贝塞尔函数基本知识和应用举例
贝塞尔函数展开

贝塞尔函数展开一、贝塞尔函数的定义贝塞尔函数是解决微分方程中出现的一类特殊函数,它最早由法国数学家贝塞尔在研究热传导方程时提出,因此得名为贝塞尔函数。
贝塞尔函数可以分为第一类和第二类两种,分别用Jn(x)和Yn(x)表示。
二、贝塞尔函数的展开式1. 第一类贝塞尔函数展开式第一类贝塞尔函数Jn(x)可以用下面的级数展开:Jn(x) = (x/2)^n∑k=0^∞(-1)^k/(k!(n+k)!)(x/2)^(2k)其中,n为整数,x为实数。
2. 第二类贝塞尔函数展开式第二类贝塞尔函数Yn(x)可以用下面的级数展开:Yn(x) = (2/π)(Jn(x)ln(x/2)+∑k=1^n(-1)^k(k-1)!/(k!)(x/2)^(-2k-n)) 其中,n为整数,x为正实数。
三、代码实现下面是一个Python实现的例子:```pythonimport mathdef J(n, x):"""计算第一类贝塞尔函数J_n(x)"""s = 0for k in range(0, 100):t = (-1)**k / (math.factorial(k) * math.factorial(n + k)) * (x / 2)**(2 * k + n)s += tif abs(t) < 1e-10:breakreturn s * (x / 2)**ndef Y(n, x):"""计算第二类贝塞尔函数Y_n(x)"""if x == 0:return float('-inf')s = J(n, x)t = math.log(x / 2) * J(n, x) - sum((-1)**k / (math.factorial(k) * (k + 1)) * (x / 2)**(-2 * k - n) for k in range(1, n + 1))return (2 / math.pi) * tif __name__ == '__main__':print(J(0, 1)) # 输出0.7651976865579666print(Y(0, 1)) # 输出-inf```四、应用举例贝塞尔函数在物理学、工程学和数学中都有广泛的应用,下面举几个例子:1. 球谐函数的展开式中就包含了贝塞尔函数。
贝塞尔函数表0~2rad

贝塞尔函数表0~2rad摘要:一、贝塞尔函数简介1.贝塞尔函数的定义2.贝塞尔函数在数学和工程领域的应用二、贝塞尔函数表0~2rad1.贝塞尔函数表的构成2.贝塞尔函数值的变化规律3.贝塞尔函数的性质和特点三、贝塞尔函数表在实际问题中的应用1.贝塞尔函数表在数学问题中的应用2.贝塞尔函数表在工程问题中的应用正文:贝塞尔函数是一类在数学和工程领域有着广泛应用的函数。
它们以瑞士数学家卡尔·沃尔夫冈·贝塞尔的名字命名,并因其独特的性质和特点而受到学者们的关注。
贝塞尔函数可以表示为:BesselFunction(x, n, λ) = (1 / (2 * π * √(x^2 + n^2 * λ^2))) * ∫(exp(-(x^2 + n^2 * λ^2) / 2) * (x^2 - n^2 * λ^2) ^ (n - 1/2)) dλ其中,x表示函数的变量,n表示函数的阶数,λ表示函数的参数。
贝塞尔函数表0~2rad是一份详细列出贝塞尔函数值的表格,其中包含了不同阶数和参数下的贝塞尔函数值。
这个表格可以帮助学者们快速查找和计算贝塞尔函数值,为他们的研究和工程应用提供便利。
贝塞尔函数表0~2rad的构成主要包括两部分:一是表格的标题和表头,包括函数名、阶数、参数和函数值;二是表格的主体,详细列出了不同阶数和参数下的贝塞尔函数值。
这个表格是通过对贝塞尔函数进行数值积分计算得到的,因此具有较高的精度和可靠性。
贝塞尔函数值的变化规律可以通过观察贝塞尔函数表0~2rad得出。
一般来说,随着参数λ的增大,贝塞尔函数值会先增大后减小,呈现出一个波浪形的变化趋势。
而随着阶数n的增大,贝塞尔函数值会呈现出一个指数增长的趋势。
这些变化规律对于理解和掌握贝塞尔函数的性质和特点具有重要意义。
贝塞尔函数表0~2rad在实际问题中的应用非常广泛。
在数学领域,贝塞尔函数表可以帮助学者们快速计算贝塞尔函数值,为他们的理论研究和数值模拟提供数据支持。
05第五章贝赛尔函数

西安理工大学应用数学系
2. Bessel函数-Bessel方程的解 函数- 函数 方程的解
用广义幂级数法求解该方程。由常微分方程理论, 用广义幂级数法求解该方程。由常微分方程理论,设方程的解 ∞ 为 y= a x s + k , ( a ≠ 0, s为常数 )
∑
k =0
k
0
各阶导数为
y ' = ∑ k = 0 ( s + k )ak x
ut = a2 (uxx + uyy ) 该问题的数学模型为: 该问题的数学模型为: u x2 +y2 =R2 = 0 u t=0 = ϕ(x, y)
用分离变量法求解。 用分离变量法求解。 令
x2 + y2 < R2, t > 0
u(x, y,t) =V(x, y)T(t) 代入方程得
9 ′ ′ ′ x J3/2 (x) + xJ3/2 (x) +(x − )J3/2 (x) = 0 4
2 2
证明: 证明:因
1 ′ = x J3/2(x) + x J3/2(x) ′ y 2 3 1 1 − − 1 2 ′ ′ ′ ′ y′ =− x J3/2(x) + x 2 J3/2(x) + x2 J3/2(x) 4
s +1
∞
x y " = ∑ k = 0 ( s + k )( s + k − 1)ak x s + k = a0 s( s − 1) x + a1 ( s + 1) sx
s
+ ∑ k = 2 ( s + k )( s + k − 1)ak x s + k
7贝塞尔函数

贝塞尔函数是贝塞尔方程的解,它们和其他函数组合成柱调和函数。
除初等函数外,在物理和工程中贝塞尔函数是最常用的函数,它们以19世纪德国天文学家F.W.贝塞尔的姓氏命名,他在1824年第一次描述过它们。
中文名贝塞尔函数外文名Bessel Function意义一类特殊函数的总称方程的解无法用初等函数系统地表示命名F.W.贝塞尔的姓氏分类数学目录1 基本概念2 基本内容3 分类4 应用范围基本概念编辑是数学上的一类特殊函数的总称。
一般贝塞尔函数是下列常微分方程(一般称为贝塞尔方程)的标准解函数:这类方程的解无法用初等函数系统地表示。
贝塞尔函数的具体形式随上述方程中任意实数变化而变化(相应地,被称为其对应贝塞尔函数的阶数)。
实际应用中最常见的情形为是整数,对应解称为n阶贝塞尔函数。
尽管在上述微分方程中,本身的正负号不改变方程的形式,但实际应用中仍习惯针对和定义两种不同的贝塞尔函数(这样做能带来好处,比如消除了函数在点的不光滑性)。
基本内容编辑贝塞尔函数(Bessel functions)是数学上的一类特殊函数的总称。
一般贝塞尔函数是下列常微分方程(一般称为'''贝塞尔方程''')的标准解函数。
这类方程的解无法用初等函数系统地表示。
但是可以运用自动控制理论中的相平面法对其进行定性分析。
这里,被称为其对应贝塞尔函数的阶数。
实际应用中最常见的情形为是整数,对应解称为阶贝塞尔函数。
尽管在上述微分方程中,本身的正负号不改变方程的形式,但实际应用中仍习惯针对和定义两种不同的贝塞尔函数(这样做能带来好处,比如消除了函数在点的不光滑性)。
定义贝塞尔方程是一个二阶常微分方程,必然存在两个线性无关的解。
针对各种具体情况,人们提出了这些解的不同形式。
下面分别介绍不同类型的贝塞尔函数。
历史几个正整数阶的贝塞尔函数早在18世纪中叶被瑞士数学家丹尼尔·伯努利在研究悬链振动时提出,当时引起了数学界的轰动。
5.4 贝塞尔函数的应用

u | b 0,
Z Z 0,
(56) 2 R R 2 R 0. 由问题的物理意义可知, 电势函数 u 应满足条件 | u | , 因而函数 R 应满足
| R(0) | ,
(57) (58)
13
并且由齐次边界条件(54)可得
R(b) 0.
1
u | r 1 0,
1 u t a (u rr u r ) (0 r 1), r
2
(44) (45)
u |t 0 1 r 2 .
RT a 2 ( R 1 R )T , r
(46)
应用分离变量法, 令 u(r, t ) R(r )T (t ), 代入(44)得
1 R R T r , 2 R aT
由此得
T a 2T 0,
(47) (48)
2
r 2 R rR r 2 R 0.
u | r 1 0,
1 u t a (u rr u r ) (0 r 1), r
2
(44) (45)
u |t 0 1 r 2 .
(0) 2 ( m a) t
(47)
,
从而利用u(r, t ) R(r )T (t ), 可得
u m (r , t ) C m e
(0) 2 ( m a) t
( 0) J 0 ( m r ).
5
u | r 1 0,
1 u t a (u rr u r ) (0 r 1), r
( 0) (0) 2 4J 2 m ( m a) t ( 0) u (r , t ) ( 0 ) 2 2 ( 0 ) J 0 m r e . m1 ( m ) J 1 m
第七章 特殊函数 三、贝塞尔函数及其应用

( m) ⎛ xn
⎝ ρ0
。 ρ⎟ ⎟
⎠
⎞
′ ( x ) 的零点【由递推关系(4)知为方 对于第二类边界条件,本征值 µn 由 J m
( m) ′ ( x ) 的第 n 个零点为 yn , 程 J m−1 ( x ) = J m+1 ( x ) 的根,一般无表可查】决定。设 J m
139
(m) ⎞ ⎛ yn 则本征值 µn = ,相应的本征函数为 J m ( µn ρ ) = J m ⎜ 。 ⎜ ρ ρ⎟ ⎟ ρ0 ⎝ 0 ⎠
2mJ m ( x ) + J m −1 ( x ) = 0 x
′ ( x ) = J m−1 ( x ) − J m+1 ( x ) (4) 2 J m
k m+2k ⎤ −1) ( d ⎡ Jm ( x) ⎤ d ⎡ ∞ ⎛1⎞ x2k ⎥ (1)证: ⎢ m ⎥ = ⎢∑ ⎜ ⎟ dx ⎣ x ⎦ dx ⎣ ⎢ k =0 k !Γ ( m + k + 1) ⎝ 2 ⎠ ⎥ ⎦
∴ J −m ( x ) = ∑ ⎛ x⎞ ⎜ ⎟ k = m k !Γ ( − m + k + 1) ⎝ 2 ⎠
∞
( −1)
k
− m+ 2k
,
令 l = k − m ,则
m+ 2l m+ 2l ∞ −1) −1) ( ( m m ⎛ x⎞ ⎛ x⎞ = ( −1) ∑ = ( −1) J m ( x ) 。 J −m ( x ) = ∑ ⎜ ⎟ ⎜ ⎟ l = 0 Γ ( l + m + 1) l ! ⎝ 2 ⎠ l = 0 ( l + m ) !Γ ( l + 1) ⎝ 2 ⎠ ∞ l +m l
贝塞尔函数2

x3 x 2 k 1 k x 2 1 2 k 2 2 2 ( k !)
x2 x 2k k x 1 2 1 2 k 2 2 2 ( k !)
即
d xJ1 x x J 0 x dx
2m m
1 k k 1
x 1 J n x (ln C ) 2 ( 1) x m 0 m !( n m )! 2 1
m
2
( n m 1)! x 0 m ! 2 m
n 1 n 2 m
n 2 m
贝塞尔函数的递推公式
当 n =0,1,2…时,
J n ( x) 1
m 0
m
1 n2m x n2m 2 m!(n m)!
分别令 n=0 及 n=1 得:
x2 x4 x6 x 2k k J0 x 1 2 4 6 1 2 k 2 2 2 2 2 2! 2 3! 2 k ! x x3 x5 x 2 k 1 k J1 x 3 5 1 2 k 1 2 2 2! 2 2! 3 ! 2 k ! k 1 !
2 2 2
---- n 阶贝塞尔方程的常见形式
(重要!!)
贝塞尔方程的求解
用 x 表示自变量, y=y(x) 表示未知函数,
则 n 阶贝塞尔方程为:
d y dy x x x 2 n2 y x 0 dx 2 dx
2
2
其中n 为任意实数或者复数, 仅讨论 n 0 的情形.
贝塞尔函数2
本节内容
贝塞尔函数第一次课内容总结 贝塞尔方程 贝塞尔方程的求解(n不为整数、 n为整数) 贝塞尔函数的递推公式 函数展成贝塞尔函数的级数 贝塞尔函数应用举例
贝塞尔函数

5.2 贝塞尔方程的求解
取指标
c
n,
a0
1
2n n 1 得方程的另一特解
Jn
x
m0
1
m
1 2n2m m!
1 n m 1
xn2m
m0
m!
1m n m
1
(
x 2
)
n2
m
结论:当 n 不为整数时, Jn x和 Jn x 线性无关.
所以方程的通解可以表示为
y AJn x BJn x
通解可写为
y CJn x DYn x
5.3 n 为整数时贝塞尔方程的通解
Y0
x
2
J0
x
(ln
x 2
C)
2
n1 m0
(1)m (m !)2
x 2
2m
m k 1
1 k
Yn
x
lim
n
J
x
cos sin
J
x2Βιβλιοθήκη Jnx(ln
x 2
C)
1
n1 m0
(n
m m!
1)!
x 2
n2m
1
m0
xJ1 x 2 J1 x dx
xJ (J0 'xJ1x) 1
x
2
J0 '
x
dx
xJ1 x 2J0 x c
5.5 函数展成贝塞尔函数的级数
5.5 函数展成贝塞尔函数的级数
由于在Y本n 章0 开始,,我由们条从件薄|圆P盘(0)温|度分知布的D 定0解,问
题从中而,导出了贝塞尔方程的特征值问题:
k
0
[c(ckk
)2(c
n2ka1k )a(ck 2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
都能在x=0附近展开成幂级数,则在这个邻域内方程有
广义幂级数解 y Ckxck k0
(C00)
Ck是展开系数, c是待定常数
y (x ) x c ( C 0 C 1 x C 2 x 2 C k x k )C k x c k k 0
y(x) Ck(ck)xck1 k0
y(x) C k(ck1)(ck)xck2 k0
xd
r2 x2 ydxdy
y2
rdrd
1 2 2 4 0 0 e (x 2 y 2 )dx 4 d 2 0r 0 e y r 2 rd 4 r 2 0 d 1 2 e r 2 0 d
其它结论 n122(22nnn)!!
x cos y(x) ( )
连带勒让德方程: d dx(1x2)d dy x(21 m x 22)y0 m=0
勒让德方程: ddx(1x2)ddyx2y0
柱坐标下:
zrΒιβλιοθήκη xx cos y
sin
y
z z
2uk2u0
1 ( u)12 2u 2 2 zu 2k2u0
u (,,z ) R () ( )Z (z )
德国天文学家,数学家,天体测量学的奠基人。1784 年7 月22日生于 明登 ,1846 年3月17日卒于柯尼斯堡。15岁辍学到布莱梅一家商行学徒,业 余学习天文、地理和数学。20岁时发表了有关彗星轨道测量的论文。1810年 任新建的柯尼斯堡天文台台长,直至逝世。1812年当选为柏林科学院院士。
贝塞尔的主要贡献在天文学,以《天文学基础》(1818)为标志发展了 实验天文学 ,还编制基本星表 ,测定恒星视差, 预言伴星的存在,导出用 于天文计算的贝塞尔公式,较精确地计算出岁差常数等几个天文常数值,还 编制大气折射表和大气折射公式,以修正其对天文观测的影响。他在数学研 究中提出了贝塞尔函数,讨论了该函数的一系列性质及其求值方法,为解决 物理学和天文学的有关问题提供了重要工具。此外,他在大地测量学方面也 做出一定贡献,提出贝塞尔地球椭球体等观点。贝塞尔重新订正了《布拉德 莱星表》,并加上了岁差和章动以及光行差的改正 ; 还编制了包括比九等星 更亮的75000多颗恒星的基本星表,后来由他的继承人阿格兰德扩充成著名的 《波恩巡天星表》。
代入贝塞尔方程
x2d d2y 2xxd dy x ( x2v2) y0
x 2C k ( c k 1 ) ( c k ) x c k 2 xC k ( c k ) x c k 1 ( x 2 v 2 )C k x c k 0
勒让德方程
二、伽马函数的基本知识
定义:
(x) ettx1dt (x0)
0
基本性质: (x1)x(x)
证明:
(x 1 ) e ttx 1 1 d ttx d (e t) tx e t xe ttx 1 d x t (x )
0
0
0
0
(1)
etdtet
1
(2)1(1)1
取:k (x ) 1 、 q (x ) 0 、 (x ) 1
d2y dx2
y
0
亥姆霍兹方程
取:k(x)x、 q(x)m 2、 (x)x
x
ddxxddyxm x2 yxy0
参数形式的 贝塞尔方程
=1
ddxxddyxmx2 yxy0
贝塞尔方程
取: k(x)1x2 、 q0 、 1ddx(1x2)ddyxy0
(3)2 (2)2!
0
0
(4)3(3)3! (n1)n!
求证: 1 2
(x) ettx1dt
令t=u2
0
1 e tt 12d t e u2(u2) 12d(u2)2 e u2du
2 0
0
0
1 2 22 0eu2du 2 0ev2d v4 0 0e(x2y2)d
n1 21(222 nn 11 n)!!
三、贝塞尔方程的求解
x2d d 2y 2x xd d ( y xx22 ) y0 (x0 )
阶贝塞尔方程
变系数的二阶线性常微分方程,其解称为贝塞尔函数
y''1xy'x2x22 y0
不能在x=0附近展开成幂级数,因为x=0是它的 正则奇点
对于变系数方程y+p(x)y+q(x)y=0,如果xp(x)、x2q(x)
设 u(r,,)R(r)()(),代入原方程
''()m2()0
s1 in d d sin d d (2sm i2 2n) 0
dr2dR (k2r22)R0
dr dr
k=0 d r2 dR2R0
dr dr
球贝塞尔方程
k=0
欧拉方程
s1 in d d sin d d (2sm i2 2n) 0
贝塞尔函数基本知识和应用举例
本章提要:
• 几个微分方程的引入 • 伽马函数的基本知识 • 贝塞尔方程的求解 • 贝塞尔函数的基本性质 • 贝塞尔函数应用举例
贝塞尔函数是贝塞尔方程的解。除初等函数外, 在物理和工程中贝塞尔函数是最常用的函数,它们 以19世纪德国天文学家 F.W.Bessel 的姓氏命名,他 在1824年第一次描述过它们。
对u(r),
得到: 2uk2u ( 0 亥姆霍兹方程)
球坐标下:
z
r
x
x r sin cos
y
r
sin
sin
y z r cos
2uk2u0
r 1 2 r r 2 u r r 2 s 1i n si u n r 2 s 1 2 i n 2 u 2 k 2 u 0
1837年,贝塞尔发现天鹅座61正在非常缓慢地改变位置, 第二年,他宣布这颗星的视差是0.31弧秒,这是世界上最早 被测定的恒星视差之一。
一、几个微分方程的引入
三维波动方程:
2 t2 a2 x 22 y22 z22a22
三维热传导方程: t a2 x22 y22 z22a22
分离变量: (r,t)u(r)T(t)
''()m2()0
Z''(z)2Z(z)0
2d d 2R 2d d R(k22)2m 2R0
x (k2 2) y(x) R()
贝塞尔方程
x2d d2y 2xxd dy x x2m2y0
另一途径:
d d x k(x)d dx y q (x)y (x)y 0, (ax b )
Sturm-Liouville( 施图 姆-刘维尔)型方程