到达〕,在灯光下,小明在点D处测得自己的影长DF=3m,沿BD方向到达点F处再测得自己得影长FG=4m,如果小明的身高为1.6m,求路灯杆AB的高度.29.如图,点D、E分别在AC、BC上,如果测得CD=20m,CE=40m,AD=100m,BE=20m,DE=45m,〔1〕△AB C与△EDC相似吗?为什么?〔2〕求A、B两地间的距离.30.如图,是小亮晚上在广场散步的示意图,图中线段AB表示站立在广场上的小亮,线段PO表示直立在广场上的灯杆,点P表示照明灯的位置.〔1〕在小亮由B处沿BO所在的方向行走到达O处的过程中,他在地面上的影子长度的变化情况为;〔2〕请你在图中画出小亮站在AB处的影子;〔3〕当小亮离开灯杆的距离OB=4.2m时,身高〔AB〕为1.6m的小亮的影长为1.6m,问当小亮离开灯杆的距离OD=6m时,小亮的影长是多少m?相似三角形性质和判定专项练习30题参考答案:1.解:如图,CD=3.6m,∵△BDC∽△FGE,∴=,即=,∴BC=6,在Rt△ABC中,∵∠A=30°,∴AB=2BC=12,即树长AB是12米.2.解:过点A作AM⊥EF于点M,交CD于点N,由题意可得:AN=2m,=2﹣1.65=0.35〔m〕,MN=40m,∵∥EM,∴△A∽△AEM,∴=,∴=,解得:EM=7.35,∵AB=MF=1.65m,故城楼的高度为:7.35+1.65﹣1.7=7.3〔米〕,答:城楼的高度为7.3m.3.〔1〕证明:∵四边形EFGH为矩形,∴EF∥GH,∴∠AHG=∠ABC,又∵∠HAG=∠BAC,∴△AHG∽△ABC,∴;〔2〕解:设HE=xcm,MD=HE=xcm,∵AD=30cm,∴AM=〔30﹣x〕cm,∵HG=2HE,∴HG=〔2x〕cm,由〔1〕可得,解得,x=12,∴宽HE的长为12cm.4.解:过A点作AH⊥ED,交FC于G,交ED于H.由题意可得:△AFG∽△AEH,∴即,解得:EH=9.6米.∴ED=9.6+1.6=11.2米.5.解:设BH=x,AH=y,根据题意可得:BC∥AH,DE∥AH,那么△FCB∽△FAH,△EDG∽△AHG,故=,=,即=,=,那么=,解得:x=57,故=,解得:y=40,答:建筑物的高度AB为40m及HB的长度为57m.6.解:〔1〕如图:〔2分〕.〔2〕由=〔3分〕∴OB=8米〔4分〕,∴OE=16.4米.由=〔5分〕即=.〔7分〕∴EH=4.1米.〔8分〕7.解:∵CD⊥AB,EB⊥AD,∴EB∥C D,∴△ABE∽△ADC,∴,.∵EB=2,AB=3,AD=21,∴,∴CD=14.答:此树高为14米.8.解:过C点作CG⊥AB于点G,∴GC=BD=3米,GB=CD=2米.∵∠NMF=∠AGC=90°,NF∥AC,∴∠NFM=∠ACG,∴△NMF∽△AGC,∴,∴AG===6,∴AB=AG+GB=6+2=8〔米〕,故电线杆子的高为8米.9.解:由对称性可知AM=BN,设AM=NB=x米,∵MF∥BC,∴△AMF∽△ABC∴=,∴=∴x=3经检验x=3是原方程的根,并且符合题意.∴AB=2x+12=2×3+12=18〔m〕.答:两个路灯之间的距离为18米.10.解:∵小的身高:小的影长=路灯的高度:路灯的影长,当小在CG处时,Rt△DCG∽Rt△DBA,即CD:BD=CG:AB,当小在EH处时,Rt△FEH∽Rt△FBA,即EF:BF=EH:AB=CG:AB,∴CD:BD=EF:BF,∵CG=EH=1.5米,CD=1米,CE=3米,EF=2米,设AB=x,BC=y,∴,解得:y=3,经检验y=3是原方程的根.∵CD:BD=CG:AB,即=,解得x=6米.即路灯A的高度AB=6米.11.解:∵∠DEF=∠BCD=90°∠D=∠D∴△DEF∽△DCB∴=∵DE=40cm=0.4m,EF=20cm=0.2m,AC=1.5m,CD=10m,∴=∴BC=5米,∴AB=AC+BC=1.5+5=6.5米∴树高为6.5米.12.解:选择①⑥,可由公式AB=BC×tan∠ACB求出A、B两点间的距离;选择③④⑤可以证得△DEF∽△DBA,那么=,可求得AB的长为.13.解:∵先从B处出发与AB成90°角方向,∴∠ABC=90°,∵BC=50m,CD=10m,∠EDC=90°,∴△ABC∽△EDC,∴AB=5DE,∵沿DE方向再走17米,到达E处,即DE=17,∴AB=5×17=85.∴河宽为85米14.解:过点A作AH⊥EF于H点,AH交CD于G,∵CD∥EF,∴△ACG∽△AEH,∴,即:,∴EH=12.4.∴EF=EH+HF=12.4+1.6=14,∴旗杆的高度为14米.15.解:〔1〕∵AD=0.66,∴AE=AD=0.33,在Rt△ABE中,〔1分〕∵sin∠ABE==,∴∠ABE≈12°,〔4分〕∵∠CAD+∠DAB=90°,∠ABE+∠DAB=90°,∴∠CAD=∠ABE=12°.∴镜框与墙壁的夹角∠CAD的度数约为12°.〔5分〕〔2〕解法一:在Rt△ACD中,∵sin∠CAD=,∴CD=AD•sin∠CAD=0.66×sin12°≈0.14,〔7分〕解法二:∵∠CAD=∠ABE,∠ACD=∠AEB=90°,∴△ACD∽△BEA,〔6分〕∴,∴,∴CD≈0.14.〔7分〕∴镜框顶部到墙壁的距离CD约是0.14米.〔8分〕16.解:设BO=x,GO=y.∵GD∥OB,∴△DGF∽△BOF,∴1.5:x=3:〔3+y〕同理1.5:x=4:〔y+6+3〕解上面2个方程得,经检验x=9,y=15均是原方程的解,∴旗杆AB的高为9+15=24〔米〕.17.解:有两种不同的截法:〔1〕如图〔一〕,以30cm长的钢筋为最长边,设中边为x,短边长为y,那么有,①,解得x=25,②,解得y=10,所以从50cm长的钢筋上分别截取10cm、25cm的两段;〔6分〕〔2〕如图〔二〕,以30cm长的钢筋为中边,设长边为x,短边长为y,①,解得x=36,②,解得y=12.所以从50cm长的钢筋上分别截取12cm、36cm的两段.〔12分〕〔3〕假设以30cm长的钢筋为短边,设长边为x,中边长为y,,解得:x=90〔不合题意,舍去〕18.解:如图,设树的高度为AB,BD为落在地面的影长,CE为落在台阶上的影长,CD为台阶高延长EC交AB于F,那么四边形BDCF是矩形,从而FC=BD=4.6,BF=CD=0.3,所以EF=4.6+0.2=4.8,那么,解得AF=8,AB=AF+FB=8.3〔米〕.所以树的高度AB为8.3米.19.解:因为AD∥PH,∴△ADB∽△HPB;△AMC∽△HPC∴AB:HB=AD:PH,AC:AM=HC:PH,即1.125:〔1.125+AH〕=1.6:PH,0.5:0.8=〔0.5+HA〕:PH,解得:PH=8m.即路灯的高度为8米20.解:根据题意,易得△DCB∽△ACE,∴CD:CE=BC:CA,又因为AB=1.2米,CE=3.6米,BC=1.5米,所以〔3.6﹣ED〕:3.6=1.5:〔1.2+1.5〕.解得ED=1.6米.21.解:∵△ABC中,AB=AC=13cm,BC=10cm,∴AD=12,∵四边形DEFG是正方形,∴ED∥BC,DE=GF,〔1分〕∴△AED∽△ACB,〔1分〕又∵AN⊥BC,∴AN⊥DE,DG=ED=EF,〔1分〕∴,〔2分〕设DE=x,那么AM=12﹣x,∴,〔1分〕解得:x=.答:这个正方形的边长为厘米.〔1分〕22.解:∵AE∥BD,∴△ECA∽△DCB,∴.∵EC=8.7m,ED=2.7m,∴CD=6m.∵AB=1.8m,∴AC=BC+1.8m,∴,∴BC=4,即窗口底边离地面的高为4m 23.解:如图,∵HE∥DF,HC∥AB,∴△CDF∽△ABE∽△CHE,∴AE:AB=CF:DC,∴AE=8米,由AC=7米,可得CE=1米,由比例可知:CH=1.5米>1米,故影响采光.24.解:设截成的两边的长分别为xcm、ycm,①45cm与30cm是对应边时,新做三角架的两边之和一定大于75cm,不符合;②45cm与75cm是对应边时,∵两三角架相似,∴==,解得x=18,y=54,∵18+54=72cm<75cm,∴从75cm长的钢筋截取18cm和54cm两根;③45cm与90cm是对应边时,∵两三角架相似,∴==,解得x=15,y=37.5,∵15+37.5=52.5cm<75cm,∴从75cm长的钢筋截取15cm和37.5cm两根;综上所述,共有两种截法:方法一:从75cm长的钢筋截取18cm和54cm两根,方法二:从75cm长的钢筋截取15cm和37.5cm两根.25.解:〔1〕因为△ABC为直角三角形,边长分别为3cm和4cm,那么AB==5.作AB边上的高CH,交DG于点Q.于是=,故CH=cm.易得:△DCG∽△ACB,故:=.设正方形DEFG的边长为xcm,得:=,解得:x=.〔2〕令AC=3cm,设正方形边长为ycm.易得:△ADE∽△ACB,于是:=,=,解得:y=.∵<,∴第二种情形下正方形的面积大.26.解:如下图,CD、EF为路灯高度,AB为该人高度,BM、BN为该人前后的两个影子.∵AB∥CD,∴=,∴=,即MB=.同理BN=.∴MB+BN==常数〔定值〕.27.解:〔1〕如图1所示:过F点作FE⊥AB于点E,∵EF=15米,∠AFE=30°,∴AE=5米,∴EB=FC=〔20﹣5〕米.∵20﹣5>6,∴超市以上的居民住房采光要受影响;〔2〕如图2所示:假设要使超市采光不受影响,那么太从A直射到C处.∵AB=20米,∠ACB=30°∴BC===20米答:假设要使超市采光不受影响,两楼最少应相距20米.28.解:∵CD∥EF∥AB,∴可以得到△CDF∽△ABF,△ABG∽△EFG,∴,,又∵CD=EF,∴,∵DF=3,FG=4,BF=BD+DF=BD+3,BG=BD+DF+FG=BD+7,∴,∴BD=9,BF=9+3=12,∴,解得,AB=6.4m.29.解:〔1〕∵CD=20m,CE=40m,AD=100m,BE=20m,DE=45m,∴AC=AD+CD=100+20=120m,BC=BE+CE=20+40=60m,∵==,==,∠C=∠C,∴△CDE∽△CBA;〔2〕∵△CDE∽△CBA,∴=,即=,解得AB=135m.30.解:〔1〕因为光是沿直线传播的,所以当小亮由B处沿BO所在的方向行走到达O处的过程中,他在地面上的影子长度的变化情况为变短;〔2〕如下图,BE即为所求;〔3〕先设OP=x,那么当OB=4.2米时,BE=1.6米,∴=,即=,∴x=5.8米;当OD=6米时,设小亮的影长是y米,∴=,∴=,∴y=〔米〕.即小亮的影长是米.。

相似三角形判定专项练习30题(有答案)

相似三角形判定专项练习30题(有答案)

相似三角形判定专项练习30题(有答案)1.如图,在正方形ABCD中,E为边AD的中点,点F在边CD上,且CF=3FD,△ABE与△DEF相似吗?为什么?2.如图,△BAC、△AGF为等腰直角三角形,且△BAC≌△AGF,∠BAC=∠AGF=90°.若△BAC固定不动,△AFG绕点A旋转,AF、AG与边BC的交点分别为D、E.请在图中找出两对相似而不全等的三角形,并选取其中一对进行证明.3.如图,在正三角形ABC中,D,E分别在AC,AB上,且,AE=EB.求证:△AED∽△CBD.4.如图,已知∠1=∠2,且AB•ED=AD•BC,则△ABC与△ADE相似吗?是说明理由.5.已知:如图,在△ABC中,∠C=90°,点D、E分别AB、CB延长线上的点,CE=9,AD=15,连接DE.若BC=6,AC=8,求证:△ABC∽△DBE.6.如图,点D在等边△ABC的BC边上,△ADE为等边三角形,DE与AC交于点F.(1)证明:△ABD∽△DCF;(2)除了△ABD∽△DCF外,请写出图中其他所有的相似三角形.7.如图,CD、BE分别是锐角△ABC中AB、AC边上的高线,垂足为D、E.(1)证明:△ADC∽△AEB;(2)连接DE,则△AED与△ABC能相似吗?说说你的理由.8.如图,在△ABC,AC⊥BC,D是BC延长线上的一点,E是AC上的一点,连接ED,∠A=∠D.求证:△ABC∽△DEC.9.在任意△ABC中,作CD⊥AB,垂足为D,BE⊥AC,垂足为E,F为BC上的中点,连接DE,EF,DF.(1)求证:DF=EF;(2)直接写出除直角三角形以外的所有相似三角形;(3)在(2)中的相似三角形中选择一对进行证明.10.如图,△ABC是等边三角形,点D、E分别在BC、AC上,且BD=CE,AD与BE相交于点F.(1)试说明△ABD≌△BCE;(2)△EAF与△EBA相似吗?说说你的理由.11.如图,在△ABC中,D是BC边上的中点,且AD=AC,DE⊥BC,交BA于点E,EC与AD相交于点F.求证:△ABC∽△FCD.12.已知:在Rt△ABC中∠C=90°,CD为AB边上的高.求证:Rt△ADC∽Rt△CDB.13.如图,D为△ABC内一点,E为△ABC外一点,且∠1=∠2,∠3=∠4,找出图中的两对相似三角形并说明理由.14.如图,∠DEC=∠DAE=∠B,试说明:(1)△DAE∽△EBA;(2)找出两个与△ABC相似的三角形(第2小题不要求写出证明过程).15.如图,锐角三角形ABC中,CD,BE分别是AB,AC边上的高,垂足为D,E.(1)证明:△ACD∽△ABE.(2)若将D,E连接起来,则△AED与△ABC能相似吗?说说你的理由.16.如图,在△ABC中,∠BAC=90°,D为BC的中点,AE⊥AD,AE交CB的延长线于点E.(1)求证:△EAB∽△ECA;(2)△ABE和△ADC是否一定相似?如果相似,加以说明;如果不相似,那么增加一个怎样的条件,△ABE和△ADC 一定相似.(1)求证:△ADE∽△ABC;(2)△ABD与△ACE相似吗?为什么?(3)图中还有哪些三角形相似?请直接写出来.18.如图,已知:△ABC为等腰直角三角形,∠ACB=90°,延长BA至E,延长AB至F,∠ECF=135°,求证:△EAC∽△CBF.19.如图所示,Rt△ABC中,已知∠BAC=90°,AB=AC=2,点D在BC上运动(不能到达点B,C),过点D作∠ADE=45°,DE交AC于点E.(1)求证:△ABD∽△DCE;(2)当△ADE是等腰三角形时,求AE的长.20.如图,点E是四边形ABCD的对角线BD上一点,且∠BAC=∠BDC=∠DAE.求证:△ABE∽△ACD.21.已知矩形ABCD,长BC=12cm,宽AB=8cm,P、Q分别是AB、BC上运动的两点.若P自点A出发,以1cm/s 的速度沿AB方向运动,同时,Q自点B出发以2cm/s的速度沿BC方向运动,问经过几秒,以P、B、Q为顶点的22.如图,矩形ABCD中,AB=6,BC=8,动点P从B点出发沿着BC向C移动,速度为每秒2个单位,动点Q 从点C出发沿CD向D出发,速度为每秒1个单位,几秒后由C、P、Q三点组成的三角形与△ABC相似?这时线段PQ与AC的位置关系如何?请说明理由.23.已知,如图,,点B,D,F,E在同一条直线上,请找出图中的相似三角形,并说明理由.24.已知线段AC上有一动点B,分别以AB、BC为边向线段的同一侧作等边三角形△ABD和△BCE.连接AE、CD (如图),若MN分别为AE、CD的中点,(1)求证:AM=CN;(2)求∠MBN的大小;(3)若连接MN,请你尽可能多的说出图中相似三角形和全等三角形.25.如图,已知△ABC和△MBN都是等腰直角三角形,∠BAC=∠MBN=90°,BD⊥AN.请找出与△ABD相似的三角形并给出证明,直接写出∠ANC的度数.26.如图,在△ABC中,AB=6,BC=8.点D以每秒1个单位长度的速度由B向A运动,同时点E以每秒2个单位长度的速度由C向B运动,当点E停止运动时,点D也随之停止.设运动时间为t秒,当以B,D,E为顶点的三角形与△ABC相似时,求t的值.27.如图,在正方形ABCD中,E是BC的中点,F是CD上一点,且CF=CD,证明:△ABE∽△AEF.28.如图,在四边形ABCD中,AB⊥BC,AD⊥DC,连接BD,AC,且DE⊥AC于E,交AB于F,求证:△AFD∽△ADB.29.已知,如图①所示,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点B、A、D在一条直线上,连接BE、CD.(2)若M、N分别是BE和CD的中点,将△ADE绕点A按顺时针旋转,如图②所示,试证明在旋转过程中,△AMN 是等腰三角形;(3)试证明△AMN与△ABC和△ADE都相似.30.如图,在△ABC中,AB=AC,BD=CD,CE⊥AB于E.求证:△ABD∽△CBE.相似三角形判定专项练习30题参考答案:1.解:△ABE 与△DEF 相似.理由如下: ∵四边形ABCD 为正方形, ∴∠A=∠D=90°,AB=AD=CD , 设AB=AD=CD=4a , ∵E 为边AD 的中点,CF=3FD , ∴AE=DE=2a ,DF=a ,∴==2,==2,∴=,而∠A=∠D , ∴△ABE ∽△DEF . 2.解:△EAD ∽△EBA ,△DAE ∽△DCA . 对△ABE ∽△DAE 进行证明: ∵△BAC 、△AGF 为等腰直角三角形, ∴∠B=45°,∠GAF=45°, ∴∠EAD=∠EBA , 而∠AED=∠BEA , ∴△EAD ∽△EBA . 3.证明:∵△ABC 为正三角形, ∴∠A=∠C=60°,BC=AB , ∵AE=BE , ∴CB=2AE , ∵,∴CD=2AD ,∴==,而∠A=∠C , ∴△AED ∽△CBD . 4.解:△ABC ∽△ADE ,理由为: 证明:∵AB •ED=AD •BC ,∴=,∵∠1=∠2, ∴∠1+∠ABE=∠2+∠ABE ,即∠BAC=∠DAE , ∴△ABC ∽△ADE .5.证明:∵在RT △ABC 中,∠C=90°,BC=6,AC=8, ∴AB==10,∴DB=AD ﹣AB=15﹣10=5 ∴DB :AB=1:2, 又∵EB=CE ﹣BC=9﹣6=3, ∴EB :BC=1:2,又∵∠DBE=∠ABC,∴△ABC∽△DBE.6.(1)证明:∵△ABC,△ADE为等边三角形,∴∠B=∠C=∠3=60°,∴∠1+∠2=∠DFC+∠2,∴∠1=∠DFC,∴△ABD∽△DCF;(2)解:∵∠C=∠E,∠AFE=∠DFC,∴△AEF∽△DCF,∴△ABD∽△AEF,故除了△ABD∽△DCF外,图中相似三角形还有:△AEF∽△DCF,△ABD∽△AEF,△ABC∽△ADE,△ADF∽△ACD.7.(1)证明:∵如图,CD、BE分别是锐角△ABC中AB、AC边上的高线,∴∠ADC=∠AEB=90°.又∵∠A=∠A,∴△ADC∽△AEB;(2)由(1)知,△ADC∽△AEB,则AD:AE=AC:AB.又∵∠A=∠A,∴△AED∽△ABC.8.证明:∵AC⊥BC,∴∠ACB=∠DCE=90°,又∵∠A=∠D,∴△ABC∽△DEC.9.(1)证明:∵CD⊥AB,BE⊥AC,∴∠BEC=∠BDC=90°,而F为BC上的中点,∴EF=BC,DF=BC,∴DF=EF;(2)解:△ADE∽△ACB;△PDE∽△PCB;△PDB∽△PEC;(3)△ADE∽△ACB.理由如下:证明:∵∠ADC=∠AEB=90°,而∠BAE=∠CAD,∴△ABE∽△ACD,∴=,∵∠DAE=∠CAB,∴△ADE∽△ACB.10.(1)证明:∵△ABC是等边三角形,∴AB=BC,∠ABD=∠BCE=∠BAC,又∵BD=CE,∴△ABD≌△BCE;(2)答:相似;理由如下:∵△ABD≌△BCE,∴∠BAD=∠CBE,∴∠BAC﹣∠BAD=∠CBA﹣∠CBE,∴∠EAF=∠EBA,又∵∠AEF=∠BEA,∴△EAF∽△EBA.11.证明:∵AD=AC,∴∠ADC=∠ACD,∵D为BC中点,且DE⊥BC,∴EB=EC.∴∠B=∠DCF.∴△ABC∽△FCD.12.证明:∵CD为AB边上的高,∴∠ADC=∠CDB=90°,∵∠ACB=90°,∴∠A+∠ACD=90°,∠ACD+∠BCD=90°,∴∠A=∠BCD,∵∠ADC=∠CDB=90°,∴Rt△ADC∽Rt△CDB.13.解:△ABD∽△CBE,△ABC∽△DBE.∵∠1=∠2,∠3=∠4,∴△ABD∽△CBE,∴∵∠1=∠2,∴∠ABC=∠DBE,∴△ABC∽△DBE14.解:(1)∵∠DEC=∠B,∴DE∥AB,∴∠DEA=∠EAB,又∵∠DAE=∠B,∴△DAE∽△EBA;(2)△CDE∽△ABC,△EAC∽△ABC.15.证明:(1)∵CD,BE分别是AB,AC边上的高,∴∠ADC=∠AEB=90°.∵∠A=∠A,∴△ACD∽△ABE.(2)∵△ACD∽△ABE,∴AD:AE=AC:AB.∵∠A=∠A,∴△AED∽△ABC.16.证明:(1)∵△ABC中,∠BAC=90°,D为BC的中点,∴BD=CD,AD=CD,∴∠C=∠DAC,又∵AE⊥AD,∴∠EAB+∠BAD=90°,∠BAD+∠DAC=90°,∴∠EAB=∠C,∴△EAB∽△ECA;(2)由(1)得,∠EAB=∠CAD,∴当∠ABE=∠ADC或AB=BE或∠E=∠C或=时,△ABE和△ADC一定相似.17.解:(1)证明∵∠A=∠A,∠ADE=∠ABC,∴△ADE∽△ABC;(2)相似.证明:∵△ADE∽△ABC;∴,∵∠A=∠A,∴△ABD∽△ACE;(3)△DOE∽△COB;△EOB∽△DOC.18.证明:∵△ABC为等腰直角三角形,∠ACB=90°,∴∠CAB=∠CBA=45°,∴∠E+∠ECA=45°(三角形外角定理).又∠ECF=135°,∴∠ECA+∠BCF=∠ECF﹣∠ACB=45°,∴∠E=∠BCF;同理,∠ECA=∠F,∴△EAC∽△CBF.19.(1)证明:Rt△ABC中,∠BAC=90°,AB=AC=2,∴∠B=∠C=45°.∵∠ADC=∠B+∠BAD,∠ADC=∠ADE+∠EDC,∴∠ADE+∠EDC=∠B+∠BAD.又∵∠ADE=45°,∴45°+∠EDC=45°+∠BAD.∴∠EDC=∠BAD.∴△ABD∽△DCE.(2)解:讨论:①若AD=AE时,∠DAE=90°,此时D点与点B重合,不合题意.②若AD=DE时,△ABD与△DCE的相似比为1,此时△ABD≌△DCE,于是AB=AC=2,BC=2,AE=AC﹣EC=2﹣BD=2﹣(2﹣2)=4﹣2③若AE=DE,此时∠DAE=∠ADE=45°,如下图所示易知AD⊥BC,DE⊥AC,且AD=DC.由等腰三角形的三线合一可知:AE=CE=AC=1.20.解:∵∠BAC=∠BDC,∠AOB=∠DOC,∴∠ABE=∠ACD又∵∠BAC=∠DAE∴∠BAC+∠EAC=∠DAE+∠EAC∴∠DAC=∠EAB∴△ABE∽△ACD.21.解:设经x秒后,△PBQ∽△BCD,由于∠PBQ=∠BCD=90°,(1)当∠1=∠2时,有:,即;(2)当∠1=∠3时,有:,即,∴经过秒或2秒,△PBQ∽△BCD.22.解:要使两个三角形相似,由∠B=∠PCQ ∴只要或者∵AB=6,BC=8∴只要设时间为t则PC=8﹣2t,CQ=t∴t=或者t=;①当t=时,△ABC∽△PCQ,PQ⊥AC理由:△ABC∽△PCQ∴∠BAC=∠CPQ∵∠BAC+∠ECP=90°,∴∠EPC+∠ECP=90°即PQ⊥AC;②当t=,△ABC∽△QCP,AC平分PQ理由:△ABC∽△QCP∴∠BAC=∠CQP,∠ACB=∠QPC∴∠QCE=∠EQC,∠ACB=∠QPC∴PE=EQ=CE即AC平分PQ23.解:△ABC∽△ADE,△BAD∽△CAE.理由:∵,∴△ABC∽△ADE,∴∠BAC=∠DAE,∴∠BAD=∠CAE,∵,∴,∴△BAD∽△CAE,∵∠ACB=∠AED,∠AFE=∠BFC,∴△AFE∽△BFC.24.(1)证明:∵△ABD和△BCE是等边三角形,∴AB=BD,BC=BE,∠EBC=∠ABC=60°,∴∠ABE=∠DBC,在△ABE和△DBC中∴△ABE≌△DBC(SAS)∴AE=DC,∵M、N分别为AE、CD的中点,∴AM=AE,CN=DC∴AM=CN;(2)解:∵△ABE≌△DBC,∴∠EAB=∠CDB,在△AMB和△DNB中∴△AMB≌△DNB(SAS),∴∠ABM=∠DBN,∵∠ABC=∠ABM+∠MBD=60°,∴∠DBN+∠MBD=60°,即∠MBN=60°;(3)解:图中的全等三角形有:△ABM≌△DBN,△BME≌△BCN,△ABE≌△DBC;相似三角形有:△ABD∽△BCE,△ABD∽△BMN,△BMN∽△BCE.25.解:△ABD∽△CBN,理由:∵△ABC和△MBN都是等腰直角三角形,BD⊥AN,∴∠MBD=∠NBD=∠BNM=∠ABC=45°,∴==,∵∠MBA+∠ABD=45°,∠ABD+∠CBN=45°,∴∠ABD=∠CBN,∴△ABD∽△CBN,∴∠BNC=∠ADB=90°,∵∠BNA=45°,∴∠ANC=45°.26.解:∵点D以每秒1个单位长度的速度由B向A运动,同时点E以每秒2个单位长度的速度由C向B运动,∴BD=t,BE=8﹣2t,∴△BDE∽△BAC时,=,即=,解得t=2.4(秒);当△BED∽△BAC时,=,即=,解得t=(秒).综上所述,t的值为2.4秒或秒.27.证明:∵在正方形ABCD中,E是BC的中点,F是CD上一点,且CF=CD,∴∠B=∠C=90°,AB:EC=BE:CF=2:1.∴△ABE∽△ECF.∴AB:EC=AE:EF,∠AEB=∠EFC.∵BE=CE,∠FEC+∠EFC=90°,∴AB:AE=BE:EF,∠AEB+∠FEC=90°.∴∠AEF=∠B=90°.∴△ABE∽△AEF.28.证明:∵∠AEF=∠ABC=90°,∠EAF=∠BAC.∴△EAF∽△BAC,=,即AE•AC=AF•AB.同理可得,△AED∽△ADC,=,即AE•AC=AD2,∴AD2=AF•AB,即=,又∵∠DAF=∠BAD,∴△AFD∽△ADB.29.证明:(1)∵∠BAC=∠DAE,∴∠BAC+∠CAE=∠DAE+∠CAE,即∠BAE=∠CAD.在△ABE与△ACD中,,∴△ABE≌△ACD,∴BE=CD;(2)由(1)得△ABE≌△ACD,∴∠ABE=∠ACD,BE=CD.∵M,N分别是BE,CD的中点,∴BM=CN.在△ABM与△ACN中,,∴△ABM≌△ACN,∴AM=AN,∴△AMN为等腰三角形;(3)由(2)得△ABM≌△ACN,∴∠BAM=∠CAN,∴∠BAM+∠BAN=∠CAN+∠BAN,即∠MAN=∠BAC,又∵AM=AN,AB=AC,∴AM:AB=AN:AC,∴△AMN∽△ABC;∵AB=AC,AD=AE,∴AB:AD=AC:AE,又∵∠BAC=∠DAE,∴△ABC∽△ADE;∴△AMN∽△ABC∽△ADE.30.证明:在△ABC中,AB=AC,BD=CD,∴AD⊥BC,∵CE⊥AB,∴∠ADB=∠CEB=90°,又∵∠B=∠B,∴△ABD∽△CBE.。

初中数学经典相似三角形练习题(附参考答案)

初中数学经典相似三角形练习题(附参考答案)

初中数学经典相似三⾓形练习题(附参考答案)经典练习题相似三⾓形(附答案)⼀.解答题(共30 ⼩题)1..如图,在△A中B,C DE∥BC,EF∥AB,求证:△ADE∽△EFC .2..如图,梯形A BCD 中,AB∥CD,点F 在BC 上,连DF 与AB 的延长线交于点G.(1 )求证:△CDF∽△BGF;(2 )当点 F 是BC 的中点时,过 F 作EF∥C D交AD 于点E,若AB=6cm ,EF=4cm ,求CD 的长.3..如图,点 D ,E 在BC 上,且FD∥ AB,FE∥AC.求证:△ABC∽△FDE .4..如图,已知E是矩形ABCD 的边CD 上⼀点,BF⊥A于E F,试说明:△ABF ∽△EAD.5..已知:如图①所⽰,在△和△ABA C DE中,AB=AC ,AD=AE ,∠BAC= ∠DAE,且点B,A ,D 在⼀条直线上,连接BE,CD ,M ,N 分别为BE,CD 的中点.(1 )求证:①BE=CD ;②△A是MN等腰三⾓形;(2 )在图①的基础上,将△绕点AD A E 按顺时针⽅向旋转180 °,其他条件不变,得到图②所⽰的图形.请直接写出(1)中的两个结论是否仍然成⽴;(3 )在(2 )的条件下,请你在图②中延长ED 交线段BC 于点P.求证:△PBD∽△AMN.6..如图,E 是? ABCD 的边BA 延长线上⼀点,连接EC,交AD 于点F.在不添加辅助线的情况下,请你写出图中所有的相似三⾓形,并任选⼀对相似三⾓形给予证明.和A△BC DE的F顶点都在边长为 1 的⼩正⽅形的顶点上.7..如图,在 4 ×3的正⽅形⽅格中,△(1 )填空:∠A BC= °,BC= ;(2 )判断△AB与C△DEC是否相似,并证明你的结论.8..如图,已知矩形ABCD 的边长AB=3cm ,BC=6cm .某⼀时刻,动点M 从A 点出发沿AB ⽅向以1cm/s的速度向 B 点匀速运动;同时,动点N 从D 点出发沿DA ⽅向以2cm/s 的速度向 A 点匀速运动,问:(1 )经过多少时间,△的A M⾯N积等于矩形ABCD ⾯积的?(2 )是否存在时刻t ,使以 A ,M ,N 为顶点的三⾓形与△相A似CD?若存在,求t 的值;若不存在,请说明理由.9..如图,在梯形ABCD 中,若AB∥DC,AD=BC ,对⾓线BD 、AC 把梯形分成了四个⼩三⾓形.(1 )列出从这四个⼩三⾓形中任选两个三⾓形的所有可能情况,并求出选取到的两个三⾓形是相似三⾓形的概率是多少;(注意:全等看成相似的特例)(2 )请你任选⼀组相似三⾓形,并给出证明.10 .如图△AB中C,D 为AC 上⼀点,CD=2DA ,∠BAC=45 °,∠BDC=60 °,CE于⊥EB,D连接AE .(1 )写出图中所有相等的线段,并加以证明;(2 )图中有⽆相似三⾓形?若有,请写出⼀对;若没有,请说明理由;(3 )求△BE与C△BEA的⾯积之⽐.11 .如图,在△A中B,C AB=AC=a ,M 为底边BC 上的任意⼀点,过点M 分别作AB 、AC 的平⾏线交AC于P,交AB 于Q .(1 )求四边形AQMP 的周长;(2 )写出图中的两对相似三⾓形(不需证明);(3 )M 位于BC 的什么位置时,四边形AQMP 为菱形并证明你的结论.12 .已知:P 是正⽅形ABCD 的边BC 上的点,且BP=3PC ,M 是CD 的中点,试说明:△ADM∽△MCP.13 .如图,已知梯形ABCD 中,AD∥BC,AD=2 ,AB=BC=8 ,CD=10 .(1 )求梯形ABCD 的⾯积S;(2 )动点P 从点 B 出发,以1cm/s 的速度,沿B? A ? D ? C ⽅向,向点 C 运动;动点Q 从点 C 出发,以1cm/s 的速度,沿C? D? A ⽅向,向点 A 运动,过点Q 作QE⊥BC 于点E.若P、Q 两点同时出发,当其中⼀点到达⽬的地时整个运动随之结束,设运动时间为t 秒.问:①当点P 在B? A 上运动时,是否存在这样的t ,使得直线PQ 将梯形ABCD 的周长平分?若存在,请求出t 的值;若不存在,请说明理由;②在运动过程中,是否存在这样的t,使得以P、A、D 为顶点的三⾓形与△相C似Q?E 若存在,请求出所有符合条件的t 的值;若不存在,请说明理由;③在运动过程中,是否存在这样的t ,使得以P、D、Q 为顶点的三⾓形恰好是以DQ 为⼀腰的等腰三⾓形?若存在,请求出所有符合条件的t 的值;若不存在,请说明理由.14 .已知矩形ABCD ,长BC=12cm ,宽AB=8cm ,P、Q 分别是AB 、BC 上运动的两点.若P ⾃点 A 出发,以1cm/s 的速度沿AB ⽅向运动,同时,Q ⾃点 B 出发以2cm/s 的速度沿BC ⽅向运动,问经过⼏秒,以P、B、Q 为顶点的三⾓形与△相B似DC?15 .如图,在△A中B,C AB=10cm ,BC=20cm ,点P 从点 A 开始沿AB 边向 B 点以2cm/s 的速度移动,点Q 从点B 开始沿BC 边向点 C 以4cm/s 的速度移动,如果P、Q 分别从 A 、B 同时出发,问经过⼏秒钟,△PBQ与△ABC相似.16 .如图,∠ACB= ∠ADC=90 A°C,= ,AD=2 .问当AB 的长为多少时,这两个直⾓三⾓形相似.17 .已知,如图,在边长为 a 的正⽅形ABCD 中,M 是AD 的中点,能否在边AB 上找⼀点N(不含 A 、B),使得△CDM与△MAN相似?若能,请给出证明,若不能,请说明理由.18 .如图在△A中BC,∠C=90 °B,C=8cm ,AC=6cm ,点Q 从B 出发,沿BC ⽅向以2cm/s 的速度移动,点P 从C 出发,沿CA ⽅向以1cm/s 的速度移动.若Q 、P 分别同时从B、C 出发,试探究经过多少秒后,以点C、P、Q 为顶点的三⾓形与△相C似B?A19 .如图所⽰,梯形ABCD 中,AD∥BC,∠A=90 °A B,=7 ,AD=2 ,BC=3 ,试在腰AB 上确定点P 的位置,使得以P,A ,D 为顶点的三⾓形与以P,B,C 为顶点的三⾓形相似.20 .△ABC和△DE是F两个等腰直⾓三⾓形,∠A= ∠D=90 °的,顶△点E D E位F于边BC 的中点上.(1 )如图 1 ,设DE 与AB 交于点M ,EF与AC 交于点N ,求证:△BEM∽△CNE;(2 )如图 2 ,将△D E绕F点E 旋转,使得DE 与BA 的延长线交于点M ,EF 与AC 交于点N ,于是,除(1)中的⼀对相似三⾓形外,能否再找出⼀对相似三⾓形并证明你的结论.21 .如图,在矩形ABCD 中,AB=15cm ,BC=10cm ,点P 沿AB 边从点 A 开始向 B 以2cm/s 的速度移动;点Q 沿DA 边从点 D 开始向点 A 以1cm/s 的速度移动.如果P、Q 同时出发,⽤t(秒)表⽰移动的时间,C那么当t 为何值时,以点Q 、A 、P 为顶点的三⾓形与△相A似B.22 .如图,路灯(P 点)距地⾯8 ⽶,⾝⾼ 1.6 ⽶的⼩明从距路灯的底部(O 点)20 ⽶的 A 点,沿OA 所在的直线⾏⾛14 ⽶到B 点时,⾝影的长度是变长了还是变短了?变长或变短了多少⽶?23 .阳光明媚的⼀天,数学兴趣⼩组的同学们去测量⼀棵树的⾼度(这棵树底部可以到达,顶部不易到达),他们带了以下测量⼯具:⽪尺,标杆,⼀副三⾓尺,⼩平⾯镜.请你在他们提供的测量⼯具中选出所需⼯具,设计⼀种测量⽅案.(1 )所需的测量⼯具是:;(2 )请在下图中画出测量⽰意图;(3 )设树⾼AB 的长度为x,请⽤所测数据(⽤⼩写字母表⽰)求出x.24 .问题背景在某次活动课中,甲、⼄、丙三个学习⼩组于同⼀时刻在阳光下对校园中⼀些物体进⾏了测量.下⾯是他们通过测量得到的⼀些信息:甲组:如图 1 ,测得⼀根直⽴于平地,长为80cm 的⽵竿的影长为60cm .⼄组:如图 2 ,测得学校旗杆的影长为900cm .丙组:如图 3 ,测得校园景灯(灯罩视为球体,灯杆为圆柱体,其粗细忽略不计)的⾼度为200cm ,影长为156cm .任务要求:(1 )请根据甲、⼄两组得到的信息计算出学校旗杆的⾼度;(2 )如图 3 ,设太阳光线NH 与⊙O相切于点M .请根据甲、丙两组得到的信息,求景灯灯罩的半径.(友情提⽰:如图 3 ,景灯的影长等于线段NG 的影长;需要时可采⽤等式156 2+208 2 =260 2)25 .阳光通过窗⼝照射到室内,在地⾯上留下 2.7m 宽的亮区(如图所⽰),已知亮区到窗⼝下的墙脚距离EC=8.7m ,窗⼝⾼AB=1.8m ,求窗⼝底边离地⾯的⾼BC.26 .如图,李华晚上在路灯下散步.已知李华的⾝⾼AB=h ,灯柱的⾼OP=O′P′=两l 灯,柱之间的距离OO′=m.(1 )若李华距灯柱OP 的⽔平距离OA=a ,求他影⼦AC 的长;(2 )若李华在两路灯之间⾏⾛,则他前后的两个影⼦的长度之和(DA+AC )是否是定值请说明理由;(3 )若李华在点 A 朝着影⼦(如图箭头)的⽅向以v 1匀速⾏⾛,试求他影⼦的顶端在地⾯上移动的速度v 2.27 .如图①,分别以直⾓三⾓形ABC 三边为直径向外作三个半圆,其⾯积分别⽤S1,S2 ,S3 表⽰,则不难证明S1 =S 2 +S 3 .(1 )如图②,分别以直⾓三⾓形ABC 三边为边向外作三个正⽅形,其⾯积分别⽤S1 ,S2,S3 表⽰,那么S1,S2 ,S3 之间有什么关系;(不必证明)(2 )如图③,分别以直⾓三⾓形ABC 三边为边向外作三个正三⾓形,其⾯积分别⽤S1、S2、S3 表⽰,请你确定S1 ,S2,S3 之间的关系并加以证明;(3 )若分别以直⾓三⾓形ABC 三边为边向外作三个⼀般三⾓形,其⾯积分别⽤S1 ,S2 ,S3 表⽰,为使S1,S2,S3 之间仍具有与(2)相同的关系,所作三⾓形应满⾜什么条件证明你的结论;(4 )类⽐(1 ),(2 ),(3 )的结论,请你总结出⼀个更具⼀般意义的结论.28 .已知:如图,△ABC∽△AB A=D1E5,,AC=9 ,BD=5 .求AE .29 .已知:如图Rt △ABC∽Rt △BDC,AB若=3 ,AC=4 .(1 )求BD 、CD 的长;(2 )过 B 作BE⊥ DC 于E,求BE 的长.﹣2y=40 ,求x,y,z 的值;30 .(1 )已知,且3x+4z(2 )已知:两相似三⾓形对应⾼的⽐为 3 :10 ,且这两个三⾓形的周长差为560cm ,求它们的周长.参考答案与试题解析⼀.解答题(共 30 ⼩题)1..如图,在△ A 中B ,C DE ∥ BC , EF ∥ AB ,求证:△ ADE ∽△ EFC .ADE ∽2. .如图,梯形 A BCD 中, AB ∥ CD ,点F 在 BC 上,连 DF 与 AB 的延长线交于点 G .考点:相似三⾓形的判定;平⾏线的性质。

初三相似三角形提高拓展专题练习附答案

初三相似三角形提高拓展专题练习附答案

14.〔1〕把两个含 450 角的直角三角板如图 1 放置,点 D 在 BC 上,连接 BE、AD,AD 的延长线
交 BE 于点 F,求证:AF⊥BE
〔2〕把两个含 300 角的直角三角板如图 2 放置,点 D 在 BC 上,连接 BE、AD,AD 的延长线交 BE
于点 F,问 AF 与 BE 是否垂直?并说明理由.
2
________________.
12. 将三角形纸片〔△ABC〕按如下图的方式折叠,使点 B 落在边 AC 上,记为点 B′,折痕为 EF.AB
A
பைடு நூலகம்
B
=AC=3,
设以点 B′,F,C 为顶点的三角形与△ABC 相似,则 BF 的长度是.
D
F
E BC=4,假
C
13.如图,
正方形 ABCD 的边长为 1cm,E、F 分别是 BC、CD 的中点,连接 BF、DE,则图中阴影局部的 面积是 cm2. 三、解答题
A.1 B.2 C.3 D.4
4.如图,
A
菱形 ABCD 中,对角线 AC、BD 相交于点 O,M、N 分别是边
M
N
B AB、AD 的中点,连接 OM、ON、MN,则以下表达正确的选
O
D
项是
C
〔〕
A.△AOM 和△AON 都是等边三角形
B.四边形 MBON 和四边形 MODN 都是菱形
C.四边形 AMON 与四边形 ABCD 是位似图形
A.8
B.9.5
C.10
D.11.5
A
D
G
二、填空题 B
E
C
8.如图,路灯距离地面 8 米F ,身高 1.6 米的小明站在距离灯的底部〔点 O 〕20 米的 A 处,则小明

相似三角形典型例题30道

相似三角形典型例题30道

相似三角形典型例题30道1: 在△ABC中,DE是平行于BC的线段,且AD/DB = 2/3。

求DE/BC的比值。

2: 已知△PQR与△XYZ相似,PQ = 6,XY = 9,求QR 与YZ的比值。

3: 在△ABC中,D、E分别是AB、AC上的点,且DE平行于BC,已知AD = 3,DB = 6,求AE与EC的比值。

4: 已知两个相似三角形的面积比为4:9,求它们对应边的比。

5: 在△XYZ中,MN是平行于XY的线段,且XM = 4,MY = 6,求MN/XY的比值。

6: 在△ABC中,AD是BC的中线,且AE是AB的延长线,若AE与BC相交于点F,求AF与FB的比值。

7: 在△DEF中,GH平行于EF,已知DE = 8,DF = 10,求GH/EF的比值。

8: 在一个相似三角形中,若大三角形的周长是36,小三角形的周长是24,求它们的面积比。

9: 在△JKL中,MN平行于JK,若JM = 3,MK = 5,求MN/JK的比值。

10: 如果两个相似三角形的对应边长分别为5和15,求它们的面积比。

11: 在△ABC中,AD是BC的中线,且DE平行于BC,已知AD = 4,BC = 8,求DE的长度。

12: 已知相似三角形的对应边长比为1:4,求它们的周长比。

13: 在△PQR中,S是PQ的中点,若ST平行于QR,求PS与PQ的比值。

14: 在相似三角形中,若小三角形的每条边长为5,大三角形的对应边长为15,求它们的面积比。

15: 在一个三角形中,若一条边的延长线与另一边的平行线相交,则形成的两小三角形与原三角形相似,求相似比。

16: 在△XYZ中,若XY = 10,XZ = 15,YZ = 12,求△XYZ的周长。

17: 已知△ABC与△DEF相似,若AB = 4,DE = 8,求AC与DF的比值。

18: 在△GHI中,JK平行于GH,若GJ = 5,GH = 20,求JK的长度。

19: 在相似三角形中,若一个三角形的面积是36,另一个三角形的面积是144,求其对应边的比。

经典相似三角形练习题(附参考答案)

经典相似三角形练习题(附参考答案)

相似三角形之阳早格格创做一.解问题(共30小题)1.如图,正在△ABC中,DE∥BC,EF∥AB,供证:△ADE∽△EFC.2.如图,梯形ABCD中,AB∥CD,面F正在BC上,连DF与AB的延少线接于面G.(1)供证:△CDF∽△BGF;(2)当面F是BC的中面时,过F做EF∥CD接AD于面E,若AB=6cm,EF=4cm,供CD的少.3.如图,面D,E正在BC上,且FD∥AB,FE∥AC.供证:△ABC∽△FDE.4.如图,已知E是矩形ABCD的边CD上一面,BF⊥AE 于F,试道明:△ABF∽△EAD.5.已知:如图①所示,正在△ABC战△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且面B,A,D正在一条曲线上,对接BE,CD,M,N分别为BE,CD的中面.(1)供证:①BE=CD;②△AMN是等腰三角形;(2)正在图①的前提上,将△ADE绕面A按逆时针目标转动180°,其余条件稳定,得到图②所示的图形.请间接写出(1)中的二个论断是可仍旧创造;(3)正在(2)的条件下,请您正在图②中延少ED接线段BC于面P.供证:△PBD∽△AMN.6.如图,E是▱ABCD的边BA延少线上一面,对接EC,接AD于面F.正在不增加辅帮线的情况下,请您写出图中所有的相似三角形,并任选一对于相似三角形赋予道明.7.如图,正在4×3的正圆形圆格中,△ABC战△DEF 的顶面皆正在边少为1的小正圆形的顶面上.(1)挖空:∠ABC=_________°,BC=_________;(2)推断△ABC与△DEC是可相似,并道明您的论断.8.如图,已知矩形ABCD的边少AB=3cm,BC=6cm.某一时刻,动面M从A面出收沿AB目标以1cm/s的速度背B面匀速疏通;共时,动面N从D面出收沿DA目标以2cm/s的速度背A面匀速疏通,问:(1)通过几时间,△AMN的里积等于矩形ABCD里积的?(2)是可存留时刻t,使以A,M,N为顶面的三角形与△ACD相似?若存留,供t的值;若不存留,请道明缘由.9.如图,正在梯形ABCD中,若AB∥DC,AD=BC,对于角线BD、AC把梯形分成了四个小三角形.(1)列出从那四个小三角形中任选二个三角形的所有大概情况,并供出采用到的二个三角形是相似三角形的概率是几;(注意:齐等瞅成相似的惯例)(2)请您任选一组相似三角形,并给出道明.10.如图△ABC中,D为AC上一面,CD=2DA,∠BAC=45°,∠BDC=60°,CE⊥BD于E,对接AE.(1)写出图中所有相等的线段,并加以道明;(2)图中有无相似三角形?若有,请写出一对于;若不,请道明缘由;(3)供△BEC与△BEA的里积之比.11.如图,正在△ABC中,AB=AC=a,M为底边BC 上的任性一面,过面M分别做AB、AC的仄止线接AC 于P,接AB于Q.(1)供四边形AQMP的周少;(2)写出图中的二对于相似三角形(不需道明);(3)M位于BC的什么位子时,四边形AQMP为菱形并道明您的论断.12.已知:P是正圆形ABCD的边BC上的面,且BP=3PC,M是CD的中面,试道明:△ADM∽△MCP.13.如图,已知梯形ABCD中,AD∥BC,AD=2,AB=BC=8,CD=10.(1)供梯形ABCD的里积S;(2)动面P从面B出收,以1cm/s的速度,沿B⇒A⇒D⇒C 目标,背面C疏通;动面Q从面C出收,以1cm/s的速度,沿C⇒D⇒A目标,背面A疏通,过面Q做QE⊥BC 于面E.若P、Q二面共时出收,当其中一面到达手段天时所有疏通随之中断,设疏通时间为t秒.问:①当面P正在B⇒A上疏通时,是可存留那样的t,使得曲线PQ将梯形ABCD的周少仄分?若存留,哀供出t 的值;若不存留,请道明缘由;②正在疏通历程中,是可存留那样的t,使得以P、A、D为顶面的三角形与△CQE相似?若存留,哀供出所有切合条件的t的值;若不存留,请道明缘由;③正在疏通历程中,是可存留那样的t,使得以P、D、Q为顶面的三角形恰佳是以DQ为一腰的等腰三角形?若存留,哀供出所有切合条件的t的值;若不存留,请道明缘由.14.已知矩形ABCD,少BC=12cm,宽AB=8cm,P、Q分别是AB、BC上疏通的二面.若P自面A出收,以1cm/s的速度沿AB目标疏通,共时,Q自面B出收以2cm/s的速度沿BC目标疏通,问通过几秒,以P、B、Q为顶面的三角形与△BDC相似?15.如图,正在△ABC中,AB=10cm,BC=20cm,面P 从面A启初沿AB边背B面以2cm/s的速度移动,面Q 从面B启初沿BC边背面C以4cm/s的速度移动,如果P、Q分别从A、B共时出收,问通过几秒钟,△PBQ 与△ABC相似.16.如图,∠ACB=∠ADC=90°,AC=,AD=2.问当AB的少为几时,那二个曲角三角形相似.17.已知,如图,正在边少为a的正圆形ABCD中,M 是AD的中面,是可正在边AB上找一面N(不含A、B),使得△CDM与△MAN相似?若能,请给出道明,若不克不迭,请道明缘由.18.如图正在△ABC中,∠C=90°,BC=8cm,AC=6cm,面Q从B出收,沿BC目标以2cm/s的速度移动,面P 从C出收,沿CA目标以1cm/s的速度移动.若Q、P 分别共时从B、C出收,试商量通过几秒后,以面C、P、Q为顶面的三角形与△CBA相似?19.如图所示,梯形ABCD中,AD∥BC,∠A=90°,AB=7,AD=2,BC=3,试正在腰AB上决定面P 的位子,使得以P,A,D为顶面的三角形与以P,B,C为顶面的三角形相似.20.△ABC战△DEF是二个等腰曲角三角形,∠A=∠D=90°,△DEF的顶面E位于边BC的中面上.(1)如图1,设DE与AB接于面M,EF与AC接于面N,供证:△BEM∽△CNE;(2)如图2,将△DEF绕面E转动,使得DE与BA的延少线接于面M,EF与AC接于面N,于是,除(1)中的一对于相似三角形中,是可再找出一对于相似三角形并道明您的论断.21.如图,正在矩形ABCD中,AB=15cm,BC=10cm,面P沿AB边从面A启初背B以2cm/s的速度移动;面Q沿DA边从面D启初背面A以1cm/s的速度移动.如果P、Q共时出收,用t(秒)表示移动的时间,那么当t为何值时,以面Q、A、P为顶面的三角形与△ABC相似.22.如图,路灯(P面)距大天8米,身下1.6米的小明从距路灯的底部(O面)20米的A面,沿OA天圆的曲线止走14米到B面时,身影的少度是变少了仍旧变短了?变少或者变短了几米?23.阳光彩媚的一天,数教兴趣小组的共教们来丈量一棵树的下度(那棵树底部不妨到达,顶部阻挡易到达),他们戴了以下丈量工具:皮尺,标杆,一副三角尺,小仄里镜.请您正在他们提供的丈量工具中选出所需工具,安排一种丈量规划.(1)所需的丈量工具是:_________;(2)请正在下图中绘出丈量示企图;(3)设树下AB的少度为x,请用所测数据(用小写字母表示)供出x.24.问题背景正在某次活动课中,甲、乙、丙三个教习小组于共一时刻正在阳光下对于校园中一些物体举止了丈量.底下是他们通过丈量得到的一些疑息:甲组:如图1,测得一根曲坐于仄天,少为80cm的竹竿的影少为60cm.乙组:如图2,测得书院旗杆的影少为900cm.丙组:如图3,测得校园景灯(灯罩视为球体,灯杆为圆柱体其细细忽略不计)的下度为200cm,影少为156cm.任务央供:(1)请根据甲、乙二组得到的疑息估计出书院旗杆的下度;(2)如图3,设太阳光芒NH与⊙O相切于面M.请根据甲、丙二组得到的疑息,供景灯灯罩的半径.(友情提示:如图3,景灯的影少等于线段NG的影少;需要时可采与等式1562+2082=2602)25.阳光通过窗心映照到室内,正在大天上留住2.7m 宽的明区(如图所示),已知明区到窗心下的墙足距离EC=8.7m,窗心下AB=1.8m,供窗心底边离大天的下BC.26.如图,李华早上正在路灯下集步.已知李华的身下AB=h,灯柱的下OP=O′P′=l,二灯柱之间的距离OO′=m.(1)若李华距灯柱OP的火仄距离OA=a,供他影子AC 的少;(2)若李华正在二路灯之间止走,则他前后的二个影子的少度之战(DA+AC)是可是定值请道明缘由;(3)若李华正在面A往着影子(如图箭头)的目标以v1匀速止走,试供他影子的顶端正在大天上移动的速度v2.27.如图①,分别以曲角三角形ABC三边为曲径背中做三个半圆,其里积分别用S1,S2,S3表示,则不易道明S1=S2+S3.(1)如图②,分别以曲角三角形ABC三边为边背中做三个正圆形,其里积分别用S1,S2,S3表示,那么S1,S2,S3之间有什么闭系;(不必道明)(2)如图③,分别以曲角三角形ABC三边为边背中做三个正三角形,其里积分别用S1、S2、S3表示,请您决定S1,S2,S3之间的闭系并加以道明;(3)若分别以曲角三角形ABC三边为边背中做三个普遍三角形,其里积分别用S1,S2,S3表示,为使S1,S2,S3之间仍具备与(2)相共的闭系,所做三角形应谦足什么条件道明您的论断;(4)类比(1),(2),(3)的论断,请您归纳出一个更具普遍意思的论断.28.已知:如图,△ABC∽△ADE,AB=15,AC=9,BD=5.供AE.29.已知:如图Rt△ABC∽Rt△BDC,若AB=3,AC=4.(1)供BD、CD的少;(2)过B做BE⊥DC于E,供BE的少.30.(1)已知,且3x+4z﹣2y=40,供x,y,z的值;(2)已知:二相似三角形对于应下的比为3:10,且那二个三角形的周少好为560cm,供它们的周少.一.解问题(共30小题)1.如图,正在△ABC中,DE∥BC,EF∥AB,供证:△ADE ∽△EFC.解问:道明:∵DE∥BC,∴DE∥FC,∴∠AED=∠C.又∵EF∥AB,∴EF∥AD,∴∠A=∠FEC.∴△ADE∽△EFC.面评:原题考查的是仄止线的本量及相似三角形的判决定理.2.如图,梯形ABCD中,AB∥CD,面F正在BC上,连DF与AB的延少线接于面G.(1)供证:△CDF∽△BGF;(2)当面F是BC的中面时,过F做EF∥CD接AD于面E,若AB=6cm,EF=4cm,供CD的少.解问:(1)道明:∵梯形ABCD,AB∥CD,∴∠CDF=∠FGB,∠DCF=∠GBF,(2分)∴△CDF∽△BGF.(3分)(2)解:由(1)△CDF∽△BGF,又F是BC的中面,BF=FC,∴△CDF≌△BGF,∴DF=GF,CD=BG,(6分)∵AB∥DC ∥EF,F为BC中面,∴E为AD中面,∴EF是△DAG的中位线,∴2EF=AG=AB+BG.∴BG=2EF﹣AB=2×4﹣6=2,∴CD=BG=2cm.(8分)3.如图,面D,E正在BC上,且FD∥AB,FE∥AC.供证:△ABC∽△FDE.解问:道明:∵FD∥AB,FE∥AC,∴∠B=∠FDE,∠C=∠FED,∴△ABC∽△FDE.4.如图,已知E是矩形ABCD的边CD上一面,BF⊥AE 于F,试道明:△ABF∽△EAD.解问:道明:∵矩形ABCD中,AB∥CD,∠D=90°,(2分)∴∠BAF=∠AED.(4分)∵BF⊥AE,∴∠AFB=90°.∴∠AFB=∠D.(5分)∴△ABF∽△EAD.(6分)面评:考查相似三角形的判决定理,闭键是找准对于应的角.5.已知:如图①所示,正在△ABC战△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且面B,A,D正在一条曲线上,对接BE,CD,M,N分别为BE,CD的中面.(1)供证:①BE=CD;②△AMN是等腰三角形;(2)正在图①的前提上,将△ADE绕面A按逆时针目标转动180°,其余条件稳定,得到图②所示的图形.请间接写出(1)中的二个论断是可仍旧创造;(3)正在(2)的条件下,请您正在图②中延少ED接线段BC于面P.供证:△PBD∽△AMN.解问:(1)道明:①∵∠BAC=∠DAE,∴∠BAE=∠CAD,∵AB=AC,AD=AE,∴△ABE≌△ACD,∴BE=CD.②由△ABE≌△ACD,得∠ABE=∠ACD,BE=CD,∵M、N分别是BE,CD的中面,∴BM=CN.又∵AB=AC,∴△ABM≌△ACN.∴AM=AN,即△AMN为等腰三角形.(2)解:(1)中的二个论断仍旧创造.(3)道明:正在图②中精确绘出线段PD,由(1)共理可证△ABM≌△ACN,∴∠CAN=∠BAM∴∠BAC=∠MAN.又∵∠BAC=∠DAE,∴∠MAN=∠DAE=∠BAC.∴△AMN,△ADE战△ABC皆是顶角相等的等腰三角形.∴△PBD战△AMN皆为顶角相等的等腰三角形,∴∠PBD=∠AMN,∠PDB=∠ANM,∴△PBD∽△AMN.6.如图,E是▱ABCD的边BA延少线上一面,对接EC,接AD于面F.正在不增加辅帮线的情况下,请您写出图中所有的相似三角形,并任选一对于相似三角形赋予道明.分解:根据仄止线的本量战二角对于应相等的二个三角形相似那一判决定理可道明图中相似三角形有:△AEF∽△BEC;△AEF∽△DCF;△BEC∽△DCF.解问:解:相似三角形有△AEF∽△BEC;△AEF∽△DCF;△BEC∽△DCF.(3分)如:△AEF∽△BEC.正在▱ABCD中,AD∥BC,∴∠1=∠B,∠2=∠3.(6分)∴△AEF∽△BEC.(7分)7.如图,正在4×3的正圆形圆格中,△ABC战△DEF 的顶面皆正在边少为1的小正圆形的顶面上.(1)挖空:∠ABC=135°°,BC=;(2)推断△ABC与△DEC是可相似,并道明您的论断.解问:解:(1)∠ABC=135°,BC=;(2)相似;∵BC=,EC==;∴,;∴;又∠ABC=∠CED=135°,∴△ABC∽△DEC.8.如图,已知矩形ABCD的边少AB=3cm,BC=6cm.某一时刻,动面M从A面出收沿AB目标以1cm/s的速度背B面匀速疏通;共时,动面N从D面出收沿DA目标以2cm/s的速度背A面匀速疏通,问:(1)通过几时间,△AMN的里积等于矩形ABCD里积的?(2)是可存留时刻t,使以A,M,N为顶面的三角形与△ACD相似?若存留,供t的值;若不存留,请道明缘由解:(1)设通过x秒后,△AMN的里积等于矩形ABCD里积的,则有:(6﹣2x)x=×3×6,即x2﹣3x+2=0,(2分)解圆程,得x1=1,x2=2,(3分)经考验,可知x1=1,x2=2切合题意,所以通过1秒或者2秒后,△AMN的里积等于矩形ABCD里积的.(4分)(2)假设通过t秒时,以A,M,N为顶面的三角形与△ACD相似,由矩形ABCD,可得∠CDA=∠MAN=90°,果此有或者(5分)即①,或者②(6分)解①,得t=;解②,得t=(7分)经考验,t=或者t=皆切合题意,所以动面M,N共时出收后,通过秒或者秒时,以A,M,N为顶面的三角形与△ACD相似.(8分)9.如图,正在梯形ABCD中,若AB∥DC,AD=BC,对于角线BD、AC把梯形分成了四个小三角形.(1)列出从那四个小三角形中任选二个三角形的所有大概情况,并供出采用到的二个三角形是相似三角形的概率是几;(注意:齐等瞅成相似的惯例)(2)请您任选一组相似三角形,并给出道明.解问:解:(1)任选二个三角形的所有大概情况如下六种情况:①②,①③,①④,②③,②④,③④(2分)其中有二组(①③,②④)是相似的.∴采用到的二个三角形是相似三角形的概率是P=(4分)道明:(2)采用①、③道明.正在△AOB与△COD中,∵AB∥CD,∴∠CDB=∠DBA,∠DCA=∠CAB,∴△AOB∽△COD(8分)采用②、④道明.∵四边形ABCD是等腰梯形,∴∠DAB=∠CBA,∴正在△DAB与△CBA中有AD=BC,∠DAB=∠CAB,AB=AB,∴△DAB≌△CBA,(6分)∴∠ADO=∠BCO.又∠DOA=∠COB,∴△DOA∽△COB(8分).面评:此题考查概率的供法:如果一个事变有n种大概,而且那些事变的大概性相共,其中事变A出现m种截止,那么事变A的概率P(A)=,即相似三角形的道明.还考查了相似三角形的判决.10.附加题:如图△ABC中,D为AC上一面,CD=2DA,∠BAC=45°,∠BDC=60°,CE⊥BD于E,对接AE.(1)写出图中所有相等的线段,并加以道明;(2)图中有无相似三角形?若有,请写出一对于;若不,请道明缘由;(3)供△BEC与△BEA的里积之比.解问:解:(1)AD=DE,AE=CE.∵CE⊥BD,∠BDC=60°,∴正在Rt△CED中,∠ECD=30°.∴CD=2ED.∵CD=2DA,∴AD=DE,∴∠DAE=∠DEA=30°=∠ECD.∴AE=CE.(2)图中有三角形相似,△ADE∽△AEC;∵∠CAE=∠CAE,∠ADE=∠AEC,∴△ADE∽△AEC;(3)做AF⊥BD的延少线于F,设AD=DE=x,正在Rt△CED中,可得CE=,故AE=.∠ECD=30°.正在Rt△AEF中,AE=,∠AED=∠DAE=30°,∴sin∠AEF=,∴AF=AE•sin∠AEF=.∴.面评:原题主要考查了曲角三角形的本量,相似三角形的判决及三角形里积的供法等,范畴较广.11.如图,正在△ABC中,AB=AC=a,M为底边BC上的任性一面,过面M分别做AB、AC的仄止线接AC 于P,接AB于Q.(1)供四边形AQMP的周少;(2)写出图中的二对于相似三角形(不需道明);(3)M位于BC的什么位子时,四边形AQMP为菱形并道明您的论断.解问:解:(1)∵AB∥MP,QM∥AC,∴四边形APMQ是仄止四边形,∠B=∠PMC,∠C=∠QMB.∵AB=AC,∴∠B=∠C,∴∠PMC=∠QMB.∴BQ=QM,PM=PC.∴四边形AQMP的周少=AQ+AP+QM+MP=AQ+QB+AP+PC=AB+AC=2a.(2)∵PM∥AB,∴△PCM∽△ACB,∵QM∥AC,∴△BMQ∽△BCA;(3)当面M中BC的中面时,四边形APMQ是菱形,∵面M是BC的中面,AB∥MP,QM∥AC,∴QM,PM是三角形ABC的中位线.∵AB=AC,∴QM=PM=AB=AC.又由(1)知四边形APMQ是仄止四边形,∴仄止四边形APMQ是菱形.12.已知:P是正圆形ABCD的边BC上的面,且BP=3PC,M是CD的中面,试道明:△ADM∽△MCP.解问:道明:∵正圆形ABCD,M为CD中面,∴CM=MD=AD.∵BP=3PC,∴PC=BC=AD=CM.∴.∵∠PCM=∠ADM=90°,∴△MCP∽△ADM.13.如图,已知梯形ABCD中,AD∥BC,AD=2,AB=BC=8,CD=10.(1)供梯形ABCD的里积S;(2)动面P从面B出收,以1cm/s的速度,沿B⇒A⇒D⇒C 目标,背面C疏通;动面Q从面C出收,以1cm/s的速度,沿C⇒D⇒A目标,背面A疏通,过面Q做QE⊥BC 于面E.若P、Q二面共时出收,当其中一面到达手段天时所有疏通随之中断,设疏通时间为t秒.问:①当面P正在B⇒A上疏通时,是可存留那样的t,使得曲线PQ将梯形ABCD的周少仄分?若存留,哀供出t 的值;若不存留,请道明缘由;②正在疏通历程中,是可存留那样的t,使得以P、A、D为顶面的三角形与△CQE相似?若存留,哀供出所有切合条件的t的值;若不存留,请道明缘由;③正在疏通历程中,是可存留那样的t,使得以P、D、Q为顶面的三角形恰佳是以DQ为一腰的等腰三角形?若存留,哀供出所有切合条件的t的值;若不存留,请道明缘由.解问:解:(1)过D做DH∥AB接BC于H面,∵AD∥BH,DH∥AB,∴四边形ABHD是仄止四边形.∴DH=AB=8;BH=AD=2.∴CH=8﹣2=6.∵CD=10,∴DH2+CH2=CD2∴∠DHC=90°.∠B=∠DHC=90°.∴梯形ABCD是曲角梯形.∴SABCD=(AD+BC)AB=×(2+8)×8=40.(2)①∵BP=CQ=t,∴AP=8﹣t,DQ=10﹣t,∵AP+AD+DQ=PB+BC+CQ,∴8﹣t+2+10﹣t=t+8+t.∴t=3<8.∴当t=3秒时,PQ将梯形ABCD 周少仄分.②第一种情况:0<t≤8若△PAD∽△QEC则∠ADP=∠C ∴tan∠ADP=tan∠C==∴=,∴t=若△PAD∽△CEQ则∠APD=∠C∴tan∠APD=tan∠C==,∴=∴t=第二种情况:8<t≤10,P、A、D三面不克不迭组成三角形;第三种情况:10<t≤12△ADP为钝角三角形与Rt△CQE不相似;∴t=或者t=时,△PAD与△CQE相似.③第一种情况:当0≤t≤8时.过Q面做QE⊥BC,QH⊥AB,垂足为E、H.∵AP=8﹣t,AD=2,∴PD==.∵CE=t,QE=t,∴QH=BE=8﹣t,BH=QE=t.∴PH=t﹣t=t.∴PQ==,DQ=10﹣t.Ⅰ:DQ=DP,10﹣t=,解得t=8秒.Ⅱ:DQ=PQ,10﹣t=,化简得:3t2﹣52t+180=0解得:t=,t=>8(分歧题意舍来)∴t=第二种情况:8≤t≤10时.DP=DQ=10﹣t.∴当8≤t<10时,以DQ为腰的等腰△DPQ恒创造.第三种情况:10<t≤12时.DP=DQ=t﹣10.∴当10<t≤12时,以DQ为腰的等腰△DPQ恒创造.综上所述,t=或者8≤t <10或者10<t≤12时,以DQ为腰的等腰△DPQ创造.14.已知矩形ABCD,少BC=12cm,宽AB=8cm,P、Q分别是AB、BC上疏通的二面.若P自面A出收,以1cm/s的速度沿AB目标疏通,共时,Q自面B出收以2cm/s的速度沿BC目标疏通,问通过几秒,以P、B、Q为顶面的三角形与△BDC相似?解问:解:设经x秒后,△PBQ∽△BCD,由于∠PBQ=∠BCD=90°,(1)当∠1=∠2时,有:,即;(2)当∠1=∠3时,有:,即,∴通过秒或者2秒,△PBQ∽△BCD.15.如图,正在△ABC中,AB=10cm,BC=20cm,面P 从面A启初沿AB边背B面以2cm/s的速度移动,面Q 从面B启初沿BC边背面C以4cm/s的速度移动,如果P、Q分别从A、B共时出收,问通过几秒钟,△PBQ 与△ABC相似.解问:设通过秒后t秒后,△PBQ与△ABC相似,则有AP=2t,BQ=4t,BP=10﹣2t,当△PBQ∽△ABC时,有BP:AB=BQ:BC,即(10﹣2t):10=4t:20,解得t=2.5(s)(6分)当△QBP∽△ABC时,有BQ:AB=BP:BC,即4t:10=(10﹣2t):20,解得t=1.所以,通过2.5s或者1s时,△PBQ与△ABC相似(10分).解法二:设ts后,△PBQ与△ABC相似,则有,AP=2t,BQ=4t,BP=10﹣2t分二种情况:(1)当BP与AB对于当令,有=,即=(2)当BP与BC对于当令,有=,即=,解得t=1s所以通过1s或者2.5s时,以P、B、Q三面为顶面的三角形与△ABC相似.16.如图,∠ACB=∠ADC=90°,AC=,AD=2.问当AB的少为几时,那二个曲角三角形相似.解问:解:∵AC=,AD=2,∴CD==.要使那二个曲角三角形相似,有二种情况:1)当Rt△ABC∽Rt△ACD时,2)有=,∴AB==3;3)当Rt△ACB∽Rt△CDA时,4)有=,∴AB==3.故当AB的少为3或者3时,那二个曲角三角形相似.17.已知,如图,正在边少为a的正圆形ABCD中,M 是AD的中面,是可正在边AB上找一面N(不含A、B),使得△CDM与△MAN相似?若能,请给出道明,若不克不迭,请道明缘由.解问:道明:分二种情况计划:①若△CDM∽△MAN,则=.∵边少为a,M是AD的中面,∴AN=a.②若△CDM∽△NAM,则.∵边少为a,M是AD的中面,∴AN=a,即N面与B沉合,分歧题意.所以,能正在边AB上找一面N(不含A、B),使得△CDM与△MAN相似.当AN=a时,N面的位子谦足条件.18.如图正在△ABC中,∠C=90°,BC=8cm,AC=6cm,面Q从B出收,沿BC目标以2cm/s的速度移动,面P 从C出收,沿CA目标以1cm/s的速度移动.若Q、P 分别共时从B、C出收,试商量通过几秒后,以面C、P、Q为顶面的三角形与△CBA相似?解问:解:设通过x秒后,二三角形相似,则CQ=(8﹣2x)cm,CP=xcm,(1分)∵∠C=∠C=90°,∴当或者时,二三角形相似.(3分)(1)当时,,∴x=;(4分)(2)当时,,∴x=.(5分)所以,通过秒或者秒后,二三角形相似.(6分)面评:原题概括考查了路途问题,相似三角形的本量及一元一次圆程的解法.19.如图所示,梯形ABCD中,AD∥BC,∠A=90°,AB=7,AD=2,BC=3,试正在腰AB上决定面P的位子,使得以P,A,D为顶面的三角形与以P,B,C为顶面的三角形相似.解问:解:(1)若面A,P,D分别与面B,C,P对于应,即△APD∽△BCP,∴=,∴=,∴AP2﹣7AP+6=0,∴AP=1或者AP=6,检测:当AP=1时,由BC=3,AD=2,BP=6,∴=,又∵∠A=∠B=90°,∴△APD∽△BCP.当AP=6时,由BC=3,AD=2,BP=1,又∵∠A=∠B=90°,∴△APD∽△BCP.(2)若面A,P,D分别与面B,P,C对于应,即△APD∽△BPC.∴=,∴=,∴AP=.考验:当AP=时,由BP=,AD=2,BC=3,∴=,又∵∠A=∠B=90°,∴△APD∽△BPC.果此,面P的位子有三处,即正在线段AB距离面A的1、、6处.20.△ABC战△DEF是二个等腰曲角三角形,∠A=∠D=90°,△DEF的顶面E位于边BC的中面上.(1)如图1,设DE与AB接于面M,EF与AC接于面N,供证:△BEM∽△CNE;(2)如图2,将△DEF绕面E转动,使得DE与BA的延少线接于面M,EF与AC接于面N,于是,除(1)中的一对于相似三角形中,是可再找出一对于相似三角形并道明您的论断.解问:道明:(1)∵△ABC是等腰曲角三角形,∴∠MBE=45°,∴∠BME+∠MEB=135°又∵△DEF是等腰曲角三角形,∴∠DEF=45°∴∠NEC+∠MEB=135°∴∠BEM=∠NEC,(4分)而∠MBE=∠ECN=45°,∴△BEM∽△CNE.(6分)(2)与(1)共理△BEM∽△CNE,∴.(8分)又∵BE=EC,∴,(10分)则△ECN与△MEN中有,又∠ECN=∠MEN=45°,∴△ECN∽△MEN.(12分)21.如图,正在矩形ABCD中,AB=15cm,BC=10cm,面P沿AB边从面A启初背B以2cm/s的速度移动;面Q沿DA边从面D启初背面A以1cm/s的速度移动.如果P、Q共时出收,用t(秒)表示移动的时间,那么当t为何值时,以面Q、A、P为顶面的三角形与△ABC相似.解问:解:以面Q、A、P为顶面的三角形与△ABC相似,所以△ABC∽△PAQ或者△ABC∽△QAP,①当△ABC∽△PAQ时,,所以,解得:t=6;②当△ABC∽△QAP时,,所以,解得:t=;③当△AQP∽△BAC时,=,即=,所以t=;④当△AQP∽△BCA时,=,即=,所以t=30(舍来).故当t=6或者t=时,以面Q、A、P为顶面的三角形与△ABC相似.22.如图,路灯(P面)距大天8米,身下1.6米的小明从距路灯的底部(O面)20米的A面,沿OA天圆的曲线止走14米到B面时,身影的少度是变少了仍旧变短了?变少或者变短了几米?解问:解:∵∠MAC=∠MOP=90°,∠AMC=∠OMP,∴△MAC∽△MOP.∴,即,解得,MA=5米;共理,由△NBD∽△NOP,可供得NB=1.5米,∴小明的身影变短了5﹣1.5=3.5米.23.阳光彩媚的一天,数教兴趣小组的共教们来丈量一棵树的下度(那棵树底部不妨到达,顶部阻挡易到达),他们戴了以下丈量工具:皮尺,标杆,一副三角尺,小仄里镜.请您正在他们提供的丈量工具中选出所需工具,安排一种丈量规划.(1)所需的丈量工具是:;(2)请正在下图中绘出丈量示企图;(3)设树下AB的少度为x,请用所测数据(用小写字母表示)供出x.解问:解:(1)皮尺,标杆;(2)丈量示企图如图所示;(3)如图,测得标杆DE=a,树战标杆的影少分别为AC=b,EF=c,∵△DEF∽△BAC,∴,∴,∴.(7分)24.问题背景正在某次活动课中,甲、乙、丙三个教习小组于共一时刻正在阳光下对于校园中一些物体举止了丈量.底下是他们通过丈量得到的一些疑息:甲组:如图1,测得一根曲坐于仄天,少为80cm的竹竿的影少为60cm.乙组:如图2,测得书院旗杆的影少为900cm.丙组:如图3,测得校园景灯(灯罩视为球体,灯杆为圆柱体,其细细忽略不计)的下度为200cm,影少为156cm.任务央供:(1)请根据甲、乙二组得到的疑息估计出书院旗杆的下度;(2)如图3,设太阳光芒NH与⊙O相切于面M.请根据甲、丙二组得到的疑息,供景灯灯罩的半径.(友情提示:如图3,景灯的影少等于线段NG的影少;需要时可采与等式1562+2082=2602)解问:解:(1)由题意可知:∠BAC=∠EDF=90°,∠BCA=∠EFD.∴△ABC∽△DEF.∴,即,(2分)∴DE=1200(cm).所以,书院旗杆的下度是12m.(3分)(2)解法一:与①类似得:,即,∴GN=208.(4分)正在Rt△NGH中,根据勾股定理得:NH2=1562+2082=2602,∴NH=260.(5分)设⊙O的半径为rcm,对接OM,∵NH切⊙O于M,∴OM⊥NH.(6分)则∠OMN=∠HGN=90°,又∵∠ONM=∠HNG,∴△OMN∽△HGN,∴(7分),又ON=OK+KN=OK+(GN﹣GK)=r+8,∴,解得:r=12.∴景灯灯罩的半径是12cm.(8分)解法二:与①类似得:,即,∴GN=208.(4分)设⊙O的半径为rcm,对接OM,∵NH切⊙O于M,∴OM⊥NH.(5分)则∠OMN=∠HGN=90°,又∵∠ONM=∠HNG,∴△OMN∽△HGN.∴,即,(6分)∴MN=r,又∵ON=OK+KN=OK+(GN﹣GK)=r+8.(7分)正在Rt△OMN中,根据勾股定理得:r2+(r)2=(r+8)2即r2﹣9r﹣36=0,解得:r1=12,r2=﹣3(分歧题意,舍来),∴景灯灯罩的半径是12cm.(8分)25.(2007•黑银)阳光通过窗心映照到室内,正在大天上留住2.7m宽的明区(如图所示),已知明区到窗心下的墙足距离EC=8.7m,窗心下AB=1.8m,供窗心底边离大天的下BC.解问:解:∵AE∥BD,∴△ECA∽△DCB,∴.∵EC=8.7m,ED=2.7m,∴CD=6m.∵AB=1.8m,∴AC=BC+1.8m,∴,∴BC=4,即窗心底边离大天的下为4m.面评:此题基原上易度不大,利用相似比即可供出窗心底边离大天的下.26.如图,李华早上正在路灯下集步.已知李华的身下AB=h,灯柱的下OP=O′P′=l,二灯柱之间的距离OO′=m.(1)若李华距灯柱OP的火仄距离OA=a,供他影子AC 的少;(2)若李华正在二路灯之间止走,则他前后的二个影子的少度之战(DA+AC)是可是定值请道明缘由;(3)若李华正在面A往着影子(如图箭头)的目标以v1匀速止走,试供他影子的顶端正在大天上移动的速度v2.解问:解:(1)由已知:AB∥OP,∴△ABC∽△OPC.∵,∵OP=l,AB=h,OA=a,∴,∴解得:.(2)∵AB∥OP,∴△ABC∽△OPC,∴,即,即.∴.共理可得:,∴=是定值.(3)根据题意设李华由A到A',身下为A'B',A'C'代表其影少(如图).由(1)可知,即,∴,共理可得:,∴,由等比本量得:,当李华从A走到A'的时间,他的影子也从C移到C',果此速度与路途成正比∴,所以人影顶端正在大天上移动的速度为.27.如图①,分别以曲角三角形ABC三边为曲径背中做三个半圆,其里积分别用S1,S2,S3表示,则不易道明S1=S2+S3.(1)如图②,分别以曲角三角形ABC三边为边背中做三个正圆形,其里积分别用S1,S2,S3表示,那么S1,S2,S3之间有什么闭系;(不必道明)(2)如图③,分别以曲角三角形ABC三边为边背中做三个正三角形,其里积分别用S1、S2、S3表示,请您决定S1,S2,S3之间的闭系并加以道明;(3)若分别以曲角三角形ABC三边为边背中做三个普遍三角形,其里积分别用S1,S2,S3表示,为使S1,S2,S3之间仍具备与(2)相共的闭系,所做三角形应谦足什么条件道明您的论断;(4)类比(1),(2),(3)的论断,请您归纳出一个更具普遍意思的论断.解:设曲角三角形ABC的三边BC、CA、AB的少分别为a、b、c,则c2=a2+b2(1)S1=S2+S3;(2)S1=S2+S3.道明如下:隐然,S1=,S2=,S3=∴S2+S3==S1;(3)当所做的三个三角形相似时,S1=S2+S3.道明如下:∵所做三个三角形相似∴∴=1∴S1=S2+S3;(4)分别以曲角三角形ABC三边为一边背中做相似图形,其里积分别用S1、S2、S3表示,则S1=S2+S3.28.已知:如图,△ABC∽△ADE,AB=15,AC=9,BD=5.供AE.解问:解:∵△ABC∽△ADE,∴AE:AC=AD:AB.∵AE:AC=(AB+BD):AB,∴AE:9=(15+5):15.∴AE=12.29.已知:如图Rt△ABC∽Rt△BDC,若AB=3,AC=4.(1)供BD、CD的少;(2)过B做BE⊥DC于E,供BE的少.解问:解:(1)Rt△ABC中,根据勾股定理得:BC==5,∵Rt△ABC∽Rt△BDC,∴==,==,∴BD=,CD=;(2)正在Rt△BDC中,S△BDC=BE•CD=BD•BC,∴BE===3.30.(1)已知,且3x+4z﹣2y=40,供x,y,z的值;(2)已知:二相似三角形对于应下的比为3:10,且那二个三角形的周少好为560cm,供它们的周少.解:(1)设=k,那么x=2k,y=3k,z=5k,由于3x+4z﹣2y=40,∴6k+20k﹣6k=40,∴k=2,∴x=4,y=6,z=10.(2)设一个三角形周少为Ccm,则另一个三角形周少为(C+560)cm,则,∴C=240,C+560=800,即它们的周少分别为240cm,800cm。

相似三角形30道经典题

相似三角形30道经典题

相似三角形30道经典题英文回答:1. Theorem: If two triangles are similar, then their corresponding sides are proportional.2. Corollary: If two triangles have two pairs of corresponding sides proportional, then they are similar.3. Theorem: If two triangles have three pairs of corresponding angles congruent, then they are similar.4. Corollary: If two triangles have two pairs of corresponding angles congruent, then the third pair is also congruent, and the triangles are similar.5. Theorem: The ratio of the areas of two similar triangles is equal to the square of the ratio of any two corresponding sides.6. Corollary: The ratio of the areas of two similar triangles is equal to the square of the ratio of any two corresponding altitudes.7. Theorem: If a line parallel to one side of a triangle divides another side into two segments, then the ratio of the lengths of the segments is equal to the ratio of the corresponding sides of the triangle.8. Corollary: If a line parallel to the base of a triangle divides the other two sides into segments, then the ratios of the lengths of the segments are equal to the ratio of the corresponding sides of the triangle.9. Theorem: If a line parallel to one side of a triangle divides the area of the triangle into two parts, then the ratio of the areas of the parts is equal to the ratio of the corresponding sides of the triangle.10. Corollary: If a line parallel to the base of a triangle divides the area of the triangle into two parts, then the ratios of the areas of the parts are equal to theratio of the corresponding sides of the triangle.11. Theorem: The sum of the interior angles of a triangle is 180 degrees.12. Corollary: The sum of the exterior angles of a triangle is 360 degrees.13. Theorem: The Pythagorean Theorem: For a right triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.14. Corollary: The converse of the Pythagorean Theorem: If the square of one side of a triangle is equal to the sum of the squares of the other two sides, then the triangle is a right triangle.15. Theorem: The Law of Cosines: For any triangle, the square of one side is equal to the sum of the squares of the other two sides minus twice the product of the other two sides and the cosine of the included angle.16. Corollary: The Law of Sines: For any triangle, the ratio of the sine of one angle to the length of theopposite side is equal to the ratio of the sine of anyother angle to the length of its opposite side.17. Theorem: The area of a triangle is equal to halfthe product of the base and height.18. Corollary: The area of a triangle is equal to half the product of two sides and the sine of the included angle.19. Theorem: The perimeter of a triangle is equal tothe sum of the lengths of its three sides.20. Corollary: The perimeter of a triangle is equal to the sum of the lengths of two sides plus the length of the third side.21. Theorem: If a triangle is equilateral, then its angles are all equal to 60 degrees.22. Corollary: If a triangle has two sides equal, thenits angles opposite the equal sides are equal.23. Theorem: If a triangle has two angles equal, thenits sides opposite the equal angles are equal.24. Corollary: If a triangle has three equal sides,then its angles are all equal to 60 degrees.25. Theorem: If a triangle has a right angle, then its other two angles are acute.26. Corollary: If a triangle has an obtuse angle, then its other two angles are acute.27. Theorem: If a triangle has two adjacent sides equal, then the angle opposite the equal sides is greater than the other angles.28. Corollary: If a triangle has two adjacent sides unequal, then the angle opposite the greater side isgreater than the angle opposite the smaller side.29. Theorem: If a triangle has two adjacent angles equal, then the sides opposite the equal angles are equal.30. Corollary: If a triangle has two adjacent angles unequal, then the side opposite the greater angle isgreater than the side opposite the smaller angle.中文回答:1. 定理,如果两个三角形相似,那么它们对应边的比值相等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

郑州郭氏数学内部资料;更多学习资料及学习方法、考试技巧请百度郭氏数学公益教学博客。

相似三角形提高练习30题填空题1.(2005•北京)在△ABC中,∠B=25°,AD是BC边上的高,并且AD2=BD•DC,则∠BCA的度数为_________.2.(2001•重庆)已知:如图,在△ABC中,AB=15m,AC=12m,AD是∠BAC的外角平分线,DE∥AB交AC的延长线于点E,那么CE=_________m.3.如图,已知Rt△ABC中,AC=3,BC=4,过直角顶点C作CA1⊥AB,垂足为A1,再过A1作A1C1⊥BC,垂足为C1,过C1作C1A2⊥AB,垂足为A2,再过A2作A2C2⊥BC,垂足为C2,…,这样一直做下去,得到了一组线段CA1,A1C1,C1A2,…,则CA1=_________,=_________.4.如图,在梯形ABCD中,AD∥BC,AC,BD交于点O,S△AOD:S△COB=1:9,则S△DOC:S△BOC=_________.5.如图,在平行四边形ABCD中,E是边BC上的点,AE交BD于点F,如果,那么=_________.6.如图,在△ABD中,∠ADB=90°,C是BD上一点,若E、F分别是AC、AB的中点,△DEF的面积为3.5,则△ABC的面积为_________.7.在矩形ABCD中,E、F分别是边AD、BC的中点,点G、H在DC边上,且GH=DC.若AB=10,BC=12,则图中阴影部分的面积为_________.8.如图,在▱ABCD中,E为CD中点,AE与BD相交于点O,S△DOE=12cm2,则S△AOB等于_________cm2.9.如图,在△ABC中,EF∥BC,AE=2BE,则△AEF与梯形BCFE的面积比_________.10.如图,在△ABC中,∠C=90°,AC=8,CB=6,在斜边AB上取一点M,使MB=CB,过M作MN⊥AB交AC 于N,则MN=.11.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于D,若AD=1,BD=4,则CD=_________.12.如图,在△ABC中,M、N是AB、BC的中点,AN、CM交于点O,那么△MON与△AOC面积的比是_________.13.如图,AD=DF=FB,DE∥FG∥BC,则SⅠ:SⅡ:SⅢ=_________.14.如图,已知点D是AB边的中点,AF∥BC,CG:GA=3:1,BC=8,则AF=_________.解答题15.(2008•黄冈)已知:如图,在直角梯形COAB中,OC∥AB,以O为原点建立平面直角坐标系,A,B,C三点的坐标分别为A(8,0),B(8,10),C(0,4),点D为线段BC的中点,动点P从点O出发,以每秒1个单位的速度,沿折线OABD的路线移动,移动的时间为t秒.(1)求直线BC的解析式;(2)若动点P在线段OA上移动,当t为何值时,四边形OPDC的面积是梯形COAB面积的;(3)动点P从点O出发,沿折线OABD的路线移动过程中,设△OPD的面积为S,请直接写出S与t的函数关系式,并指出自变量t的取值范围;(4)试探究:当动点P在线段AB上移动时,能否在线段OA上找到一点Q,使四边形CQPD为矩形?并求出此时动点P的坐标.16.(2005•重庆)在平面直角坐标系内,已知点A(0,6)、点B(8,0),动点P从点A开始在线段AO上以每秒1个单位长度的速度向点O移动,同时动点Q从点B开始在线段BA上以每秒2个单位长度的速度向点A移动,设点P、Q移动的时间为t秒.(1)求直线AB的解析式;(2)当t为何值时,以点A、P、Q为顶点的三角形与△AOB相似?(3)当t=2秒时,四边形OPQB的面积多少个平方单位?17.(2003•南宁)如图所示,已知A,B两点的坐标分别为(28,0)和(0,28).动点P从A点开始在线段AO 上以每秒3个单位的速度向原点O运动,动直线EF从x轴开始每秒1个单位的速度向上平行移动(即EF∥x轴),并且分别与y轴,线段AB交于E,F点,连接FP,设动点P与动直线EF同时出发,运动时间为t秒.(1)当t=1秒时,求梯形OPFE的面积,当t为何值时,梯形OPFE的面积最大,最大面积是多少?(2)当梯形OPFE的面积等于三角形APF的面积时,求线段PF的长;(3)设t的值分别取t1,t2时(t1≠t2),所对应的三角形分别为△AF1P1和△AF2P2.试判断这两个三角形是否相似,请证明你的判断.18.(2009•兰州)如图①,正方形ABCD中,点A、B的坐标分别为(0,10),(8,4),点C在第一象限.动点P 在正方形ABCD的边上,从点A出发沿A⇒B⇒C⇒D匀速运动,同时动点Q以相同速度在x轴正半轴上运动,当P 点到达D点时,两点同时停止运动,设运动的时间为t秒.(1)当P点在边AB上运动时,点Q的横坐标x(长度单位)关于运动时间t(秒)的函数图象如图②所示,请写出点Q开始运动时的坐标及点P运动速度;(2)求正方形边长及顶点C的坐标;(3)在(1)中当t为何值时,△OPQ的面积最大,并求此时P点的坐标;(4)如果点P、Q保持原速度不变,当点P沿A⇒B⇒C⇒D匀速运动时,OP与PQ能否相等?若能,写出所有符合条件的t的值;若不能,请说明理由.19.(2008•孝感)锐角△ABC中,BC=6,S△ABC=12,两动点M,N分别在边AB,AC上滑动,且MN∥BC,以MN为边向下作正方形MPQN,设其边长为x,正方形MPQN与△ABC公共部分的面积为y(y>0)(1)△ABC中边BC上高AD=_________;(2)当x=_________时,PQ恰好落在边BC上(如图1);(3)当PQ在△ABC外部时(如图2),求y关于x的函数关系式(注明x的取值范围),并求出x为何值时y最大,最大值是多少?20.(2008•青岛)已知:如图①,在Rt△ACB中,∠C=90°,AC=4 cm,BC=3 cm,点P由B出发沿BA方向向点A匀速运动,速度为1cm/s;点Q由A出发沿AC方向向点C匀速运动,速度为2cm/s;连接PQ.若设运动的时间为t(s)(0<t<2),解答下列问题:(1)当t为何值时,PQ∥BC;(2)设△AQP的面积为y(cm2),求y与t之间的函数关系式;(3)是否存在某一时刻t,使线段PQ恰好把Rt△ACB的周长和面积同时平分?若存在,求出此时t的值;若不存在,说明理由;(4)如图②,连接PC,并把△PQC沿QC翻折,得到四边形PQP′C,那么是否存在某一时刻t,使四边形PQP′C 为菱形?若存在,求出此时菱形的边长;若不存在,说明理由.21.(2008•梅州)如图所示,E是正方形ABCD的边AB上的动点,EF⊥DE交BC于点F.(1)求证:△ADE∽△BEF;(2)设正方形的边长为4,AE=x,BF=y.当x取什么值时,y有最大值?并求出这个最大值.22.(2007•温州)在△ABC中,∠C=Rt∠,AC=4cm,BC=5cm,点D在BC上,并且CD=3cm,现有两个动点P、Q分别从点A和点B同时出发,其中点P以1cm/s的速度,沿AC向终点C移动;点Q以1.25cm/s的速度沿BC 向终点C移动.过点P作PE∥BC交AD于点E,连接EQ,设动点运动时间为x秒.(1)用含x的代数式表示AE、DE的长度;(2)当点Q在BD(不包括点B、D)上移动时,设△EDQ的面积为y(cm2),求y与x的函数关系式,并写出自变量x的取值范围;23.(2006•南平)如图,正方形ABCD的边长为1,点E是AD边上的动点,从点A沿AD向D运动,以BE为边,在BE的上方作正方形BEFG,连接CG.请探究:(1)线段AE与CG是否相等请说明理由:(2)若设AE=x,DH=y,当x取何值时,y最大?(3)连接BH,当点E运动到AD的何位置时,△BEH∽△BAE?24.(2001•上海)已知梯形ABCD中,AD∥BC,且AD<BC,AD=5,AB=DC=2.(1)如图,P为AD上的一点,满足∠BPC=∠A,求AP的长;(2)如果点P在AD边上移动(点P与点A、D不重合),且满足∠BPE=∠A,PE交直线BC于点E,同时交直线DC于点Q.①当点Q在线段DC的延长线上时,设AP=x,CQ=y,求y关于x的函数关系式,并写出自变量x的取值范围;②当CE=1时,写出AP的长.(不必写解答过程)25.已知一个二次函数的图象经过A(﹣1,0)、B(0,3)、C(4,﹣5)三点.(1)求这个二次函数的解析式及其图象的顶点D的坐标;(2)这个函数的图象与x轴有两个交点,除点A外的另一个交点设为E,点O为坐标原点.在△AOB、△BOE、△ABE和△BDE着四个三角形中,是否有相似三角形?如果有,指出哪几对三角形相似,并加以证明;如果没有,要说明理由.26.如图,四边形ABCD是等腰梯形,其中AD∥BC,AD=2,BC=4,AB=CD=.点M从点B开始,以每秒2个单位长的速度向点C运动;点N从点D开始,以每秒1个单位长的速度向点A运动,若点M,N同时开始运动,点M与点C不重合,运动时间为t(t>0).过点N作NP垂直于BC,交BC于点P,交AC于点Q,连接MQ.(1)用含t的代数式表示QP的长;(2)设△CMQ的面积为S,求出S与t的函数关系式;27.如图,△ABC中,AC=BC,∠A=30°,AB=.将三角板中30°角的顶点D放在AB边上移动,使这个30°角的两边分别与△ABC的边AC,BC相交于点E,F,连接DE、DF、EF,且使DE始终与AB垂直,设AD=x,△DEF的面积为y.(1)画出符合条件的图形,写出与△ADE一定相似的三角形并说明理由;(2)EF与AB可能平行吗?若能,请求出此时AD的长;若不能,请说明理由;(3)求出y与x之间的函数关系式并求出自变量的取值范围;当x为何值时,y有最大值,最大值为多少?28.(2009•青岛)如图,在梯形ABCD中,AD∥BC,AD=6cm,CD=4cm,BC=BD=10cm,点P由B出发沿BD 方向匀速运动,速度为1cm/s;同时,线段EF由DC出发沿DA方向匀速运动,速度为1cm/s,交BD于Q,连接PE.若设运动时间为t(s)(0<t<5).解答下列问题:(1)当t为何值时,PE∥AB;(2)设△PEQ的面积为y(cm2),求y与t之间的函数关系式;(3)是否存在某一时刻t,使S△PEQ=S△BCD?若存在,求出此时t的值;若不存在,说明理由;(4)连接PF,在上述运动过程中,五边形PFCDE的面积是否发生变化?说明理由.29.(2008•湖州)如图甲,在△ABC中,∠ACB为锐角,点D为射线BC上一点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.解答下列问题:(1)如果AB=AC,∠BAC=90°,①当点D在线段BC上时(与点B不重合),如图乙,线段CF,BD之间的位置关系为_________,数量关系为_________.②当点D在线段BC的延长线时,如图丙,①中的结论是否仍然成立,为什么?(2)如果AB≠AC,∠BAC≠90°,点D在线段BC上运动.试探究:当△ABC满足一个什么条件时,CF⊥BC(点C,F重合除外)画出相应图形,并说明理由.(画图不写作法)(3)若AC=4,BC=3,在(2)的条件下,设正方形ADEF的边DE与线段CF相交于点P,求线段CP长的最大值.30.(2008•恩施州)如图1,在同一平面内,将两个全等的等腰直角三角形ABC和AFG摆放在一起,A为公共顶点,∠BAC=∠AGF=90°,它们的斜边长为2,若△ABC固定不动,△AFG绕点A旋转,AF、AG与边BC的交点分别为D、E(点D不与点B重合,点E不与点C重合),设BE=m,CD=n.(1)请在图中找出两对相似而不全等的三角形,并选取其中一对进行证明;(2)求m与n的函数关系式,直接写出自变量n的取值范围;(3)以△ABC的斜边BC所在的直线为x轴,BC边上的高所在的直线为y轴,建立平面直角坐标系(如图2).在边BC上找一点D,使BD=CE,求出D点的坐标,并通过计算验证BD2+CE2=DE2;(4)在旋转过程中,(3)中的等量关系BD2+CE2=DE2是否始终成立?若成立,请证明;若不成立,请说明理由.。

相关文档
最新文档