常微分方程与解析几何
常微分方程讲解

常微分方程讲解常微分方程第一章绪论在初等数学中,我们已经学过一些代数方程(如元个一次联立方程),并且用它们解决了一些有趣的应用问题,使我们初步体会到方程论(主要是设未知量、列方程和求解方程的方法)对于解决实际问题的重要性。
在解析几何与微积分中,我们又碰到一类不同的方程——方程的个数少于未知量的个数,也就是通常所说的函数方程。
例如,1) (设是自变量,则是未知函数);2),(设是自变量,则和是两个未知函数)。
这类函数方程与开头所说的代数方程相比,在概念上进了一步——确定自变量与因变量之间的函数关系。
利用这类方程可以解决一类新的问题,例如某些轨迹问题和极值问题等。
本课程所要讲述的方程与刚才说的那种函数方程又不一样,它们除了自变量和未知函数外,还包含了未知函数的导数(即微商)。
例如:1)(是自变量,是未知函数,是未知函数对的导数。
)2)(是自变量,是未知函数,是未知函数对的导数等等)。
这种联系着自变量、未知函数以及未知函数的导数(或微分)的关系式,数学上称之为微分方程。
其中未知函数的导数或微分是不可缺少的。
下面我们通过几个具体的例子,粗略地介绍常微分方程的一些物理背景和方程的建立问题,并讲述一些最基本的概念。
第一节微分方程:某些物理过程的数学模型在这一节中列举几个简单的实际例子,说明怎样从实际问题列成微分方程的问题。
例子虽然简单,但是从中能够简明地诱导出微分方程的一些基本概念,成为进一步探讨其他较复杂问题的借鉴。
掌握好这些例子,会有助于增进我们分析问题的能力。
例1 物体冷却过程的数学模型将某物体放置于空气中,在时刻时,测量得它的温度为,10分钟后测得温度为。
我们要求决定此物体的温度和时间的关系,并计算20分钟后物体的温度。
这里我们假定空气的温度保持为。
解为了解决上述问题,需要了解有关热力学的一些基本规律。
例如,热量总是从温度高的物体向温度低的物体传导的;在一定的温度范围内(其中包括了上述问题的温度在内),一个物体的温度变化速度与这一物体的温度和其所在介质温度的差值成比例。
考研数学面试题目(3篇)

第1篇一、面试题目1. 请简述数学分析中极限的定义和性质。
解析:数学分析中,极限是指当自变量x趋向于某一点a时,函数f(x)的值趋向于某一点L。
具体来说,如果对于任意给定的正数ε,都存在一个正数δ,使得当0<|x-a|<δ时,有|f(x)-L|<ε,则称函数f(x)当x趋向于a时极限为L,记作lim(x→a)f(x)=L。
2. 请解释数学中的导数的概念及其几何意义。
解析:导数是描述函数在某一点处的局部变化率。
对于函数y=f(x),在点x0处的导数表示为f'(x0)。
几何意义上,导数表示曲线在该点的切线斜率。
3. 请简述多元函数偏导数的概念及其几何意义。
解析:多元函数偏导数是指多元函数在某一点处,仅考虑一个变量变化时,函数的导数。
对于多元函数z=f(x,y),在点(x0,y0)处的偏导数表示为f_x'(x0,y0)和f_y'(x0,y0)。
几何意义上,偏导数表示曲线在该点的切线斜率。
4. 请解释定积分的概念及其物理意义。
解析:定积分是指将一个函数在一个区间上的无穷小分割,然后求和并取极限的过程。
物理意义上,定积分可以表示曲线下方的面积、物理量在某段时间内的累积量等。
5. 请简述多元函数的积分概念及其物理意义。
解析:多元函数的积分是指将一个多元函数在一个区域上的无穷小分割,然后求和并取极限的过程。
物理意义上,多元函数的积分可以表示空间曲面的面积、物理量在某区域内的累积量等。
6. 请解释数学中的级数收敛的概念。
解析:级数收敛是指一个无穷级数的各项之和趋向于某个确定的值。
如果对于任意给定的正数ε,都存在一个正整数N,使得当n>N时,级数的部分和S_n与该确定值L之差的绝对值小于ε,则称该级数收敛。
7. 请简述线性代数中矩阵的概念及其运算。
解析:矩阵是一种由数字组成的矩形阵列,表示线性变换、线性方程组等。
矩阵的运算包括加法、数乘、乘法等。
8. 请解释线性代数中行列式的概念及其性质。
高数大一知识点总结基础

高数大一知识点总结基础一、函数与极限1. 函数的定义与性质:函数是一种对应关系,将一个自变量的取值映射到一个因变量的取值上。
函数具有定义域、值域、奇偶性、周期性等性质。
2. 极限的概念与性质:极限是函数在某一点或无穷远处的趋近值。
极限的存在性与唯一性可以通过数列极限的定义来判定。
3. 函数的连续性:连续性是指函数在定义域内没有突变、间断点的性质。
连续函数具有局部性质及整体性质。
4. 导数与函数的凸凹性:导数是函数在某一点的切线斜率,可以表示函数的变化率。
凸凹性指函数图像在某一区间上的弯曲程度。
二、微分学1. 微分的定义与性质:微分是函数局部线性逼近的结果,是函数在某一点的变化量。
微分的计算可以使用导数。
2. 高阶导数:高阶导数是导数的导数,表示函数变化的快慢程度。
高阶导数的计算可以使用导数的性质和公式。
3. 微分中值定理:微分中值定理包括拉格朗日中值定理、柯西中值定理等,用于描述函数在某一区间的特性。
4. 泰勒展开:泰勒展开是将函数在某一点附近用无穷多项式逼近的结果,用于求函数的近似值。
三、积分学1. 定积分的定义与性质:定积分是函数在某一区间上的面积或有向长度,可以用无穷小分割与极限的思想进行计算。
2. 不定积分与积分常数:不定积分是求解函数的原函数过程,不定积分的结果存在积分常数。
3. 牛顿-莱布尼茨公式:牛顿-莱布尼茨公式将定积分与不定积分联系起来,描述了两者的关系。
4. 微积分基本定理:微积分基本定理包括第一类与第二类,用于计算定积分与不定积分。
四、级数1. 数项级数的收敛性:数项级数是由无穷多个数相加而成的表达式,根据其通项的性质可以判断级数的收敛性。
2. 常用级数:常用级数包括等比级数、调和级数等,可以通过特定的方法求解其和。
3. 幂级数:幂级数是一种特殊的级数,具有收敛域与求解方法。
幂级数常用于函数展开与近似计算。
五、常微分方程1. 常微分方程的基本概念:常微分方程是描述未知函数的导数与自变量之间关系的方程。
《常微分方程》全套课件(完整版)

例1 物体下落问题 设质量为m的物体,在时间t=0时,在距
地面高度为H处以初始速度v(0) = v0垂直地面 下落,求ss此物体下落时距离与时间的关系.
有恒等式
因此,令
,则有
因此,所谓齐次方程,实际上就是方程(1.9)的右端函数 是一个关于变元x,y的零次齐次式.
如果我们把齐次方程称为第一类可化为变量分离的方程,那么我们 下面要介绍第二类这种方程.
1.3.2 第二类可化为变量可分离的方程 形如 (1.30) 的方程是第二类可化为变量可分离的方程.其中, 显然,方程(1.30)的右端函数,对于x,y并不
是方程(1.5)在区间(-1,+1)
上的解,其中C是任意常数.又方程(1.5)有两个明显
的常数解y =±1,这两个解不包含在上述解中.
3. 函数
是方程(1.6)在区间(-∞,
+∞)上的解,其中和是独立的任意常数.
4. 函数
是方程(1.7)在区间(-
∞,+∞)上的解,其中和是独立的任意常数.
这里,我们仅验证3,其余留给读者完成.事实上,
(1.13)
显然,方程(1.4)是一阶线性方程;方程(1.5)是一阶非线性方程;方程 (1.6)是二阶线性方程;方程(1.7)是二阶非线性方程.
通解与特解
微分方程的解就是满足方程的函数,可定义如下.
定义1.1 设函数 在区间I上连续,且有直
到n阶的导数.如果把
代入方程(1.11),得到在
区间I上关于x的恒等式,
常微分方程课程简介

电容: Q C
基尔霍夫(Kirchhoff)第二定律:
在闭合回路中,所有支路上的电压的代 数和等于零。
例1 R-L-C 电路 电路1图(1.1)
回路中设R、L及电源
电压E为常数。
当开关S合上后,存在关系式:
E L d I RI 0 dt
即 dI RI E dt L L
数学分析中所研究的函数,是反映客观现实世界运动过 程中量与量之间的一种关系,但是在大量的实际问题中遇到 稍为复杂的一些运动过程时,反映运动规律的量与量之间的 关系 (即函数)往往不能直接写出来,却比较容易建立这些变 量和它们的导数(或微分)间的关系式.
微分方程是数学中的古老分支之一.它与动力系统紧密相 关并有重要应用价值.如分支问题、混沌问题、非线性振动的 复杂性,以及常微分方程与其他学科的关联问题.
Lorenz方程:
dx dt
a(
y
x),
d y
d
t
xz
cx
y,
dz d t
xy
bz.
其中参数a=10,b=8/3,c=28.
传染病模型: 长期以来,建立传染病的数学 模型来描述传染病的传播过程,一直是各国有关专 家和官员关注的课题.人们不能去做传染病传播的 试验以获取数据,所以通常主要是依据机理分析的 方法建立模型.
常微分方程课程简介
常微分方程是研究自然科学和社会科学中的事物、物体和 现象运动、演化和变化规律的最为基本的数学理论和方法。物 理、化学、生物、工程、航空航天、医学、经济和金融领域中 的许多原理和规律都可以描述成适当的常微分方程,如牛顿运 动定律、万有引力定律、能量守恒定律、人口发展规律、生态 种群竞争、疾病传染、遗传基因变异、股票的涨伏趋势、利率 的浮动、市场均衡价格的变化等,对这些规律的描述、认识和 分析就归结为对相应的常微分方程描述的数学模型的研究。因 此,常微分方程的理论和方法不仅广泛应用于自然科学,而且 越来越多的应用于社会科学的各个领域。
大学高等数学知识点框架

大学高等数学知识点框架
一、微积分
1.导数与微分
2.积分与不定积分
3.定积分与曲线下面积
4.微分方程
二、级数
1.数列与级数的概念
2.收敛与发散
3.数项级数
4.幂级数
三、微分方程
1.一阶微分方程
2.二阶线性齐次微分方程
3.二阶线性非齐次微分方程
4.变量分离法与齐次微分方程
四、空间解析几何
1.三维空间直角坐标系
2.平面与直线的方程
3.空间曲面与二次曲线
4.空间直线与平面的位置关系
五、多元函数微分学
1.多元函数的极限
2.偏导数与全微分
3.多元复合函数的求导法则
4.隐函数与参数方程的求导
六、重积分与曲线曲面积分
1.重积分的概念与性质
2.二重积分的计算
3.三重积分的计算
4.曲线曲面积分的计算
七、常微分方程
1.一阶常微分方程
2.二阶常微分方程
3.高阶常微分方程
4.常微分方程的解析解与数值解
八、线性代数
1.线性方程组与矩阵
2.矩阵的运算与性质
3.矩阵的秩与逆
4.特征值与特征向量
九、概率论与数理统计
1.基本概念与概率空间
2.随机变量及其分布律
3.多维随机变量与联合分布
4.参数估计与假设检验
以上是大学高等数学的主要知识点框架,涵盖了微积分、级数、微分方程、空间解析几何、多元函数微分学、重积分与曲线曲面积分、常微分方程、线性代数以及概率论与数理统计等内容。
通过深入学习这些知识点,可以建立起扎实的数学基础,为进一步学习相关学科打下坚实的基础。
《常微分方程》课程教学大纲

《常微分方程》课程教学大纲一、课程基本信息二、课程教学目标常微分方程是信息与计算科学专业的基础课程之一。
通过该课程的学习,使学生掌握建立常微分方程模型的基本过程和方法,正确理解常微分方程的基本概念,掌握基本理论和主要方法,获得比较熟练的基本运算技能,对常微分方程的定性理论有初步的理解,培养学生计算能力、逻辑推理能力、空间想象能力及理论联系实际去分析问题、解决问题的能力,为学生学习后继课程打下基础。
1.学好基础知识。
理解和掌握课程中的基本概念和基本理论,知道它的思想方法、意义和用途,以及它与其它概念、规律之间的联系。
2.掌握基本技能。
能够根据法则、公式正确地进行运算。
能够根据问题的情景,寻求和设计合理简捷的运算途径。
3.培养思维能力。
能够对研究的对象进行观察、比较、抽象和概括。
能运用课程中的概念、定理及性质进行合乎逻辑的推理。
能对计算结果进行合乎实际的分析、归纳和类比。
4.提高解决实际问题的能力。
对于简单应用问题会列出定解问题求解,能够将本课程与相关课程有机地联系起来,提出并解决相关学科中与本课程有关的问题。
能够自觉地用所学知识去观察生活,建立简单的数学模型,提出和解决生活中有关的数学问题。
三、教学学时分配《常微分方程》课程理论教学学时分配表*理论学时包括讨论、习题课等学时。
四、教学内容和教学要求第一章绪论(4学时)(一)教学要求1.了解微分方程的背景即某些物理过程的数学模型;2. 掌握由简单的物理、几何等问题建立简单微分方程;3. 理解微分方程的基本概念;4. 掌握如何由通解求特解。
(二)教学重点与难点教学重点:微分方程的基本概念;教学难点:建立微分方程模型的思想、方法和例子。
(三)教学内容 第一节 常微分方程模型第二节 基本概念和常微分方程的发展历史1.常微分方程基本概念本章习题要点:微分方程基本概念题;建立微分方程的题。
第二章 一阶微分方程的初等解法(14学时)(一)教学要求1. 掌握变量可分离方程、一阶线性方程以及恰当微分方程的求解方法; 2.掌握齐次方程、Bernoulli 方程的求解; 3. 掌握用变量代换的方法求解微分方程;4. 掌握从积分因子满足的充分必要条件导出某些特殊形式积分因子存在的条件及计算公式,并用于解相应的微分方程;5. 掌握已解出y 或x 的微分方程)',(),',(y y f x y x f y ==的计算方法;6. 了解微分方程0)',(,0)',(==y y F y x F 的求解;7. 掌握一阶微分方程的应用方法,能建立一些简单的模型进行简单分析。
高等数学分类

高等数学分类1、通常认为,高等数学分为微积分学,较深入的代数学、几何学以及它们之间的交叉内容。
主要内容包括极限、微积分、空间解析几何与线性代数、级数、常微分方程。
2、广义地说,初等数学之外的数学都是高等数学,也有将中学较深入的代数、几何以及简单的集合论初步、逻辑初步称为中等数学的,将其作为中小学阶段的初等数学与大学阶段的高等数学的过渡。
如何学好高等数学1、对于微积分来说,这块更需要的是精确的理解定义,例如极限的定义,什么是任意"给定”,什么是“存在”(存在的这个又与什么有关),这些都将为后续学习连续性以及其他的数学课程打下一个很好的基础。
2、对于线性代数来说,要记忆的东西偏多,但是其很多概念的直观理解都是来源于解析几何的,可以去看《线性代数的几何意义》,例如矩阵与向量乘积的意义。
3、总的来说,上面两条是要多理解定义和了解其相关的背景,这样更易掌握定义,定义是学习数学最基本的东西。
4、对于做题来说,首先就是要会分析问题,常用的方法是综合法,其次要掌握一些数学思想,如方程思想。
高等数学名词解释1、高等数学指相对于初等数学而言,数学的对象及方法较为繁杂的一部分。
2、广义地说,初等数学之外的数学都是高等数学,也有将中学较深入的代数、几何以及简单的集合论初步、逻辑初步称为中等数学的,将其作为中小学阶段的初等数学与大学阶段的高等数学的过渡。
3、通常认为,高等数学是由微积分学,较深入的代数学、几何学以及它们之间的交叉内容所形成的一门基础学科。
主要内容包括:极限、微积分、空间解析几何与线性代数、级数、常微分方程。
高等数学都学什么1、高等数学主要内容包括:极限、微积分、空间解析几何、向量代数、级数、常微分方程等。
2、高等数学指相对于初等数学而言,数学的对象及方法较为繁杂的一部分。
广义地说,初等数学之外的数学都是高等数学,也有将中学较深入的代数、几何以及简单的集合论初步、逻辑初步称为中等数学的,将其作为中小学阶段的初等数学与大学阶段的高等数学的过渡,。