网络三层模型教案

网络三层模型教案
网络三层模型教案

各层交换功能和接入层设计

引入:

通过分析上次课程的作业与案例讲述二层交换原理,以生动形象的例子激发学生的兴趣,将课堂引入到知识点来。

新授:

一、各层交换功能

提问:我们为什么要使用交换机?

1.1交换机

交换(switching)是按照通信两端传输信息的需要,用人工或设备自动完成的方法,把要传输的信息送到符合要求的相应路由上的技术的统称。交换机根据工作位置的不同,可以分为广域网交换机和局域网交换机。广域的交换机(switch)就是一种在通信系统中完成信息交换功能的设备,它应用在数据链路层。交换机有多个端口,每个端口都具有桥接功能,可以连接一个局域网或一台高性能服务器或工作站。

工作在数据链路层,交换机拥有一条很高带宽的背部总线和内部交换矩阵。交换机的所有的端口都挂接在这条背部总线上,控制电路收到数据包以后,处理端口会查找内存中的地址对照表以确定目的MAC(网卡的硬件地址)的NIC(网卡)挂接在哪个端口上,通过内部交换矩阵迅速将数据包传送到目的端口,目的MAC若不存在,广播到所有的端口,接收端口回应后交换机会“学习”新的MAC地址,并把它添加入内部MAC地址表中。使用交换机也可以把网络“分段”,通过对照IP地址表,交换机只允许必要的网络流量通过交换机。通

过交换机的过滤和转发,可以有效的减少冲突域。

交换机的传输模式有全双工,半双工,全双工/半双工自适应。

交换机的主要功能包括物理编址、网络拓扑结构、错误校验、帧序列以及流控。目前交换机还具备了一些新的功能,如对VLAN(虚拟局域网)的支持、对链路汇聚的支持,甚至有的还具有防火墙的功能。

(1)学习:以太网交换机了解每一端口相连设备的MAC地址,并将地址同相应的端口映射起来存放在交换机缓存中的MAC地址表中。

(2)转发/过滤:当一个数据帧的目的地址在MAC地址表中有映射时,它被转发到连接目的节点的端口而不是所有端口(如该数据帧为广播/组播帧则转发至所有端口)。

(3)消除回路:当交换机包括一个冗余回路时,以太网交换机通过生成树协议避免回路的产生,同时允许存在后备路径。

1.2 交换机的交换方式

直通式:

直通方式的以太网交换机可以理解为在各端口间是纵横交叉的线路矩阵电话交换机。它在输入端口检测到一个数据包时,检查该包的包头,获取包的目的地址,启动内部的动态查找表转换成相应的输出端口,在输入与输出交叉处接通,把数据包直通到相应的端口,实现交换功能。由于不需要存储,延迟非常小、交换非常快,这是它的优点。它的缺点是,因为数据包内容并没有被以太网交换机保存下来,所以无法检查所传送的数据包是否有误,不能提供错误检测能力。由于没有缓存,不能将具有不同速率的输入/输出端口直接接通,而且容易丢包。

存储转发:

存储转发方式是计算机网络领域应用最为广泛的方式。它把输入端口的数据包先存储起来,然后进行CRC(循环冗余码校验)检查,在对错误包处理后才取出数据包的目的地址,通过查找表转换成输出端口送出包。正因如此,存储转发方式在数据处理时延时大,这是它的不足,但是它可以对进入交换机的数据包进行错误检测,有效地改善网络性能。尤其重要的是它可以支持不同速度的端口间的转换,保持高速端口与低速端口间的协同工作。

碎片隔离:

这是介于前两者之间的一种解决方案。它检查数据包的长度是否够64个字节,如果小于64字节,说明是假包,则丢弃该包;如果大于64字节,则发送该包。这种方式也不提供数据校验。它的数据处理速度比存储转发方式快,但比直通式慢。

提问:交换机的工作原理?

1.3 二层交换机

二层交换机属数据链路层设备,可以识别数据包中的MAC地址信息,根据MAC地址进行转发,并将这些MAC地址与对应的端口记录在自己内部的一个地址表中。

1.4 三层交换机

三层交换机就是具有部分路由器功能的交换机,三层交换机的最重要目的是加快大型局域网内部的数据交换,所具有的路由功能也是为这目的服务的,能够做到一次路由,多次转发。对于数据包转发等规律性的过程由硬件高速实现,而像路由信息更新、路由表维护、路由计算、路由确定等功能,由软件实现。三层交换技术就是二层交换技术+三层转发技术。

1.5 四层交换机

第二层交换机和第三层交换机都是基于商品地址的端到端的交换过程,这种基于MAC 地址和IP地址的交换机技术,能极大的提高各节点之间的数据传输率,但却无法根据端口主机的应用需求来自主确定或动态限制端口的交换过程和数据流量,缺乏第四层智能应用交换需求。简单的说,第四层交换机是基于传输层数据包的交换过程的,是一类以软件技术为

主,以硬件技术为辅的网络管理交换设备。

1.6 二三四层交换机的区别

第二层交换实现局域网内主机间的快速信息交流

第三层交换是交换技术与路由技术的完美结合

第四层交换则为网络应用资源提供最优分配方案,实现服务质量、负载均衡及完全控制。

简单来说就是所面向的对象不同:

二层交换机基于MAC地址

三层交换机基于IP,有交换和路由

四层交换机基于应用,区别于不同端口

二、接入层设计

接入层通常指网络中直接面向用户连接或访问的部分。接入层目的是允许终端用户连接到网络,因此接入层交换机具有低成本和高端口密度特性。接入交换机是最常见的交换机,它直接与外网联系,使用最广泛,尤其是在一般办公室、小型机房和业务受理较为集中的业务部门、多媒体制作中心、网站管理中心等部门。在传输速度上,现代接入交换机大都提供多个具有10M/100M/1000M自适应能力的端口。

2.1 接入层设计因素

接入层用于控制用户对网络资源的访问。网络设计人员必须让接入层生成的数据流能够方便地前往其他网段或其他层。如果设计不合理,接入层将很快被数据流淹没,导致性能对最终用户来说是无法接受的。

接入层是连接终端设备的网络边缘。接入层服务和设备位于园区的每栋大楼、每个远程站点和服务器群以及企业边缘。

1.接入层物理考虑因素

园区基础设施的接入层使用第二层交换技术来提供网络接入。接入可通过永久性有线基础设施,也可通过无线接入点。使用铜质电缆的以太网对距离有一定的限制,因此设计园区基础设施的接入层时,一个主要的考虑因素是设备的物理位置。

2.配线间

配线间可以是实际密室,也可以是小型电信机房,它充当整栋大楼或大楼各层的基础设施布线的端接点。配线间的位置和大小取决于网络规模和扩展计划。

配线间中的设备向IP电话和无线接入点等终端设备供电。很多接入层交换机都有以太网供电(PoE)功能。

不同于典型配线间,服务器群或数据中心的接入层设备通常是融路由选择和交换功能于一身的冗余多层交换机。多层交换机可提供防火墙、入侵防范和第三层功能。

3.接入层融合网络的影响

在现代计算机网络中,连接到接入层的并非只有个人计算机和打印机。众多其他设备也可以连接到IP网络(如图1.17所示),其中包括:

IP电话;

摄像头;

视频会议系统。

4.接入层的可用性需求

在早期的网络中,通常只对网络核心、企业边缘和数据中心网络有高可用性要求。IP 电话技术改变了这种局面,人们要求每部电话都必须在100%的时间内可用。

为改善终端设备的可靠性和可用性,可在接入层部署冗余组件和故障切换策略。

5.接入层管理

网络设计人员的一个主要考虑因素是改进接入层的可管理性。接入层管理非常重要,其原因如下:

接入层连接设备的数量和类型在不断增多;

在LAN中引入了无线接入点。

6.方便管理的设计

除在接入层提供基本连接性外,设计人员还需要考虑如下因素:

命名结构;VLAN架构;数据流模式;优先级策略。

对大型融合网络来说,配置和使用网络管理系统非常重要

2.2 接入层设计目标

接入层是最终用户与网络的接口,它应该提供较高的端口密度和即插即用的特性,同时也应该便于管理和维护。

接入层的设计目标包括二个:

1.将流量馈入网络。

为确保将接入层流量馈入网络,要做到:接入路由器所接收的链接数不要超出其与汇聚层之间允许的链接数。不要将接入层设备作为两个汇聚层路由器之间的连接点,即不要将一个接入层跌幅器同时连接两个汇聚层路由器。

2. 管理接入网络的终端设备。

由于接入层是用户进入网络的入口,所以也是黑客入侵的门户,接入层通过用VLAN、包过滤等提供基本的安全性,保护局域网段免受网络内外的攻击。

随着校园网络服务和应用的不断深入,在网络边缘出现了以下4种新趋势。

桌面计算能力提高。

带宽密集型应用出现。

高敏感数据在网络中扩展。

出现了多种设备类型,如IP电话、WLAN接入点和IP视频摄像头。

这些新需求正与许多已有关键任务的应用争夺资源。因此,必须将网络边缘看作有效管理信息和应用的提供的关键。具体而言,在接入层面,除了应当提供高速的网络连接外,还应当进一步加强校园网络对边缘接入层面的安全控制能力。用户可以根据需要来订制自身的安全策略并部署在此交换机上。同时,接入层交换机还应当支持一些安全功能,如CPU防攻击能力、防流量攻击病毒的能力、防组播、广播攻击的能力;使交换机能够智能地自动阻断或隔离内外部的攻击和网络病毒。除此之外,交换机还应具备多个专用堆叠接口,可满足楼层、楼宇内多个交换机高性能汇聚的需要。

2.2.1接入层堆叠设计

对于计算机机房、电子阅览室、学生公寓等接入计算机数量很大的接入场所,应当采用可堆叠交换机,以提供大量的100 Mbps端口。接入交换机之间以高速堆叠模块相互连接在一起,并借助1 000 Mbps链路实现与汇聚层交换机之间的连接。为了提高网络稳定性和网络带宽,可以将2~4条千兆位链路绑定在一起借助链路汇聚技术实现链路冗余、负载均衡和带宽倍增,以确保所有计算机都能够无阻塞地实现与校园网络的连接。

2.2.2 接入层链路汇聚设计

如果所连接的计算机数量较多,且接入层交换机不支持堆叠,那么可以使用链路汇聚的方式实现接入层交换机之间的高速连接,既增加了接入层交换机之间的互联带宽,又提高了连接的稳定性。特别是对于只拥有100 Mbps端口的交换机而言,链路汇聚无疑是接入层交换机之间高速连接的最佳选择,同时也是用于代替1 000 Mbps连接的最廉价方案。

链路汇聚必须在同一类型的端口之间才能实现。链路汇聚可以是100 Mbps或1 000 Mbps光纤端口或双绞线端口,但必须都是固定端口,而不能是SFP端口或GBIC端口。链路

汇聚的链路可以是2~4对,容纳4~8个端口。

2.2.3 接入层级联设计

如果接入网络的计算机数量较多,需要由多台交换机才能满足时,也可以采用最简单的

级联方式。当然,如果接入层交换机拥有1 000 Mbps端口,那么采用级联方式也可以实现

接入层交换机之间的高速连接。但是,如果交换机只拥有100 Mbps端口,那么这种连接方式将无法满足接入计算机与校园网络高速通信的需求。

2.3 接入层设备选择

接入层设备是直接面向用户接入的接口,这里是网络的起点也是网络的终点,而影响安全问题的众多因素,包括有硬件、软件、环境、用户自身素质等,都可能是引发安全问题的源点。

接入层面临很多难以想像的环境,接入层设备成本低,出现问题影响小,设备品种繁多,地点分散,管理不便,大量重复性的工作等原因导致了对此工作的忽视。

2.4 可网管交换机的特点

提高网络稳定性

提高网络安全性

提高网络传输效率

支持复杂网络应用

支持远程监视与管理

购买可网管交换机注意的事项:

所处位置

网络应用

所处环境

设备兼容性

设备性能

三、接入层设计方案的实践

以校园网办公楼、教学楼、宿舍区、实验楼等区域为设计对象进行接入层设计方案的撰写。

包括的主要内容有:

1. 设计目标

2. 各区域流量带宽分析(参考书籍或网络资料)

3. 各区域用户数量的估计(自行根据实际情况估计)

4. 接入层交换机的选择(网络资料),列出设备功能、价格等主要参数

5. 接入层网络拓扑图

小结:

通过本次课程的学习,学生能理解到交换机工作原理及各层交换的功能,能自行进行接入层网络设计与设备的选择

作业:

以校园网为例,将接入层设计说明书填充完整。

网络体系结构及OSI基本参考模型典型例题分析解答

网络体系结构及OSI基本参考模型典型例题分析解答 一、填空题 1.计算机网络层次及其协议的集合称为网络的___。 2.为进行计算机网络中的数据交换而建立的____、标准或____的集合称为网络协议。 3.0SI的全称为____,的参考模型是由____制定的标准化开放式计算机网络层次结构模型。 4.ISO包括____、服务定义和____三级抽象。 5.0SI的体系结构定义了一个七层模型,从下到上分别为物理层、数据链路层、____、运输层、会话层、____和____。 6.网络协议包含三要素,这三要素分别是语义、____和____。 二、单项选择题 1.在网络协议中,涉及数据和控制信息的格式、编码及信号电平等的内容属于网络协议的()要素。 A)语法B)语义C)定时D)语用 2.osI体系结构定义了一个()层模型。 A)8 B)9 C)6 D)7 3.在OSI的7层模型中,主要功能是在通信子网中实现路由选择的层次为(). A)物理层B)网络层C)数据链路层D)运输层 4.在OSI的7层模型中,主要功能是协调收发双方的数据传输速率,将比特流组织成帧,并进行校验、确认及反馈重发的层次为()。 A)物理层B)网络层C)数据链路层D)运输层 5.在ISO的7层模型中,主要功能是提供端到端的透明数据运输服务、差错控制和流量撞控制的层次为()。 A)物理层B)数据链路层C)运输层D)网络层 6.在ISO的7层模型中,主要功能是组织和同步不同主机上各种进程间通信的层次为(). A)网络层B)会话层C)运输层D)表示层 7.在OSI的7层模型中,主要功能是为上层用户提供共同的数据或信息语法表示转换,也可进行数据压缩和加密的层次为()。 A)会话层B)网络层C)表示层D)运输层 8.在开放系统互连参考模型中,把传输的比特流划分为帧的层次是()。 A)网络层B)数据链路层C)运输层D)分组层 9.在OSI的7层模型中,提供为建立、维护和拆除物理链路所需的机械的、电气的、功的和规程的特性的层次是()。 A)网络层B)数据链路层C)物理层D)运输层 10。在OSI的7层模型中,负责为OSI应用进程提供服务的层次是() A)应用层B)会话层C)运输层D)表示层 11。在创I的7层模型中,位于物理层和网络层之间的层次是()。 A)表示层B)应用层C)数据链路层D)运输层 12。在OSI的7层模型中,位于运输层之上的层次是()。 A)表示层B)数据链路层C)会话层D)应用层 13。允许计算机相互通信的语言被称为()。 A)协议B)寻址c)轮询D)对话

(完整版)深度神经网络及目标检测学习笔记(2)

深度神经网络及目标检测学习笔记 https://youtu.be/MPU2HistivI 上面是一段实时目标识别的演示,计算机在视频流上标注出物体的类别,包括人、汽车、自行车、狗、背包、领带、椅子等。 今天的计算机视觉技术已经可以在图片、视频中识别出大量类别的物体,甚至可以初步理解图片或者视频中的内容,在这方面,人工智能已经达到了3岁儿童的智力水平。这是一个很了不起的成就,毕竟人工智能用了几十年的时间,就走完了人类几十万年的进化之路,并且还在加速发展。 道路总是曲折的,也是有迹可循的。在尝试了其它方法之后,计算机视觉在仿生学里找到了正确的道路(至少目前看是正确的)。通过研究人类的视觉原理,计算机利用深度神经网络(Deep Neural Network,NN)实现了对图片的识别,包 括文字识别、物体分类、图像理解等。在这个过程中,神经元和神经网络模型、大数据技术的发展,以及处理器(尤其是GPU)强大的算力,给人工智能技术 的发展提供了很大的支持。 本文是一篇学习笔记,以深度优先的思路,记录了对深度学习(Deep Learning)的简单梳理,主要针对计算机视觉应用领域。 一、神经网络 1.1 神经元和神经网络 神经元是生物学概念,用数学描述就是:对多个输入进行加权求和,并经过激活函数进行非线性输出。 由多个神经元作为输入节点,则构成了简单的单层神经网络(感知器),可以进行线性分类。两层神经网络则可以完成复杂一些的工作,比如解决异或问题,而且具有非常好的非线性分类效果。而多层(两层以上)神经网络,就是所谓的深度神经网络。 神经网络的工作原理就是神经元的计算,一层一层的加权求和、激活,最终输出结果。深度神经网络中的参数太多(可达亿级),必须靠大量数据的训练来“这是苹在父母一遍遍的重复中学习训练的过程就好像是刚出生的婴儿,设置。.果”、“那是汽车”。有人说,人工智能很傻嘛,到现在还不如三岁小孩。其实可以换个角度想:刚出生婴儿就好像是一个裸机,这是经过几十万年的进化才形成的,然后经过几年的学习,就会认识图片和文字了;而深度学习这个“裸机”用了几十年就被设计出来,并且经过几个小时的“学习”,就可以达到这个水平了。 1.2 BP算法 神经网络的训练就是它的参数不断变化收敛的过程。像父母教婴儿识图认字一样,给神经网络看一张图并告诉它这是苹果,它就把所有参数做一些调整,使得它的计算结果比之前更接近“苹果”这个结果。经过上百万张图片的训练,它就可以达到和人差不多的识别能力,可以认出一定种类的物体。这个过程是通过反向传播(Back Propagation,BP)算法来实现的。 建议仔细看一下BP算法的计算原理,以及跟踪一个简单的神经网络来体会训练的过程。

(完整版)深度神经网络全面概述

深度神经网络全面概述从基本概念到实际模型和硬件基础 深度神经网络(DNN)所代表的人工智能技术被认为是这一次技术变革的基石(之一)。近日,由IEEE Fellow Joel Emer 领导的一个团队发布了一篇题为《深度神经网络的有效处理:教程和调研(Efficient Processing of Deep Neural Networks: A Tutorial and Survey)》的综述论文,从算法、模型、硬件和架构等多个角度对深度神经网络进行了较为全面的梳理和总结。鉴于该论文的篇幅较长,机器之心在此文中提炼了原论文的主干和部分重要内容。 目前,包括计算机视觉、语音识别和机器人在内的诸多人工智能应用已广泛使用了深度神经网络(deep neural networks,DNN)。DNN 在很多人工智能任务之中表现出了当前最佳的准确度,但同时也存在着计算复杂度高的问题。因此,那些能帮助DNN 高效处理并提升效率和吞吐量,同时又无损于表现准确度或不会增加硬件成本的技术是在人工智能系统之中广泛部署DNN 的关键。 论文地址:https://https://www.360docs.net/doc/772320726.html,/pdf/1703.09039.pdf 本文旨在提供一个关于实现DNN 的有效处理(efficient processing)的目标的最新进展的全面性教程和调查。特别地,本文还给出了一个DNN 综述——讨论了支持DNN 的多种平台和架构,并强调了最新的有效处理的技术的关键趋势,这些技术或者只是通过改善硬件设计或者同时改善硬件设计和网络算法以降低DNN 计算成本。本文也会对帮助研究者和从业者快速上手DNN 设计的开发资源做一个总结,并凸显重要的基准指标和设计考量以评估数量快速增长的DNN 硬件设计,还包括学界和产业界共同推荐的算法联合设计。 读者将从本文中了解到以下概念:理解DNN 的关键设计考量;通过基准和对比指标评估不同的DNN 硬件实现;理解不同架构和平台之间的权衡;评估不同DNN 有效处理技术的设计有效性;理解最新的实现趋势和机遇。 一、导语 深度神经网络(DNN)目前是许多人工智能应用的基础[1]。由于DNN 在语音识别[2] 和图像识别[3] 上的突破性应用,使用DNN 的应用量有了爆炸性的增长。这些DNN 被部署到了从自动驾驶汽车[4]、癌症检测[5] 到复杂游戏[6] 等各种应用中。在这许多领域中,DNN 能够超越人类的准确率。而DNN 的出众表现源于它能使用统计学习方法从原始感官数据中提取高层特征,在大量的数据中获得输入空间的有效表征。这与之前使用手动提取特征或专家设计规则的方法不同。 然而DNN 获得出众准确率的代价是高计算复杂性成本。虽然通用计算引擎(尤其是GPU),已经成为许多DNN 处理的砥柱,但提供对DNN 计算更专门化的加速方法也越来越热门。本文的目标是提供对DNN、理解DNN 行为的各种工具、有效加速计算的各项技术的概述。 该论文的结构如下:

基于深度卷积神经网络的图像分类

SHANGHAI JIAO TONG UNIVERSITY 论文题目:基于卷积神经网络的自然图像分类技术研究 姓名: 高小宁 专业:控制科学与工程

基于卷积神经网络的自然图像分类技术研究 摘要:卷积神经网络已在图像分类领域取得了很好的效果,但其网络结构及参数的选择对图像分类的效果和效率有较大的影响。为改善卷积网络的图像分类性能,本文对卷积神经网络模型进行了详细的理论分析,并通过大量的对比实验,得出了影响卷积网络性能的因素。结合理论分析及对比实验,本文设计了一个卷积层数为8层的深度卷积网络,并结合Batch Normalization、dropout等方法,在CIFAR-10数据集上取得了88.1%的分类精度,有效地提高了卷积神经网络的分类效果。 关键词:卷积神经网络,图像分类,Batch Normalization,Dropout Research on Natural Image Classification Based on Convolution Neural Network Abstract: Convolution neural network has achieved very good results in image classification, but its network structure and the choice of parameters have a greater impact on image classification efficiency and efficiency. In order to improve the image classification performance of the convolution network, a convolutional neural network model is analyzed in detail, and a large number of contrastive experiments are conducted to get the factors that influence the performance of the convolution network. Combining the theory analysis and contrast experiment, a convolution layer depth convolution network with 8 layers is designed. Combined with Batch Normalization and dropout, 88.1% classification accuracy is achieved on CIFAR-10 dataset. Which improves the classification effect of convolution neural network. Key Words:Convolution neural network(CNN), image classification, Batch Normalization,Dropout

网络体系结构参考模型

一、互连网体系结构 1974年IBM提出了SNA(系统网络体系结构),考虑到各个网络存在的异构,异质,导致网络都属于封闭式网络,无法相互连接,通过ISO(国际标准化组织)定义了OSI(开放式系统互连)标准,将计算机网络进行分层分层优点:解决了通信的异质性问题,使复杂的问题简单化,向高层屏蔽低层细节问题,使网络的设计更加的简单、容易实现。 协议:网络中通信或数据交换的规则和标准 实体:发送接收信息的软件或硬件的进程 对等实体:不同系统内的同一层次两个实体 接口:相临两层之间的交互界面 服务:某一层和此层以下的层能力,通过接口交给相临层 协议栈:系统内的各个层的协议集合 网络体系结构:计算机网络的层次结构和协议的集合 1、ISO/OSI参考模型 ISO/OSI参考模型是一种逻辑结构,不是具体的设备,任何遵循协议的系统都可以相互通信经过OSI七层模型的数据要经历数据的封装(打包)和解封装(解包)过程,封装过程是将原数据从高层向低层传递的过程,每经过一层都需要加上该层的报头信息,解封装过程是从低层向高层传递的过程,每经过一层都需要将对等层的报头去掉还原为上层数据。

第一层:物理层 处于最底层,为上层提供物理连接,负责传送二进制比特流,在物理层中定义了机械特性(连接器形式和插针分配),电气特性(接口电路参数),功能特性(物理接口的信号线)和规程特性(信号线操作规程),传输介质可以使用有线介质或无线介质,物理层传输二进制比特流,为数据链路层提供物理连接物理层的典型设备有:集线器 第二层:数据链路层 链路的管理,流量的控制,差错控制,数据以数据帧格式传输的,数据帧包含帧头(H2)和帧尾(T2)MAC(介质访问控制),48位二进制组成,为了方便表示使用十六进制表示,网卡上的MAC地址是物理地址,在生产网卡时就内臵在网卡的ROM(只读存储器)芯片中了,不能修改,但是可以伪造(网卡属性中),为了表示网卡的全球唯一性,将MAC地址表示的48位二进制地址分为2部分,前24位表示厂商代号,后24位表示厂商内部代号,MAC地址相同的计算机不能够相互通信网桥,二层交换机,网卡都工作在数据链路层。 第三层:网络层 提供统一的寻址方案,完成分组的独立路由选择,网络层数据以数据包传输路由器工作在网络层,实现路径的选择,通过路由表中的路由表项,(直连路由,路由器自己接口所在的网络形成的路由表),(静态路由,管理员手工添加路由信息添加的路由表),(动态路由,路由器通过相互的路由学习,得到的路由表),路由器可以实现网络

BP神经网络及深度学习研究-综述(最新整理)

BP神经网络及深度学习研究 摘要:人工神经网络是一门交叉性学科,已广泛于医学、生物学、生理学、哲学、信息学、计算机科学、认知学等多学科交叉技术领域,并取得了重要成果。BP(Back Propagation)神经网络是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一。本文将主要介绍神经网络结构,重点研究BP神经网络原理、BP神经网络算法分析及改进和深度学习的研究。 关键词:BP神经网络、算法分析、应用 1 引言 人工神经网络(Artificial Neural Network,即ANN ),作为对人脑最简单的一种抽象和模拟,是人们模仿人的大脑神经系统信息处理功能的一个智能化系统,是20世纪80 年代以来人工智能领域兴起的研究热点。人工神经网络以数学和物理方法以及信息处理的角度对人脑神经网络进行抽象,并建立某种简化模型,旨在模仿人脑结构及其功能的信息处理系统。 人工神经网络最有吸引力的特点就是它的学习能力。因此从20世纪40年代人工神经网络萌芽开始,历经两个高潮期及一个反思期至1991年后进入再认识与应用研究期,涌现出无数的相关研究理论及成果,包括理论研究及应用研究。最富有成果的研究工作是多层网络BP算法,Hopfield网络模型,自适应共振理论,自组织特征映射理论等。因为其应用价值,该研究呈愈演愈烈的趋势,学者们在多领域中应用[1]人工神经网络模型对问题进行研究优化解决。 人工神经网络是由多个神经元连接构成,因此欲建立人工神经网络模型必先建立人工神经元模型,再根据神经元的连接方式及控制方式不同建立不同类型的人工神经网络模型。现在分别介绍人工神经元模型及人工神经网络模型。 1.1 人工神经元模型 仿生学在科技发展中起着重要作用,人工神经元模型的建立来源于生物神经元结构的仿生模拟,用来模拟人工神经网络[2]。人们提出的神经元模型有很多,其中最早提出并且影响较大的是1943年心理学家McCulloch和数学家W. Pitts 在分析总结神经元基本特性的基础上首先提出的MP模型。该模型经过不断改进后,形成现在广泛应用的BP神经元模型。人工神经元模型是由人量处理单元厂泛互连而成的网络,是人脑的抽象、简化、模拟,反映人脑的基本特性。一般来说,作为人工神经元模型应具备三个要素: (1)具有一组突触或连接,常用表示神经元i和神经元j之间的连接强度。 w ij (2)具有反映生物神经元时空整合功能的输入信号累加器。

复杂网络理论及其研究现状

复杂网络理论及其研究现状 复杂网络理论及其研究现状 【摘要】简单介绍了蓬勃发展的复杂网络研究新领域,特别是其中最具代表性的是随机网络、小世界网络和无尺度网络模型;从复杂网络的统计特性、复杂网络的演化模型及复杂网络在社会关系研究中的应用三个方面对其研究现状进行了阐述。 【关键词】复杂网络无标度小世界统计特性演化模型 一、引言 20世纪末,以互联网为代表的信息技术的迅速发展使人类社会步入了网络时代。从大型的电力网络到全球交通网络,从Internet 到WWW,从人类大脑神经到各种新陈代谢网络,从科研合作网络到国际贸易网络等,可以说,人类生活在一个充满着各种各样的复杂网络世界中。 在现实社会中,许多真实的系统都可以用网络的来表示。如万维网(WWW网路)可以看作是网页之间通过超级链接构成的网络;网络可以看成由不同的PC通过光缆或双绞线连接构成的网络;基因调控网络可以看作是不同的基因通过调控与被调控关系构成的网络;科学家合作网络可以看成是由不同科学家的合作关系构成的网络。复杂网络研究正渗透到数理科学、生物科学和工程科学等不同的领域,对复杂网络的定性与定量特征的科学理解,已成为网络时代研究中一个极其重要的挑战性课题,甚至被称为“网络的新科学”。 二、复杂网络的研究现状 复杂网络是近年来国内外学者研究的一个热点问题。传统的对网络的研究最早可以追溯到18世纪伟大数学家欧拉提出的著名的“Konigsberg七桥问题”。随后两百多年中,各国的数学家们一直致力于对简单的规则网络和随机网络进行抽象的数学研究。规则网络过于理想化而无法表示现实中网络的复杂性,在20世纪60年代由Erdos和Renyi(1960)提出了随机网络。进入20世纪90年代,人们发现现实世界中绝大多数的网络既不是完全规则,也不是完全随机

小世界复杂网络模型研究

小世界复杂网络模型研究 摘要:复杂网络在工程技术、社会、政治、医药、经济、管理领域都有着潜在、广泛的应用。通过高级计算机网络课程学习,本文介绍了复杂网络研究历史应用,理论描述方法及阐述对几种网络模型的理解。 1复杂网络的发展及研究意义 1.1复杂网络的发展历程 现实世界中的许多系统都可以用复杂网络来描述,如社会网络中的科研合作网、信息网络中的万维网、电力网、航空网,生物网络中的代谢网与蛋白质网络。 由于现实世界网络的规模大,节点间相互作用复杂,其拓扑结构基本上未知或未曾探索。两百多年来,人们对描述真实系统拓扑结构的研究经历了三个阶段。在最初的一百多年里,科学家们认为真实系统要素之间的关系可以用一些规则的结构表示,例如二维平面上的欧几里德格网;从20世纪50年代末到90年代末,无明确设计原则的大规模网络主要用简单而易于被多数人接受的随机网络来描述,随机图的思想主宰复杂网络研究达四十年之久;直到最近几年,科学家们发现大量的真实网络既不是规则网络,也不是随机网络,而是具有与前两者皆不同的统计特性的网络,其中最有影响的是小世界网络和无尺度网络。这两种网络的发现,掀起了复杂网络的研究热潮。 2复杂网络的基本概念 2.1网络的定义 自随机图理论提出至今,在复杂网络领域提出了许多概念和术语。网络(Network)在数学上以图(Graph)来表示,图的研究最早起源于18世纪瑞士著名数学家Euler的哥尼斯堡七桥问题。复杂网络可以用图论的语言和符号精确简洁地加以描述。图论不仅为数学家和物理学家提供了描述网络的语言和研究的平台,而且其结论和技巧已经被广泛地移植到复杂网络的研究中。 网络的节点和边组成的集合。节点为系统元素,边为元素间的互相作用(关系)。若用图的方式表示网络,则可以将一个具体网络可抽象为一个由点集V和

开源软件的复杂网络分析及建模

第4卷第3期 复杂系统与复杂性科学 Vol.4No.3 2007年9月 C OMP LEX SYSTE M S AND COM P LEX I TY SC I E NCE Sep.2007 文章编号:1672-3813(2007)03-0001-09 开源软件的复杂网络分析及建模 郑晓龙,曾大军,李慧倩,毛文吉,王飞跃,戴汝为 (中国科学院自动化研究所复杂系统与智能科学重点实验室,北京100080) 摘要:开源软件现在变得越来越复杂。把开源软件看作复杂网络并进行研究,有助 于更好地理解软件系统。同时,开源软件是一种较为复杂的人工系统,通过对它们 的研究也可以推动复杂网络理论的应用。以一种基于源代码包的L inux操作系 统———Gent oo L inux操作系统为研究对象,我们把该系统中的软件包抽象成节点, 软件包之间的依赖关系抽象成边,以此建立复杂网络,并对其进行了分析。发现已 有模型不能很好地描述与预测Gent oo网的演化过程,因此,提出了一种新的演化模型。在该模型中,网络现有节点连接新节点的概率不但与现有节点的度有关系,而且也受到现有节点“年龄”的影响。还通过计算机仿真实验把仿真数据与Gent oo真实数据进行了比较,结果显示,新模型更为适合Gent oo网。 关键词:复杂网络;Gent oo;聚集系数;度分布;模型 中图分类号:N94;TP393;TP31文献标识码:A Ana lyz i n g and M odeli n g O pen Source Software a s Co m plex Networks ZHENG Xiao2l ong,ZENG Da2jun,L I Hui2qian,MAO W en2ji,WANG Fei2yue,DA I Ru2wei (The Key Laborat ory of Comp lex Syste m s and I ntelligence Science,I nstitute of Aut omati on, Chinese Academy of Sciences,Beijing100080,China) Abstract:Soft w are syste m s including those based on open2s ource code are becom ing increasingly com2 p lex.Studying the m as comp lex net w orks can p r ovide quantifiable measures and useful insights fr om the point of vie w of s oft w are engineering.I n the mean while,as one of the most comp lex man2made artifacts, they p r ovide a fruitful app licati on domain of comp lex syste m s theory.I n this paper,we analyze one of the most popular L inux meta packages/distributi ons called the Gent oo syste m.I n our analysis,we model s oft2 ware packages as nodes and dependencies a mong the m as arcs.Our e mp irical study shows that the resul2 ting Gent oo net w ork can not be exp lained by existing random graph models.This motivates our work in devel op ing a ne w model in which ne w nodes are connected t o old nodes with p r obabilities that depend not only on the degrees of the old nodes but als o the“ages”of these nodes.Thr ough si m ulati on,we de mon2 strate that our model has better exp lanat ory power than the existing models. Key words:comp lex net w orks;Gent oo;cluster coefficient;degree distributi on;model 收稿日期:2007-08-23 基金项目:国家自然科学基金委基金(60621001,60573078);科技部973项目(2006CB705500,2004CB318103);中国科学院、国家外国专家局,创新团队国际合作伙伴计划(2F05N01) 作者简介:郑晓龙(1982-),男,安徽人,博士研究生,研究方向为复杂网络与数据挖掘。

计算机网络 局域网参考模型

计算机网络局域网参考模型 20世纪80年代初期,美国电气和电子工程师协会(Institute of Electrical and Electronics Engineers)成立了IEEE 802委员会,他根据局域网自身的特征,并在参考开放式系统互联参考模型(OSI/RM)后,提出了局域网的参考模型(LAN/RM),从而制定出局域网的体系结构。 按照IEEE 802标准,局域网的体系结构由物理层(Physical layer)、介质访问控制子层(Medium Access Control Sublayer,MAC)和逻辑链路控制子层(Logical Link Control Sublayer,LLC)三个层次构成。在这三个层次中,其物理层(Physical layer)对应OSI/RM参考模型中的物理层,介质访问控制子层(MAC)与逻辑链路控制子层(LLC)共同对应OSI/RM参考模型中的数据链路层,其对应关系如图7-1所示。 OSI参考模型 局域网参考模型 图7-1 局域网参考模型与OSI/RM间的关系 在OSI参考模型中,物理层的作用是处理机械、电气、功能和规程等方面的特性,确保在通信信道上二进制位信号的正确传输。其主要功能包括信号的编码与解码,同步前导码的生成与去除,二进制位信号的发送与接收,错误校验(CRC校验),提供建立、维护和断开物理连接的物理设施等功能。局域网参考模型的物理层与OSI参考模型中的物理层相对应,它包括以下功能: ●信号的编码与解码。 ●前导码的生成与去除(前导码只用于接收同步数据)。 ●比特的发送与接收。 在OSI/RM参考模型中,数据链路层的功能较简单,它负责把数据从一个节点可靠地传送到相邻的节点。在局域网中,由于多个站点共享传输介质,因此在节点之间传输数据之前要处理好由哪个设备使用传输介质的问题,所以数据链路层要有介质访问控制功能。又因为存在介质的多样性,所以必须提供多种介质访问控制方法。为此在局域网模型中,IEEE 802标准将数据链路层划分成为两个子层,即介质访问控制子层(MAC)和逻辑链路控制子层(LLC)。下面分别对让门进行介绍。 1.介质访问控制子层(MAC) 介质访问控制子层是构成数据链路层的下半部分,直接与物理层相邻。它为不同的物理介质定义了介质访问控制标准。其具有以下几方面的功能: ●在发送端,将数据封装成帧,其中包含有地址和差错检测等字段。

深度学习

敏感性Sensitivity 又称真阳性率,就是发病之后,你的诊断方法对疾病的敏感程度(识别能力)。 敏感性越高,漏诊概率越低。 特异性Specificity 特异性又称真阴性率,不发病(我们这里称之为健康)的特征是有别于发病的特征的,我们利用这些差异避免误诊,那么诊断标准对于这些差异利用的如何就用特异性来表示。 特异性越高,确诊概率越高。 train是训练集,val是验证集,test是测试集。train是网络模型在训练的时候用的,而 val是网络模型在训练过程中测试用的,如楼上所说,val是不影响训练的。在训练的时候可以得到train和val这两个数据集的误差率,利用这个误差率可以绘制出学习曲线,通过观察学习曲线,你可以发现一些网络模型的问题,然后再根据这些问题去调整网络参数。test就是网络模型训练完毕测试用的。 你要知道val是validation的简称。 training dataset 和validation dataset都是在训练的时候起作用。而因为valida tion数据集和training没有交集,所以这部分数据对最终训练出的模型没有贡献。 validation的主要作用是来验证是否过拟合、以及用来调节训练参数等。 比如你训练0-10000次迭代过程中,train和validation的loss都是不断降低,但是从10000-20000过程中train loss不断降低,validation的loss不降反升。那么就证明继续训练下去,模型只是对training dataset这部分拟合的特别好,但是泛化能力很差。所以与其选取20000次的结果,不如选择10000次的结果。这个过程的名字叫做Early Stop,validation数据在此过程中必不可少。 如果你去跑caffe自带的训练demo,你会用到train_val.prototxt,这里面的val 其实就是validation。而网络输入的TEST层,其实就是validation,而不是test。你可以通过观察validation的loss和train的loss定下你需要的模型。 但是为什么现在很多人都不用validation了呢? 我的理解是现在模型中防止过拟合的机制已经比较完善了,Dropout\BN等做的很好了。而且很多时候大家都用原来的模型进行fine tune,也比从头开始更难过拟合。所以大家一般都定一个训练迭代次数,直接取最后的模型来测试。

1-4_参考模型

第一章引言 参考模型

主要内容 ?为什么需要参考模型??ISO-OSI参考模型 ?TCP/IP参考模型 ?两者的异、同

为什么需要参考模型/分层? ?各层工作独立,层之间通过接口联系,降低协议工作的复杂程度 ?灵活性好,任何一层的改变不影响其它层 ?每层的实现技术可以不同,减少了实现的复杂度 ?易于维护,每层可以单独进行调试 ?便于标准化

如何分层? ?分层原则:信宿机第n层收到的对象应与信源机第n层发出的对象完全一致。 ?典型分层模型: OSI七层模型 TCP/IP(DoD)四层模型

Network Processes to Applications Provides network services to application processes (such as electronic mail,file transfer,and terminal emulation )Application Presentation Session Transport Network Data Link Physical 765 4 3 2 1The 7 Layers of the OSI Model

Network Processes to Applications Insure data is readable by receiving system Format of data Data structures Negotiates data transfer syntax for application layer Application Presentation Session Transport Network Data Link Physical 765 4 3 2 1The 7 Layers of the OSI Model Data Representation

基于深度卷积神经网络模型的文本情感分类

第45卷第$期V o l.45 N o.3计算机工程 C o m p u te r E n g in e e rin g 2019年3月 M a rc h2019 ?开发研究与工程应用?文章编号:1000#428(2019)0$-0$00-09文献标志码:A中图分类号:TP183 基于深度卷积神经网络模型的文本情感分类 周锦峰,叶施仁,王晖 (常州大学信息科学与工程学院,江苏常州213164) 摘要:为高效提取不同卷积层窗口的文本局部语义特征,提出一种深度卷积神经网络(C N N)模型。通过堆叠多 个卷积层,提取不同窗口的局部语义特征。基于全局最大池化层构建分类模块,对每个窗口的局部语义特征计算 情感类别得分,综合类别得分完成情感分类标注。实验结果表明,与现有C N N模型相比,该模型具有较快的文本 情感分类速度。 关键词:情感分析;情感分类标注;深度学习;卷积神经网络;词向量 中文引用格式:周锦峰,叶施仁,王晖.基于深度卷积神经网络模型的文本情感分类[J].计算机工程,2019,45(3):300-308. 英文引用格式:Z H O U J in fe n g,Y E S h ire n,W A N G H u i. T ext sentim ent classification based on deep con volution al neural netw ork m o d e l*J].Com puter E n g in e e rin g,2019,45 (3) :300-308. Text Sentiment Classification Based on Deep Convolutional Neural Network Model Z H O U J in fe n g,Y E S h ire n,W A N G H u i (School of Inform ation Science and E ngineering,Changzhou Universit;^,C hangzhou,Jiangsu 213164,C hina) [A b s tr a c t]This paper proposes a d e e p C o nvo lutio na l N eural N e tw ork(C N N)m odel to e ffic ie n tly extract semantic features o f d iffe re n t con volution al layer w indow s fo r te x t.The m odel avoids m anually specifying m u ltip le w indo w sizes and retains local semantic features o f diffe re n t w indow s by stacking a n u m b e r o f con volution al l C lassification m odules are b u ilt based on t he G lobal M a x P ooling(G M P)layer to calculate the category score f local semantic features o f each w in d o w.The m odel synthesizes these category scores to com plete the sentiment classification annotation.E xperim ental results show that the m odel has faster text sentim ent classificat o f other C N N m odels. [K e y w o r d s]sentim ent analysis;sentim ent classification a n n o ta tion;deep le a rn in g;C o nvo lutio na l N eural N e tw ork (C N N) ;w ord vector D O I:10.19678/j.issn.1000-3428.0050043 〇概述 情感分析主要通过人类书写的文本分析和研究 人的意见、情感、评价、态度和情绪,是自然语言处理 (N a tu ra l La ng ua ge P ro c e ss in g,N L P)中最热门的研究 领域之一,并在数据挖掘、W e b挖掘和文本挖掘等应 用范畴得到广泛研究[16]。例如,分析电商平台上对 已购商品的点评,群众对政府新颁布的政策法规的 讨论以及消费者对新产品或服务的反馈等。每天数 以亿计的用户文本信息包含了丰富的用户观点和情 感极性,从中可以挖掘和分析出大量的知识和模式。 深度学习为经典数据挖掘任务提供了新的手 段。卷积神经网络(C o n v o lu tio n a l N e u ra l N e tw o rk,C N N)是一种用于处理具有网状拓扑结构数据的深度神经网络(D eep N e u ra l N e tw o r k,D N N)。C N N 通过卷积操作,组合低层特征形成更加抽象的高层特 征,使模型能够针对目标问题,自动学习特征。在文 本情感分类应用中,C N N能够有效避免传统机器学 习方法所面临的样本特征表达稀疏、计算复杂等问题[4]。 目前,以C N N为基础的文本情感分类方法多数 是通过学习文本的一种窗口或多种窗口局部语义信 息,然后提取文本最大语义特征进行情感划分。此 类方法在文本情感分类标注领域已取得较好的效 果。但是目前在文本情感分类标注领域[56],甚至在 N L P的其他分类问题中[860],使用的C N N模型多数 采用一个或多个卷积层并行的结构。C N N模型解 决情感分类标注问题时,为了充分捕捉语义的距离 基金项目:国家自然科学基金(61272367);江苏省科技厅项目(BY2015027-12)。 作者简介:周锦峰(1978—),男,硕士,主研方向为机器学习、自然语言处理;叶施仁,副教授、博士;王晖(通信作者),讲师、博士。收稿日期:2018-01-10修回日期:2018-02-27E-m a i l:zhouzhou9076@ https://www.360docs.net/doc/772320726.html,

开放系统互联参考模型

开放系统互联参考模型 开放系统互联参考模型篇一 互联网OSI开放系统互联参考模型集线器也叫Hub,工作在物理层(最底层),没有匹配的软件系统,是纯硬件设备。 集线器主要用来连接计算机等网络终端。 集线器实际就是一种多端口的中继器。 中继器的作用就是将已经衰减得不完整的信号经过整理,重新产生出完整的信号再继续传送。 集线器为共享带宽,连接在集线器上的任何一个设备发送数据时,其他所有设备必须等待,此设备享有全部带宽,通讯完毕,再由其他设备使用带宽。 正因此,集线器连接了一个冲突的网络。 所有设备相互交替使用,就好像大家一起过一根独木桥一样。 集线器不能判断数据包的目的和类型,所以如果是广播数据包也依然转发,而且所有设备发出数据以广播方式发送到每个接口,这样集线器也连接了一个广播域的网络。 数据链路层:产品代表交换机。 交换机——交换机Switch,工作在数据链路层(第二层),稍微高端一点的交换机都有一个操作系统来支持。 和集线器一样主要用于连接计算机等网络终端设备。 交换机比集线器更加先进,允许连接在交换机上的设备并行通讯,好比高速公路上的汽车并行行驶一般,设备间通讯不会发生冲突,因此交换机打破了冲突域,交换机每个接口是一个冲突域,不会与其他接口发生通讯冲突。 并且有系统的交换机可以记录MAC地址表,发送数据不会以广播的方式发送到每个接口,而是直接到目的接口,节省了接口带宽。 但是交换机和集线器一样不能判断广播数据包,会把广播发送到全部接口,所以交换机和集线器一样连接了一个广播域网络。 在计算机网络系统中,交换机是针对共享工作模式的弱点而推出的。 集线器是采用共享工作模式的代表,如果把集线器比作一个邮递员,那么这个邮递员是个不认识字的“傻瓜”--要他去送信,他不知道直接根据信件上的地址将信件送给收信人,只会拿着信分发给所有的人,然后让接收的人根据地址信息来判断是不是自己的!而交换机则是一个“聪明”的邮递员--交换机拥有一条高带宽的背部总线和内部交换矩阵。 交换机的所有的端口都挂接在这条背部总线上,当控制电路收到数据包以后,处理端口会查找内存中的地址对照表以确定目的MAC(网卡的硬件地址)的NIC(网卡)挂接在哪个端口上,通过内部交换矩阵迅速将数据包传送到目的端口。 目的MAC若不存在,交换机才广播到所有的端口,接收端口回应后交换机会“学习”新的地址,并把它添加入内部地址表中。 网络层:产品代表路由器。 路由器——路由器Router,工作在网络层(第三层),所有路由器都有自己的操作系统来维持,并且需要人员调试,否则不能工作。 路由器没有那么多接口,主要用来进行网络与网络的连接。 简单的说路由器把数据从一个网络发送到另一个网络,这个过程就叫路由。 路由器不仅能像交换机一样隔离冲突域,而且还能检测广播数据包,并丢弃广播包来隔离广播域,有效的扩大了网络的规模。 在路由器中记录着路由表,路由器以此来转发数据,以实现网络间的通讯。 路由器的介入可以交换机划分的VLAN实现互相通讯。

卷积神经网络CNN代码解析-matlab

卷积神经网络CNN代码解析 deepLearnToolbox-master是一个深度学习matlab包,里面含有很多机器学习算法,如卷积神经网络CNN,深度信念网络DBN,自动编码AutoEncoder(堆栈SAE,卷积CAE)的作者是Rasmus Berg Palm (rasmusbergpalm@https://www.360docs.net/doc/772320726.html,) 代码下载:https://https://www.360docs.net/doc/772320726.html,/rasmusbergpalm/DeepLearnToolbox 这里我们介绍deepLearnToolbox-master中的CNN部分。 DeepLearnToolbox-master中CNN内的函数: 调用关系为: 该模型使用了mnist的数字mnist_uint8.mat作为训练样本,作为cnn的一个使用样例, 每个样本特征为一个28*28=的向量。

网络结构为: 让我们来看看各个函数: 一、Test_example_CNN: (2) 三、cnntrain.m (5) 四、cnnff.m (6) 五、cnnbp.m (7) 五、cnnapplygrads.m (10) 六、cnntest.m (11) 一、Test_example_CNN: Test_example_CNN: 1设置CNN的基本参数规格,如卷积、降采样层的数量,卷积核的大小、降采样的降幅 2 cnnsetup函数初始化卷积核、偏置等 3 cnntrain函数训练cnn,把训练数据分成batch,然后调用 3.1 cnnff 完成训练的前向过程,

3.2 cnnbp计算并传递神经网络的error,并计算梯度(权重的修改量) 3.3 cnnapplygrads 把计算出来的梯度加到原始模型上去 4 cnntest 函数,测试当前模型的准确率 该模型采用的数据为mnist_uint8.mat, 含有70000个手写数字样本其中60000作为训练样本,10000作为测试样本。把数据转成相应的格式,并归一化。 设置网络结构及训练参数 初始化网络,对数据进行批训练,验证模型准确率 绘制均方误差曲线 二、Cnnsetup.m 该函数你用于初始化CNN的参数。 设置各层的mapsize大小, 初始化卷积层的卷积核、bias 尾部单层感知机的参数设置 * bias统一设置为0

相关文档
最新文档