圆周角定理(公开课)
合集下载
《圆周角》公开课教学PPT课件

24.1.4 圆 周 角
A O
C B
A
O
C B
A O
B
C
教学目标
1.理解圆周角的概念,掌握圆周角定理以及 推论,并应用它们进行证明和计算 2.通过圆周角定理的证明使学生理解分类讨 论以及转化的数学思想
教学重难点
教学重点:圆周角的概念及圆周角定理和
推论
教学难点:分类讨论证明圆周角定理
B
小 强
D
情境引入
圆上,这个多边形叫做圆内接多边形,
这个圆叫做这个多边形的外接圆
A
D
思考:
.O
圆内接四边形的四
个角有什么关系? B
C
探究四 圆内接四边形的对角互补
证明:连接OB,OD
1
∵A= 2 1
C=
1 2
2
A
且1+2=360 °
∴A+C=180 ° 同理:B+D=180 °
1
C
应用新知
如图,四边形ABCD内接于⊙O,E为CD延长线 上一点,若B=110 °,求ADE的度数
A
B
.O
ED
C
反思小结 1.知识点 C
(1)圆周角的概念: (2)圆周角的性质:
A
O
B
C
AD
O
A
B
O
B
C
反思小结 2、数学思想方法
(1)分类思想
A
O·
B
C
A
O·
B
C D
A
O·
D BC
∠BAC_=__∠BDC
一样有利
探究三
思考:半圆(或直径)所对的圆周角有
什么特殊性?
A O
C B
A
O
C B
A O
B
C
教学目标
1.理解圆周角的概念,掌握圆周角定理以及 推论,并应用它们进行证明和计算 2.通过圆周角定理的证明使学生理解分类讨 论以及转化的数学思想
教学重难点
教学重点:圆周角的概念及圆周角定理和
推论
教学难点:分类讨论证明圆周角定理
B
小 强
D
情境引入
圆上,这个多边形叫做圆内接多边形,
这个圆叫做这个多边形的外接圆
A
D
思考:
.O
圆内接四边形的四
个角有什么关系? B
C
探究四 圆内接四边形的对角互补
证明:连接OB,OD
1
∵A= 2 1
C=
1 2
2
A
且1+2=360 °
∴A+C=180 ° 同理:B+D=180 °
1
C
应用新知
如图,四边形ABCD内接于⊙O,E为CD延长线 上一点,若B=110 °,求ADE的度数
A
B
.O
ED
C
反思小结 1.知识点 C
(1)圆周角的概念: (2)圆周角的性质:
A
O
B
C
AD
O
A
B
O
B
C
反思小结 2、数学思想方法
(1)分类思想
A
O·
B
C
A
O·
B
C D
A
O·
D BC
∠BAC_=__∠BDC
一样有利
探究三
思考:半圆(或直径)所对的圆周角有
什么特殊性?
圆周角定理(公开课)省公开课获奖课件说课比赛一等奖课件

点E,∠ACD=60°,∠ADC=50°,求∠CEB旳
度数.
C
60°
A
E
O
B
50°
D
四、巩固新知
3.已知:BC是⊙O旳直径,A是⊙O上一点, AD⊥BC,垂足为D,AE=AB,BE交AD于点F.
(1)∠ACB与∠BAD相等吗?为何? (2)判断△FAB旳形状,并阐明理由.
( (
四、巩固新知
4.如图,AB是⊙O旳直径,D是⊙O上旳任
二、探究知识 证明猜测
我们来分析上页旳前两种情况,第三种情况请同学 们完毕证明.
(2)如图,怎样证明一条弧所正确圆周角等于它 所正确圆心角旳二分之一?
A
∵ OA=OC,
∴ ∠A=∠C.
O
又∵ ∠BOC=∠A+∠C,
∴ BAC 1 BOC. 2
B
C
二、探究知识 证明猜测
(3)如图,怎样证明一条弧所正确圆周角等于它
人教版数学九年级上 讲课内容:课本85-88页
§24.1.4 圆周角(1)
一、问题情境
图中∠ACB 旳顶点和边有哪些特点?
顶点在圆上,而且两边都和圆相交旳角 C
O
A
B
二、探究知识
请说说我们是怎样给圆心角下定义旳,试回答?
顶点在圆心旳角叫圆心角。
顶点在圆上,而且两边都和
圆相交旳角叫做圆周角.
练习一:判断下列各图中,哪些是圆周角,为何?
二、探究知识
图中∠ACB 和∠AOB 有怎样旳关系? 并证明你旳结论?
ACB 1 AOB 2
C
O
A
B
二、探究知识
(1)在圆上任取 BC,画出圆心角∠BOC 和圆周角 ∠BAC,圆心角与圆周角有几种位置关系?
《圆周角》课件优秀(完整版)1

课堂小结
类比
圆心角
圆周角
∠BOD=120°,则∠BCD为_________. 例5 如图,AB是⊙O的直径,BD是⊙O的弦,延长BD到C,使AC=AB,BD与CD有什么关系. 例3 如图,AB是⊙O的直径,弦CD交AB于点P,∠ACD=60º, ∠ADC=70º. 例2 如图,OA,OB,OC都是⊙O的半径,∠AOB=2∠BOC. ∠BOD=120°,则∠BCD为_________. (同一条弧所对的圆周角相等)
87
6
5
C
2.如图,点A、B、C、D在同一个圆上,AC、BD为四
边形ABCD的对角线.
⌒ ⌒ 如图,四边形ABCD是☉O的
;
(2)若AB=AD,则∠1与∠2是否相等,为什么? 求证:(1)∠DAC=∠DBA;
则∠A的度数为____
圆心O在∠BAC的一边上
圆心O在∠BAC的一边上
如图,⊙O是△ABC的外接圆,BC是⊙O的直径,AB=AC,∠ABC的平分线交AC于点D,交⊙O于点E,连接CE.
∠A+ ∠C=1800 同理 ∠B+ ∠D=1800
圆内接四边形的性质: 圆内接四边形的对角互补.
练习 1.如图,四边形ABCD内接于☉O,E为BC延 长线上一点,若∠A=110º,则∠DCB=_____,
∠DCE=____.
圆的内接四边形的任何一个外角都等于它的内对角.
2. 如图,在⊙O的内接四边形ABCD中, ∠BOD=120°,则∠BCD为_________.
∠BAC为圆周角.
辨析 下列各图中的∠BAC是否为圆周角并简述理由.
B
A
O·
C (1) √ A
O·
B
C
顶点不在圆上
圆周角定理课件(PPT 17页)

1 = 2 ∠AOD,∠CBD 1 = 2 ∠COD,
●
C O B
1 ∠ABC = ∠AOC. 2
一条弧所对的圆周角等于它所 一条弧所对的圆周角等于它所 圆周角 对的圆心角的一半. 圆心角的一半 对的圆心角的一半.
议一议
圆周角定理 圆周角定理
综上所述,圆周角∠ABC与圆心角∠AOC的大小关系是: 综上所述,圆周角∠ABC与圆心角∠AOC的大小关系是: 的大小关系是 一条弧所对的圆周角等于它所对的圆心角 圆周角等于它所对的圆心角的一 圆周角定理 : 一条弧所对的圆周角等于它所对的圆心角的一 1 半.
A E
●
驶向胜利 的彼岸
A E B D
C
O
C
B D
在同圆内,同弧或等弧所对的 在同圆内 同弧或等弧所对的 圆周角相等. 圆周角相等
圆周角定理: 在同一圆内,同弧或等弧所对的圆周角相等 同弧或等弧所对的圆周角相等, 在同一圆内 同弧或等弧所对的圆周角相等 都等于该弧所对的圆心角的一半;相等的圆周 都等于该弧所对的圆心角的一半 相等的圆周 角所对的弧相等. 角所对的弧相等.
●
O D C A
●
O C B
O C
D
70o
B
4.如图:四边形ABCD内接于⊙O,则 ∠BAD = 如图:四边形ABCD内接于⊙O,则 ABCD内接于
∠BOD =
例2.AB是⊙O的直径,BD是⊙O的弦,延 长BD到点C,使CD=BD,连接AC. 判断AB与AC的大小有什么关系?为什么?
A
B
D
C
如图:已知BC为 如图:已知BC为⊙O的直径,AD⊥BC, BC 的直径,AD⊥ ,AD 垂足为D,BF AD于E,且 D,BF交 垂足为D,BF交AD于E,且AE=BE. ︵ ︵ 求证:AB=AF (1)求证:AB=AF 3 (2)若sin∠FBC= , AB = 4 5 , 求AD的长。 ∠
●
C O B
1 ∠ABC = ∠AOC. 2
一条弧所对的圆周角等于它所 一条弧所对的圆周角等于它所 圆周角 对的圆心角的一半. 圆心角的一半 对的圆心角的一半.
议一议
圆周角定理 圆周角定理
综上所述,圆周角∠ABC与圆心角∠AOC的大小关系是: 综上所述,圆周角∠ABC与圆心角∠AOC的大小关系是: 的大小关系是 一条弧所对的圆周角等于它所对的圆心角 圆周角等于它所对的圆心角的一 圆周角定理 : 一条弧所对的圆周角等于它所对的圆心角的一 1 半.
A E
●
驶向胜利 的彼岸
A E B D
C
O
C
B D
在同圆内,同弧或等弧所对的 在同圆内 同弧或等弧所对的 圆周角相等. 圆周角相等
圆周角定理: 在同一圆内,同弧或等弧所对的圆周角相等 同弧或等弧所对的圆周角相等, 在同一圆内 同弧或等弧所对的圆周角相等 都等于该弧所对的圆心角的一半;相等的圆周 都等于该弧所对的圆心角的一半 相等的圆周 角所对的弧相等. 角所对的弧相等.
●
O D C A
●
O C B
O C
D
70o
B
4.如图:四边形ABCD内接于⊙O,则 ∠BAD = 如图:四边形ABCD内接于⊙O,则 ABCD内接于
∠BOD =
例2.AB是⊙O的直径,BD是⊙O的弦,延 长BD到点C,使CD=BD,连接AC. 判断AB与AC的大小有什么关系?为什么?
A
B
D
C
如图:已知BC为 如图:已知BC为⊙O的直径,AD⊥BC, BC 的直径,AD⊥ ,AD 垂足为D,BF AD于E,且 D,BF交 垂足为D,BF交AD于E,且AE=BE. ︵ ︵ 求证:AB=AF (1)求证:AB=AF 3 (2)若sin∠FBC= , AB = 4 5 , 求AD的长。 ∠
圆周角定理 课件

要点三 直径上的圆周角 例 3 如图所示,已知 AB 为⊙O 的直径,AC
为弦,OD∥BC,交 AC 于 D,BC=4 cm. (1)试判断 OD 与 AC 的位置关系; (2)求 OD 的长; (3)若 2sin A-1=0,求⊙O 的直径.
解 (1)OD⊥AC.理由如下: ∵AB 为⊙O 的直径,∴∠ACB=90°. ∵OD∥BC,∴∠ADO=∠ACB=90°,∴OD⊥AC. (2)∵△AOD∽△ABC,∴OBCD=AAOB=12, ∴OD=12BC=2(cm). (3)∵2sin A-1=0,∴sin A=12.又∵sin A=BACB, ∴AB=2BC=8 cm,即⊙O 的直径为 8 cm.
圆周角定理
1.圆周角定理
文字语言
圆上一条弧所对的圆周角等于它所对的圆心
角的_一__半___
图形语言
符号语言 作用
在⊙O 中,B︵C所对的圆周角和圆心角分别是
∠BAC,∠BOC,则有∠BAC=_12_∠__B_O_C__
确定பைடு நூலகம்中两个角的大小关系
2.圆心角定理
文字语言
圆心角的度数等于它_所__对_弧___ 的度数
规律方法 此题充分利用了“直径所对的圆 周角是直角”这一特征,并在此基础上对前 面所学知识进行适当的综合.
1.圆周角定理揭示了圆周角与圆心角的关系,把角和 弧两种不同类型的图形联系起来.在几何证明的过程 中,圆周角定理为我们解决角和弧之间的问题提供 了一种新方法.
2.圆心角的度数等于它所对的弧的度数,它与圆的半 径无关,也就是说在大小不等的两个圆中,相同度 数的圆心角,它们所对的弧的度数相等;反过来, 弧的度数相等,它们所对的圆心角的度数也相等.
要点一 圆周角定理及其推论 例 1 在半径为 5 cm 的圆内有长为 5 3cm 的弦 AB,求此
圆周角定理 课件

3.关于圆周角定理推论的理解
(1)在推论1中,注意:“同弧或等弧”改为“同弦或等弦” 的话结论就不成立了,因为一条弦所对的圆周角有两种可 能,在一般情况下是不相等的.
(2)圆心角的度数和它所对的弧的度数相等,但并不是 “圆心角等于它所对的弧”.
(3)“相等的圆周角所对的弧也相等”的前提条件是“在 同圆或等圆中”.
【示例2】 如图,D,E分别为△ABC边AB,AC 的中点,直 线DE交△ABC的外接圆于F,G两点,若CF∥AB,证明: (1)CD=BC; (2)△BCD∽△GBD.
证明 (1)因为D,E分别为AB,AC的中点,所以DE∥BC.又 已知CF∥AB,故四边形BCFD是平行四边形,所以CF=BD = AD. 而 CF∥AD , 连 接 AF , 所 以 ADCF 是 平 行 四 边 形 , 故 CD=AF.
证明 连结 CE、CF、EF,∵BC 为⊙O 的直径,∴∠BFC =90°,∠BEC=90°.又∵∠ACB=90°,∴∠BCE=∠A. 又∵∠BFE=∠BCE,∴∠BFE=∠A.又∵∠EBF=∠DBA, ∴△BEF∽△BDA.∴EBFE=ABDD. ∵∠BFC=∠BCA,∠CBD=∠CBD, ∴△CBF∽△DBC.∴CBCF=CBDD. 又∵AD=CD,∴EBFE=CBCF,∴BBCE=CEFF.
(4)在同圆或等圆中,由弦相等⇒弧相等时,这里的弧要求 同是优弧或同是劣弧,一般选劣弧.
题型一 圆中相关角度数的求解
【例 1】 在半径为 5 cm 的圆内有长为 5 3 cm 的弦 AB,求此弦
所对的圆周角.
[思维启迪] 对于弦所对的圆周角要考虑全面.
解 如图所示,过 O 点作 OD⊥AB 于点 D.因为 OD⊥AB,OD
反思感悟 弦所对的圆周角有两个,易丢掉120°导致错误,另外求圆周角时易应用到解三角形的知识.
圆周角公开课PPT

•
10.剪纸艺术传达着人们美好的情感, 美化着 人们的 生活, 而且能 够填补 创作者 精神上 的空缺 ,使沉 浸于艺 术中的 人们忘 掉一切 烦恼。 或许这 便是它 能在民 间顽强 地生长 ,延续 至今而 生命力 旺盛不 衰的原 因吧。
感谢观看,欢迎指导!
•
8.正是在大米的哺育下,中国南方地 区出现 了加速 度的文 明发展 轨迹。 河姆渡 文化之 后,杭 嘉湖地 区兴盛 起来的 良渚文 化,在 东亚大 陆率先 迈上了 文明社 会的台 阶,成 熟发达 的稻作 农业是 其依赖 的社会 经济基 础。
•
9.考查对文章内容信息的筛选有效信 息的能 力。这 类试题 ,首先 要明确 信息筛 选的方 向,即 挑选的 范围和 标准, 其次要 对原文 语句进 行加工 ,用凝 练的语 言来作 答。
17.如图,AB为⊙O的直径,点C在⊙O上,延长BC至点D,使DC=CB.延 长DA与⊙O的另一个交点为E,连接AC,CE. (1)求证:∠B=∠D; (2)若AB=4,BC-AC=2,求CE的长.
解:(1)∵AB 为⊙O 的直径,∴∠ACB=90°,∴AC⊥BC,又∵DC=CB, ∴AD=AB,∴∠B=∠D
(2)设 BC=x,则 AC=x-2,在 Rt△ABC 中,∵AC2+BC2=AB2,∴(x-2)2
+x2=42,解得 x1=1+ 7,x2=1- 7(舍去),∵∠B=∠E,∠B=∠D,∴
∠D=∠E,∴CD=CE,∵CD=CB,∴CE=CB=1+ 7
18.如图,等边△ABC内接于⊙O,P是弧AB上任意一点(点P不与点A,B 重合),连接PA,PB,PC,过点C作CM∥BP交PA的延长线于点M. (1)填空:∠APC=_____6_0_度,∠BPC=______6_0_度; (2)求证:△ACM≌△BCP; (3)若PA=1,PB=2,求四边形PBCM的面积.
圆周角初中数学原创课件

点A的坐标为(0,4),M是⊙C上一点,∠BMO=120°.
(2)求⊙C的半径及圆心C的坐标.
(2)∵四边形ABMO内接于⊙C,
∴∠A+∠M=180 0
∵∠BMO=120°,∴∠A=60 0
∴∠ABO=30 0 ,∴AB=2AO
∵AO=4,∴AB=8,⊙C的半径为4.
例题分析
如图,⊙C经过坐标原点,且与两坐标轴分别交于点A、B,
A
A
A
A
B
B
D
C
D
C
△ABC
E
E
C
B
F
四边形ABCD
B
D
C
五边形ABCDE
六边形ABCDEF
情境导入
观察下列图形与圆的位置关系
多边形的顶点都在圆上
新知探究
定义:如果一个多边形的所有顶点都在同一个圆上,这个多
边形叫做圆内接多边形.这个圆叫做这个多边形的外接圆.
A
A
O
B
B
C
△ABC为⊙O的内接三角形;
24.1.4 圆周角
教学目标
知识技能:
1.理解圆周角的概念,会叙述并证明圆周角定理.
2.理解掌握圆周角定理及其推理.
3.能应用圆周角定理及推论解决简单的几何问题.
情感目标:
1.通过圆周角定理的证明及推论的得到向学生渗透由“特殊到一般”,再
由“一般到特殊”的研究问题方法,体会分类讨论、化归的思想方法。变
点A的坐标为(0,4),M是⊙C上一点,∠BMO=120°.
(3)求圆心C的坐标.
(3)∵过点C作CE⟂BO,
∴
∵AC=CB,
E
∟
∴BE=EO
(2)求⊙C的半径及圆心C的坐标.
(2)∵四边形ABMO内接于⊙C,
∴∠A+∠M=180 0
∵∠BMO=120°,∴∠A=60 0
∴∠ABO=30 0 ,∴AB=2AO
∵AO=4,∴AB=8,⊙C的半径为4.
例题分析
如图,⊙C经过坐标原点,且与两坐标轴分别交于点A、B,
A
A
A
A
B
B
D
C
D
C
△ABC
E
E
C
B
F
四边形ABCD
B
D
C
五边形ABCDE
六边形ABCDEF
情境导入
观察下列图形与圆的位置关系
多边形的顶点都在圆上
新知探究
定义:如果一个多边形的所有顶点都在同一个圆上,这个多
边形叫做圆内接多边形.这个圆叫做这个多边形的外接圆.
A
A
O
B
B
C
△ABC为⊙O的内接三角形;
24.1.4 圆周角
教学目标
知识技能:
1.理解圆周角的概念,会叙述并证明圆周角定理.
2.理解掌握圆周角定理及其推理.
3.能应用圆周角定理及推论解决简单的几何问题.
情感目标:
1.通过圆周角定理的证明及推论的得到向学生渗透由“特殊到一般”,再
由“一般到特殊”的研究问题方法,体会分类讨论、化归的思想方法。变
点A的坐标为(0,4),M是⊙C上一点,∠BMO=120°.
(3)求圆心C的坐标.
(3)∵过点C作CE⟂BO,
∴
∵AC=CB,
E
∟
∴BE=EO
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
·
O
B
三、应用新知
例、如图,⊙O 的直径 AB 为 10 cm,弦 AC 为 6 cm, ACB 的平分线交⊙O 于点 D,求 BC,AD,BD 的长. C 解:连接 OD,AD,BD, ∵ AB 是⊙O 的直径, ∴ ACB=ADB=90°. O A B 在 Rt△ABC 中, BC= AB 2 AC 2 = 102 62 =8(cm)
二、探究知识 探究2
思考: 一条弧所对的圆周角之间有什么关系?同弧或等弧 所对的圆周角之间有什么关系? 同弧或等弧所对的圆周角相等.
A D
O B
C
二、探究知识
定 理
C
D
A O
在同圆或等圆中,同弧或等弧所对的圆 周角相等,都等于这条弧所对的圆心角 的一半.
·
B
E
推
论
A
C2 C1 C3
半圆(或直径)所对的圆周角 是直角, 90°的圆周角所对的弦 是直径.
练习一:判断下列各图中,哪些是圆周角,为什么?
二、探究知识
图中∠ACB 和∠AOB 有怎样的关系? 并证明你的结论?
C
1 ACB AOB 2
O
A
B
二、探究知识
(1)在圆上任取 BC,画出圆心角∠BOC 和圆周角 ∠BAC,圆心角与圆周角有几种位置关系?
A O O B C B C B C A A O
分情况讨论的思想方法
在圆上任取一个圆周角,观察圆心与圆周 角的位置关系有几种情况?
二、探究知识
证明猜想
我们来分析上页的前两种情况,第三种情况请同学 们完成证明. (2)如图,如何证明一条弧所对的圆周角等于它 所对的圆心角的一半? A ∵ OA=OC, ∴ ∠A=∠C. 又∵ ∠BOC=∠A+∠C, 1 ∴ BAC BOC. 2 O B
(2)判断△FAB的形状,并说明理由.
(
(
四、巩固新知
4.如图,AB是⊙O的直径,D是⊙O上的任
意一点(不与点A、B重合),延长BD到点C,使
DC=BD,判断△ABC的形状:
A O
.
B
D
C
D
四、巩固新知
问题1 如图1,BC是⊙O的直径,A是⊙O上任 一点,你能确定∠BAC的度数吗? 问题2 如图2,圆周角∠BAC=90º,弦BC经
A O
过心O吗?为什么? A B O 图1 C
B
●
C
图2
四、巩固新知
1.如图,AB是⊙O的直径,∠A=10°, 则∠ABC=________.
C A O B
人教版数学九年级上 讲课内容:课本85-88页 §24.1.4 圆周角(1)
一、问题情境
图中∠ACB 的顶点和边有哪些特点? 顶点在圆上,并且两边都和圆相交的角 C
O A B
二、探究知识
请说说我们是如何给圆心角下定义的,试回答? 顶点在圆心的角叫圆心角。
顶点在圆上,并且两边都和 圆相交的角叫做圆周角.
C
二、探究知识
证明猜想
(3)如图,如何证明一条弧所对的圆周角等于它 所对的圆心角的一半? 证明:如图,连接 AO 并延长交⊙O 于点 D. A ∵ OA=OB, ∴ ∠BAD=∠B. 又∵ ∠BOD=∠BAD+∠B, 1 O ∴ BAD BOD. 2 1 同理, CAD COD. B 2 C D 1 ∴ BAC BAD CAD BOC. 2
四、巩固新知
2.如图,AB是⊙O的直径,弦CD与AB相交于 点E,∠ACD=60°,∠ADC=50°,求∠CEB的 度数. C
60°
A
E O
50°
B
D
四、巩固新知
3.已知:BC是⊙O的直径,A是⊙O上一点,
AD⊥BC,垂足为D,AE=AB,BE交AD于点F.
(1)∠ACB与∠BAD相等吗?为什么?