B32 3527-02-2004-OR-氧气空燃比(LAMBDA)传感器的启动时间特性(中文)
空燃比传感器说明

• Five wire Type A/F Sensor (泵氧式) 这种A/F传感器是:连接器的传感器侧有五个接线 头,在ECM/PC侧有七个接线头。在传感器侧的连 接器处有一个电阻(是制造时,用于识别个体差 异),主要用于V6车,它与Four wire Type 相比, 在浓度低一侧精度很高,因此价格也较贵。
图10 Four wire Type A/F 传感器 工作原理
车载诊断系统 资料
观察此断面 排出气体
电流 AFS-
扩大
扩散层 排气检测室
AFS+
O2
氧化锆元件
大气检测室
Page-6 © 2006 Honda Motor Co., Ltd. – All Rights Reserved.
汽车技术培训
空燃比(A/F)传感器介绍与说明
3. 此时,可以利用检测流过IP元件的氧气量来检测 A/F。由于这个量也与流过IP元件的电流值是成比例 的,这样传感器就通过检测IP电流从而得到A/F值。
其特性如图16所示,由于是利用流过Vcent的电流来进 行检测,就可以检测出浓度高时的负电流,浓度底时的 正电流。
图16 Five wire Type A/F Sensor Construction 4
图3 A/F 传感器与氧传感器
四线制A/F传感器
氧传感器
车载诊断系统 资料
图1 氧传感器的输出特性(转换特性)
浓度高
理论空燃比
浓度低
采用O2探头和Lambda探头进行碳势控制的原理和各自优势之比较

采用O2探头和Lambda探头进行碳势控制的原理和各自优势之比较点击次数:302 发布时间:2011-2-16采用O2探头和Lambda探头进行碳势控制的原理和各自优势之比较前言气体渗碳在热处理中仍然起着重要作用。
气氛的温度和碳势(C-Potential)是工艺控制的最重要的参数。
时至今日仍然没有直接测量碳势的方法能够用于在线工艺控制。
炉内气氛的氧分压测量是碳势控制最常用的间接方法。
氧探头有不同的类型。
在这篇文章中我们将着重讨论氧探头构造上的区别以及各自的优点和缺点。
目前,渗碳工艺已为人熟知。
除温度以外最重要的参数就是碳势。
炉内气氛的碳势即非合金奥氏体的碳含量(以重量百分比表示),该碳含量与相应气氛保持均衡。
比如气氛碳势为0.7%,那么奥氏体的碳含量即为0.7%。
如果奥氏体碳含量高于0.7%,那么就应该进行脱碳直至其碳含量降为0.7%,反之,如果奥氏体碳含量低于0.7%,则应该进行渗碳直至其碳含量达到0.7%。
另外,温度也是决定特定气氛碳势的重要因素。
为了得到工件表面的准确渗碳深度,在热处理工艺中必须对炉内气氛碳势进行测量和控制。
(注:此文由德国MESA ELECTRONIC GMBH发表,由深圳市倍拓科技有限公司翻译整理。
如需引用,请注明出处。
)碳势间接测量一般来说,碳势可以直接测量也可以间接测量。
但是直接测量方法不适用于碳势连续测量及控制。
不过,在必要的时候,可以使用直接测量对间接测量结果进行检测和修正。
下述公式就是碳势间接测量的原理:这些化学反应既可在炉内气氛中发生,也可在工件表面发生。
化学反应之后,CO释放出C,而O2, CO2和 H2O吸收C。
如果气氛碳势高于工件表面碳含量,CO将C转移到工件表面,而O2, CO2和 H2O吸收气氛中的C。
如果气氛碳势低于工件表面碳含量,CO将C转移到气氛中,而O2, CO2和 H2O吸收工件中的C。
在这两种情况下,这些化学反应都会导致工件表面碳含量和气氛碳势之间的均衡。
烟度限制lambda值

烟度限制lambda值
烟度限制中的Lambda值(λ值)通常指的是Lambda传感器(也称为空燃比传感器)的读数,它用于测量发动机排放中的烟度,即排气中的黑烟程度。
Lambda传感器是一种用于闭环燃油喷射系统的传感器,它通过测量排气中的氧气浓度来确定空燃比(理论空燃比值的实际测量值)。
在汽车工程中,Lambda值的理论空燃比是14.7:1(对于汽油)或15.0:1(对于柴油),这是在理想条件下,完全燃烧所需的空气与燃料的比例。
Lambda传感器输出的电压信号与排气中的烟度成正比,高烟度意味着高燃料未完全燃烧的程度,因此Lambda值会低于1(对于汽油)或略低于1.5(对于柴油)。
当发动机运行时,如果Lambda传感器的读数高于1(对于汽油)或略高于1.5(对于柴油),这通常表明燃料过量,即空燃比过于富油,可能会导致黑烟排放。
相反,如果Lambda值低于1或远低于1.5,这可能表明发动机运行过于稀薄,即空燃比过于贫油,可能会导致发动机性能下降和蓝烟排放。
为了控制排放和提高发动机效率,现代汽车通常使用Lambda控制策略,其中ECU(电子控制单元)会根据Lambda传感器的读数调整燃
油喷射量,以维持理想的空燃比。
在某些情况下,Lambda传感器的读数可能会受到污染或其他因素的影响,导致读数不准确。
这可能会导致错误的燃油喷射调整,从而影响发动机性能和排放。
因此,Lambda传感器的校准和维护对于确保发动机正常运行和符合排放标准至关重要。
lambda氧传感器的工作原理

lambda氧传感器的工作原理lambda氧传感器是一种用于测量和监测发动机尾气中氧气含量的重要设备。
其工作原理基于化学反应和电化学原理,具有高精度和高灵敏度的特点。
我们先了解一下氧气在发动机燃烧过程中的作用。
在发动机燃烧过程中,空气与燃料混合后进入燃烧室,经过点火后发生燃烧反应。
这个过程需要氧气的参与,氧气与燃料发生化学反应,产生能量和废气。
因此,氧气的含量对于燃烧过程的效率和废气排放有着重要影响。
lambda氧传感器的主要作用就是测量和监测发动机尾气中氧气的含量,以便调整燃油供应量,使燃烧过程更加高效和环保。
其工作原理可以分为两个步骤:氧离子传导和电化学反应。
当发动机运行时,lambda氧传感器的工作温度会升高。
当传感器达到工作温度后,氧离子开始在传感器的电解质层中传导。
在氧离子传导过程中,传感器的电解质层具有特殊的结构,可以选择性地传导氧离子。
这种选择性传导的特性使得传感器只能传导氧离子,而不会传导其他气体分子。
然后,氧离子传导到达传感器的电极层。
传感器的电极层由负极和正极组成,其中负极富含铂金属,正极则是一个氧气供应电极。
当氧离子传导到达电极层时,它们会与正极的氧气发生电化学反应。
这个反应会产生电流,并通过电路传输到发动机控制单元(ECU)。
根据电流的大小,ECU可以判断发动机尾气中氧气的含量。
当氧气含量较低时,反应速率较慢,电流较小;当氧气含量较高时,反应速率较快,电流较大。
ECU根据电流的变化来调整燃油喷射量,使氧气含量维持在一个适当的范围内,以保证发动机燃烧过程的效率和环保性。
需要注意的是,lambda氧传感器对于氧气含量的测量是基于比例关系的。
传感器会将氧气含量与理论空燃比进行比较,并输出一个lambda值。
当lambda值等于1时,表示理论空燃比,此时发动机燃烧最为完全和高效。
当lambda值大于1时,表示氧气含量过多,此时ECU会减少燃油供应量;当lambda值小于1时,表示氧气含量不足,此时ECU会增加燃油供应量。
空燃比氧传感器(二)

空燃比氧传感器(二)范道钢【期刊名称】《汽车维修与保养》【年(卷),期】2006(000)005【摘要】图4表示的是全范围平板型空燃比传感器在实际空燃比数值小、浓混合气工况下的工作原理。
实际空燃比数值小、浓混合气工况时,由于缺氧造成可燃混合气不能完全燃烧,从而产生了大量的未燃烧气体(碳氢化合物和一氧化碳)。
实际空燃比数值越小、可燃混合气越浓,产生的碳氢化合物和一氧化碳越多。
在此实际空燃比数值小、混合气浓的工况下,发动机电脑在两个空燃比传感器铂电极问施加电压,空燃比传感器空气腔内的氧气在空气腔侧铂电极得到电子后被电离变成氧离子,氧离子从空气腔侧铂电极流到尾气侧铂电极。
在尾气侧铂电极,它同穿过空燃比传感器扩散阻力层的未完全燃烧碳氢化合物和一氧化碳发生化学反应,失去电子,从而形成了电流。
由于扩散阻力层的特殊设计,使得碳氢化合物和一氧化碳气体的数量(流过扩散阻力层到达尾气侧铂电极同氧离子发生反应的)正比于尾气中未燃烧的碳氢化合物和一氧化碳气体的浓度,从而使未燃烧的碳氢化合物和一氧化碳气体同氧气发生化学反应形成的限制电流(IL)正比于尾气中未燃烧的碳氢化合物和一氧化碳气体浓度。
【总页数】4页(P55-58)【作者】范道钢【作者单位】无【正文语种】中文【中图分类】U46【相关文献】1.混装空燃比传感器和氧传感器的必要性及检测 [J], 张葵葵2.基于氧传感器模型的空燃比精确控制器开发 [J], 李捷辉;刘婧;吴兵兵;张隆基;胡立3.氧传感器响应变慢自适应空燃比闭环控制方法研究 [J], 王东亮;肖剑;路录祥;孟祥韬;何浩4.基于宽域氧传感器的空燃比分析仪设计与实现 [J], 章晓娟;周坤;谢建军;邹杰;简家文5.基于氧传感器的空燃比控制模型 [J], 丁立;钱叶剑;滕勤因版权原因,仅展示原文概要,查看原文内容请购买。
最新空燃比氧传感器2资料

空燃比氧传感器(二)(图)作者:文/范道钢日期:2006-5-1 来源:本网字符大小:【大】【中】【小】(接上期)图4表示的是全范围平板型空燃比传感器在实际空燃比数值小、浓混合气工况下的工作原理。
实际空燃比数值小、浓混合气工况时,由于缺氧造成可燃混合气不能完全燃烧,从而产生了大量的未燃烧气体(碳氢化合物和一氧化碳)。
实际空燃比数值越小、可燃混合气越浓,产生的碳氢化合物和一氧化碳越多。
在此实际空燃比数值小、混合气浓的工况下,发动机电脑在两个空燃比传感器铂电极间施加电压,空燃比传感器空气腔内的氧气在空气腔侧铂电极得到电子后被电离变成氧离子,氧离子从空气腔侧铂电极流到尾气侧铂电极。
在尾气侧铂电极,它同穿过空燃比传感器扩散阻力层的未完全燃烧碳氢化合物和一氧化碳发生化学反应,失去电子,从而形成了电流。
由于扩散阻力层的特殊设计,使得碳氢化合物和一氧化碳气体的数量(流过扩散阻力层到达尾气侧铂电极同氧离子发生反应的)正比于尾气中未燃烧的碳氢化合物和一氧化碳气体的浓度,从而使未燃烧的碳氢化合物和一氧化碳气体同氧气发生化学反应形成的限制电流(IL)正比于尾气中未燃烧的碳氢化合物和一氧化碳气体浓度。
图5是全范围平板型空燃比传感器的输出特性。
从图5(a)中可以看出,在实际空燃比等于理论空燃比(14.7:1)时,空燃比传感器的输出电流为零。
实际空燃比数值小、混合气浓时,空燃比传感器输出电流为负。
当实际空燃比数值大、混合气稀时,空燃比传感器输出电流为正。
从图5(b)可以看出空燃比传感器的空燃比检测范围极宽,从23:1极稀混合气到11:1极浓混合气范围内都可能检测到,而且空燃比传感器输出限制电流同实际空燃比的大小基本上成正比对应,对应关系的线性也比较好,几乎趋近为一条直线。
图6、图7是全范围平板型空燃比传感器同传统氧传感器输出特性的比较。
虽然空燃比传感器同传统氧传感器类似,也是利用氧化锆来检测空燃比的,但空燃比传感器的工作原理和工作特性同传统氧传感器有很大不同。
空燃比感知器和含氧感知器

A1A-
前含氧感知器
正常波形
0.55 0.55 V V 0.4 0.4 VV 00 VV
感感 知知 器器 電電 壓壓Βιβλιοθήκη 時間 時間前含氧感知器
不作動 DTC P0134.P0154
可能的原因 • W/H snapping (both signal and 加熱器) • 接頭接觸不良 • 元件損壞 • 短路 “OX+”
b 0.6 V 0.4 V 0V
感 知 器 電 壓
a
時間
後含氧感知器
劣化 DTC P0136, P0156
可能的原因 • 元件損壞
偵測情況 O2S 小於 0.55 V 比率 ≧ 60% & O2S 大於 0.45 V 比率< 40% & O2S 大於 0.7 V 比率< 20% & RICH 輸出持續 < 20 秒
a b
0V
時間
前含氧感知器
信號黏滯 RICH DTC P2196,P2198
可能的原因 a • 極小的可能性 * 一般 P0133 會先偵測到 b • 短路 “OX+” 和 “+B” • 短路 “OX+” 和 “Vcc”
偵測情況 O2 感知器輸出 ≧ 0.4 V
b 055 V a 0.4 V 0V 感 知 器 電 壓
Misfire margin:
∆ T (理論) - ∆ T (失火發生時) ∆ T (理論)
失火資料
偵測失火
設定Pending code
MIL亮, 設定DTC
失火的 DTC
DTC
奥松AO-02氧气传感器说明书

AO-02产品说明书氧气传感器⏹全量程线性输出⏹工作时无需外部电源⏹具有温度补偿电路⏹快速响应⏹准确可靠⏹抗干扰能力强产品概要高品质的AO-02氧气传感器是一类应用电化学原理测定氧气浓度的传感器,采用模制主体设计,具有响应快速和使用寿命长等特点。
针对AO-02氧气传感器,优化了结构和温度补偿工艺,提供优质的品质和更具吸引力的性价比。
有关AO-02或奥松公司生产的氧气传感器的更多信息,请与我司联系。
1产品描述AO-02氧气传感器旨在用于各类与氧气测试相关的仪器中,如:机动车尾气检测仪器、废气环保检测仪器和氧指数测试仪器等,该用途仅限于系统监视。
本文档中提供的数据在20°C、50% RH 和 1013 mBar 下测量,自传感器制造之日起 3 个月内有效。
请严格遵循操作氧气分析仪和更换氧气传感器的说明。
图1.AO-02氧气传感器2传感器规格2.1 技术指标表1.AO-02技术指标表1工作原理分压式电化学输出电压9 - 13 mV(空气中)测量范围0 - 100 % Vol. O2响应时间(T90)< 5 s响应时间(T99.5)2< 40 s基线漂移 <20μV线性度全量程线性温度补偿< 2% O2当量(0 - 40 ℃)负载电阻≥ 10 kΩ接口 Molex3针接头配套零件3Molex 三通外壳Molex 压接端子外壳材料红色ABS重量约40克取向任意工作温度范围0 - +50 ℃工作压力范围 0.5 - 2.0 Bar压差范围0 - 500 mBar工作湿度范围0 - 99% RH(无凝结)100% O2环境中的长期漂移4每年<10%的信号衰减预期使用寿命3.6 × 105% O2小时(20 ℃)2.86 × 105% O2小时(40 ℃)标准温度、压力的空气氛围下2年包装密封泡罩1表格参数是基于在推荐电路、20 ℃、50% RH、1013 mBar以及氧气流量为100 mls/min的条件下对传感器测量所得的结果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
B32 3527
Hale Waihona Puke 氧气空燃比(LAMBDA)传感器的启动时间特性
无使用限制
前言
页码 1/12
本 标 准 为 试 用 标 准 , 试 用 期 为 3 个 月 。 如 果 在 2004 年 5 月 20 日 之 前 , 邮 箱 : normesExp@未收到任何反馈意见,则本标准将正式实施。
1.1 试验台架············································································································································································ 2 1.2 各种气体的分析 ······························································································································································· 2 1.3 各种数据的控制、采集和处理 ······································································································································· 2 各种试验气体···················································································································································································· 3 1.4 测试各种传感器的气体 ··················································································································································· 3 1.5 功能性气体和各种分析仪的标准气体··························································································································· 3 试验过程的逻辑图············································································································································································ 4 试验设备的准备················································································································································································ 5 1.6 分析器的安装···································································································································································· 5 1.7 用氮气对台架进行扫气 ··················································································································································· 5 1.8 检查测试温度···································································································································································· 5 1.9 密封检查············································································································································································ 5 气体构成成分的调整········································································································································································ 5 空燃比传感器的各种技术参数 ······················································································································································· 5 1.10 空燃比传感器的安装 ··················································································································································· 5 1.11 技术参数的测量 ··························································································································································· 5 试验设备的验证················································································································································································ 6 试验报告 ···························································································································································································· 6 后续工作或停止试验········································································································································································ 6 附录 1 试验设备示意图···································································································································································· 7 附录 2 计算气体的稀浓度和构成成分 ··········································································································································· 8 附录 3 计算传感器启动时间 ··························································································································································· 9 附录 4 检 测卡·················································································································································································10 附录 5 试验结果记录······································································································································································11 标准演变和引用文件······································································································································································ 12 1.12 标准演变······································································································································································12 1.13 引用文件······································································································································································12 1.14 等效于··········································································································································································12 1.15 符合于··········································································································································································12 1.16 关键词··········································································································································································12