拟合优度检验
第六章 拟合优度检验

该表共有2行2列,称为2×2列联表。检验 程序如下:
. .
1、提出假设H0:给药方式与治疗效果无关 联(相互独立),即口服给药与注射给药 的治疗效果没有差异 。 2、确定显著水平: a =0.05
3、在假设H0:给药方式与治疗效果无关联 (相互独立)的前提下,计算理论数:
.
.
根据独立事件的概率乘法法则:若事件 A 和事件 B 是相互独立的 , 则 P(AB)=P(A)P(B) 。
.
.
2 i 1
k
O
i
Ti 0.5 Ti
2
.
(2)当理论数小于5时,由上式计算出的2 值与2分布偏离也较大。因此,应将理论数 小于5的项与相邻项合并直到理论数≥5,合 并后的组数为k 。
1、提出假设H0:实际观测数与理论数相 符合,记为H0:O-T=0 , HA:不符合
. .
.
0.016 0.101 0.135 0.218 0.470
.
312.75 104.25 108 104.252 32 34.752 104.25 34.75
.
4、推断:从附表6中查出23, 0.05=7.815, H0的拒绝域为2>7.815。由于实得2< 7.815 , 结论是接受H0,F2代表现型符合9:3:3:1的 分离比率。 [实例2] 用正常翅的野生型果蝇与残翅果蝇 杂交, F1 代均表现为正常翅。 F1 代自交, 在F2代中有311个正常翅和81个残翅。问这 一分离比是否符合孟德尔3∶1的理论比?
.
2 i 1
k
Oi Ti
Ti
2
.
1899年统计学家K.Pearson发现上式服从自 由度df=k-1-a的2分布,所以定义该统计 量为2。 k为类型数或组数;a为需由样本估计的参 数的个数。
拟合优度检验

计算上例的χ 值并做推断。先计算各理论数Ti。
2
给药方式 口服
(B )
有效( A )
O1=58 ( 98)(122 ) = 61.95 T1 = 193 O3=64 ( 95)(122 ) = 60.05 T3 = 193
无效( A )
总数
T2
( 98)( 71) = 36.5 =
193
O4=31 ( 95)( 71)
列联表中的数据可以用以下符号表示: a c a+c b d b+d a+b c+d N
在行总数和列总数及N都保持不变的情况下,a、b、c、d的各种组合 的概率可以由下式给出:
P=
( a + b )!( c + d )!( a + c )!( d + b )!
N !a !b !c !d !
零假设:不存在处理效应。若P > α 则接受零假设;反之则拒绝。 若a、b、c、d中的任何一个出现0时,则直接用该概率值作为判断标 准。若无,则应当将这个组合的概率以及从最接近于0的哪个观测值到 0的各种组合的概率都计入。这样才能构成一个尾区的概率。
将以上数据列成下表:
Y_R_ 实际观测数O 理论频率p 理论数T O-T (O-T) 2/ T 315 9/16 312.75 2.25 0.016
Y_rr 101 3/16 104.25 -3.25 0.101
yyR_ 108 3/16 104.25 3.75 0.135
yyrr 32 1/16 34.75 -2.75 0.218
2. 总体参数未知 例 调查到幼儿园接小孩的家长性别,以10人为一组,记录每组女性的人数,共得到
100组,列入下表的第2列中。问女性家长人数是否符合二项分布。 解:人群中男女比率各 占一半,但去接小孩的 家长中是否也是这个比 率就不一定。因此二项 分布的参数ϕ 是未知 的,需从样本数据估 计。
拟合优度检验

拟合优度检验拟合优度检验是统计学中一项重要的统计检验方法,用于评估统计模型对观测数据的拟合程度。
在统计学中,我们经常使用模型来描述和解释现实世界中的数据。
拟合优度检验可以帮助我们确定模型是否适合描述数据,以及模型的预测能力如何。
拟合优度检验的原理基于一个统计假设:如果模型与数据完全匹配,那么模型的预测值应该与观测值完全一致。
因此,在进行拟合优度检验时,我们需要将观测值与模型预测值进行比较,并计算它们之间的差异。
最常用的拟合优度检验方法是卡方检验。
卡方检验基于计算观测值与模型预测值之间的差异,并将其转化为统计量,再根据统计量的分布进行假设检验。
在卡方检验中,我们假设原假设为模型与数据完全匹配,备择假设为模型与数据存在差异。
卡方检验的计算步骤如下:1. 假设我们有一个具体的模型,并用该模型的参数对观测值进行预测。
2. 通过计算观测值与模型预测值之间的差异来计算卡方统计量。
差异可以通过观测值减去模型预测值得到。
3. 根据卡方统计量的分布,计算拟合优度检验的P值。
P值表示在原假设为真的情况下,出现观测到的或更极端结果的概率。
4. 对P值进行显著性检验。
根据显著性水平的设定,如果P值小于显著性水平,则拒绝原假设,认为模型与数据存在差异;如果P 值大于显著性水平,则接受原假设,认为模型与数据匹配良好。
拟合优度检验的结果可以告诉我们模型对数据的拟合程度。
如果P值较大,意味着模型与数据存在较好的拟合,模型可以很好地解释数据。
如果P值较小,意味着模型与数据存在较大差异,模型的拟合程度较差,需要进行进一步调整或选择其他模型。
除了卡方检验,还有其他常用的拟合优度检验方法,如残差分析和拟合指数。
这些方法都可以用于评估模型的拟合程度,但各有特点和适用范围。
在进行拟合优度检验时,我们需要根据具体的研究目的和数据特点选择合适的方法。
总而言之,拟合优度检验是统计学中一项重要的方法,用于评估统计模型对观测数据的拟合程度。
通过计算观测值和模型预测值之间的差异,并进行统计假设检验,可以帮助研究人员判断模型的质量和适用性。
卡方-拟合优度检验

7.2.2 对二项分布的检验(P93)
下面结合实例说明适合性检验方法。
(总体参数已知 )
【例】 在研究牛的毛色和角的有无两对相对性状分离
现象时 ,用黑色无角牛和红色有角牛杂交 ,子二代出
现黑色无角牛192头,黑色有角牛78头,红色无角牛72 头,红色有角牛18头,共360头。试 问这两对性状是否 符合孟德尔遗传规律中9∶3∶3∶1的遗传比例?
1、rc个理论次数的总和等于rc个实际次数的总和;
2、r个横行中的每一个横行理论次数总和等于该 行实际次数的总和 。 独立的行约束条件只有r-1个; 3、类似地,独立的列约束条件有c-1个。 因而在进行独立性检验时,自由度为rc-1-(r-1)-(c1)=(r-1)(c-1),即等于(横行属性类别数-1)×(直 列属性类别数-1)。
黑色无角牛的理论次数T1:360×9/16=202.5;
黑色有角牛的理论次数T2:360×3/16=67.5; 红色无角牛的理论次数T3:360×3/16=67.5;
红色有角牛的理论次数T4:360×1/16=22.5。
或 T4=360-202.5-67.5-67.5=22.5
(四)列表计算2
表 2计算表
表
性别
动物性别实际观察次数与理论次数
实际观察 理论次 次数Oi 数Ti O i-T i (Oi-Ti)2/Ti
雌
雄 合计
428
448 876
438
438 876
-10
10 0
0.2283
0.2283 0.4563
从上表可以看到 ,实际观察次数与理论次数存在
一定的差异。 这个差异是属于抽样误差、还是其性别
(1)提出零假设:认为有效或无效与给药方式并无关联。 实际观察的结果与在两者之间并无关联的前提下,从理论 上推导出的理论数之间无差异。即H0:O-T=0。 ( 2 )根据概率乘法法则,若事件 A 和事件 B 是相互独立 的,或者说它们之间并无关联,这时事件A和事件B同时出 现的概率等于它们分别出现的概率乘积。
拟合优度检验

拟合优度检验引言在统计学和数据分析中,拟合优度检验是一种常用的方法,用于评估分类模型或回归模型的拟合程度。
拟合优度检验可以帮助我们确定模型是否适合我们的数据,并提供了一个衡量模型质量的指标。
拟合优度检验的基本概念拟合优度检验是通过比较观察到的数据和模型预测得到的数据之间的差异来评估模型的拟合程度。
在分类模型中,拟合优度检验通常用于验证模型的准确性和预测能力。
在回归模型中,拟合优度检验则用于衡量模型对实际数据的解释程度。
在进行拟合优度检验之前,通常会建立一个原假设和替代假设。
原假设指的是模型与数据没有显著的差异,而替代假设则指的是模型与数据存在显著的差异。
通过检验原假设的可行性,我们可以确定模型的拟合程度。
常见的拟合优度检验方法1. 卡方拟合优度检验卡方拟合优度检验用于检验观察到的数据与理论上期望的数据之间的差异。
它常用于评估分类模型中观测值与理论值之间的差异。
卡方拟合优度检验通过计算观察值与期望值之间的卡方统计量来确定模型的拟合程度。
如果卡方统计量足够小,或者p值足够大,则原假设成立。
2. 残差分析残差分析是一种常用的拟合优度检验方法,用于评估回归模型对实际数据的解释能力。
在残差分析中,我们通过计算观测值与预测值之间的差异来评估模型的拟合程度。
如果残差足够小,并且呈现出随机分布的特征,则说明模型对实际数据的解释能力较好。
3. R平方值R平方值是一种常用的回归模型拟合优度检验指标。
它可以衡量模型对因变量变异的解释程度。
R平方值的取值范围为0到1,其值越接近1,说明模型对实际数据的解释能力越强。
4. Decoding方法Decoding方法是一种用于评估分类模型拟合优度的方法。
它通过计算模型的准确率、精确率、召回率等指标来评估模型的分类性能。
较高的准确率和精确率,以及较低的误判率和漏判率,都表明模型的拟合优度较高。
拟合优度检验的应用领域拟合优度检验在各个领域都有广泛的应用。
在医学领域,拟合优度检验可以用于评估某种治疗方法对患者病情的预测能力。
第7章 拟合优度检验

§7.1拟合优度检验的一般原理 拟合优度检验的一般原理
7.1.1 什么是拟合优度检验
拟合优度检验( 拟合优度检验(goodness of fit test) ) 是用来检验实际观测数与依照某种假设或模型 计算出来的理论数之间的一致性,以便判断该 计算出来的理论数之间的一致性, 假设或模型是否与观测数相配合。拟合优度检 假设或模型是否与观测数相配合。 验也会出现Ⅰ型错误(弃真) 验也会出现Ⅰ型错误(弃真)和Ⅱ型错误(取伪)。 型错误(取伪)
上一张 下一张 主 页 退 出
7.2.2 对二项分布的检验 1.总体参数 ϕ 已知 纯合的黄圆豌豆与绿皱豌豆杂交,F 例7.1 纯合的黄圆豌豆与绿皱豌豆杂交,F1 代自交,第二代分离数目如下: 代自交,第二代分离数目如下:
Y_R_ (黄圆) 黄圆) 315 Y_rr (黄皱) 黄皱) 101 yyR_ yyR_ (绿圆) 绿圆) 108 yyrr (绿皱) 绿皱) 32 556
χ2检验是对一个正态总体的标准差所作的检验。 检验是对一个正态总体的标准差所作的检验。
引例: 引例: 根据遗传学理论,动物的性别比例是1:1。 根据遗传学理论,动物的性别比例是1:1。 统计某羊场一年所产的876只羔羊中 只羔羊中, 统计某羊场一年所产的876只羔羊中,有 公羔428只 母羔448只 1:1的性别 公羔428只,母羔448只。按1:1的性别 比例计算, 母羔均应为438只 比例计算,公、母羔均应为438只。以A 表示实际观察次数, 论次数, 表示实际观察次数,T 表 示 理 论次数, 可将上述情况列成表7 可将上述情况列成表7-1。
从上述结果可以看出,矫正后的χ2比矫正前 从上述结果可以看出, 的低,若未加矫正,就已经接受H0,矫正后的χ2 的低,若未加矫正,就已经接受H 更低,不会影响结论,可以不加矫正。若未矫正 更低,不会影响结论,可以不加矫正。 时χ2> χ2α,一定要计算矫正的χ2。
拟合优度检验

拟合优度检验拟合优度检验是统计学中常用的一种方法,用于评估一个统计模型对观测数据的拟合程度。
在实际应用中,拟合优度检验可以帮助我们确定一个模型是否能够较好地解释数据,并且用于比较不同模型之间的优劣。
本文将介绍拟合优度检验的基本原理和常用方法,并结合实例解释其应用。
首先,让我们来了解一下什么是拟合优度。
拟合优度是指统计模型中的参数估计值与实际观测值之间的差异程度。
如果模型能够很好地解释观测数据,那么拟合优度就会很高;反之,如果模型不能很好地解释数据,拟合优度就会较低。
通过拟合优度检验,我们可以用一些统计指标来度量模型的拟合程度,以便进行模型选择和优化。
常见的拟合优度检验方法包括卡方检验、残差平方和检验和相关系数检验等。
其中,卡方检验是指比较观测值与理论值之间的差异程度,从而判断模型的适配性。
残差平方和检验则是比较统计模型中预测值与实际观测值之间的平方差异,通过计算残差平方和的大小来评估模型的拟合程度。
相关系数检验则是通过计算模型预测值与实际观测值之间的相关系数,来评估模型解释数据的能力。
在实际应用中,拟合优度检验通常需要结合统计图形一起进行分析。
常见的统计图形包括散点图、回归曲线图和残差图等。
通过观察统计图形,我们可以直观地了解模型的拟合情况,并根据所得结果进行模型的选择和验证。
举个例子来说明拟合优度检验的应用。
假设我们想要建立一个线性回归模型来预测房价。
首先,我们收集了一些房屋的特征数据,如房间数量、卧室数量和房屋面积等,并且对这些数据进行了建模。
然后,通过拟合优度检验,我们可以评估模型的拟合程度。
如果拟合优度很高,说明我们的模型能够很好地解释房价的变动;如果拟合优度较低,说明模型可能存在问题,需要进行修正或选择其他模型。
在进行拟合优度检验时,我们还需要注意一些统计假设和条件。
首先,拟合优度检验通常基于一定的统计分布假设,如正态分布假设。
如果观测数据不满足这些假设,可能会影响拟合优度检验的结果。
拟合优度检验公式的详细整理

拟合优度检验公式的详细整理拟合优度(Goodness of Fit)是统计学中用来评估拟合模型与实际数据之间的匹配程度的指标。
它可以帮助我们判断模型的准确性和可靠性,从而为进一步的分析和决策提供重要依据。
本文将详细整理拟合优度检验公式,并解释其背后的统计意义。
一、介绍拟合优度是衡量模型拟合程度的一种常见方法。
在统计学中,我们经常需要将现实世界的数据与数学模型进行比较,以验证模型的有效性。
拟合优度检验公式可以评估模型与实际数据之间的差异,其值越接近1,表示模型与数据的拟合程度越好。
二、拟合优度检验公式的整理拟合优度检验常用的公式有以下几种:1. R-squared(R平方)R平方是最常见的拟合优度指标之一。
它的计算公式为:R平方 = 1 - (SSR/SST)其中,SSR是回归平方和,表示由模型预测产生的误差平方和;SST是总离差平方和,表示观测值与均值之间的离差平方和。
2. Adjusted R-squared(调整R平方)R平方存在一个问题,就是随着自变量数量的增加而增加,不管这些自变量是否对模型有用。
为了解决这个问题,我们引入了调整R平方。
调整R平方的计算公式为:调整R平方 = 1 - [(1 - R平方) * (n - 1) / (n - p - 1)]其中,n是样本容量,p是自变量的个数。
3. F-statistic(F统计量)F统计量也是一种常见的拟合优度检验方法。
它的计算公式为:F统计量 = (SSR / p) / [(SST - SSR) / (n - p - 1)]其中,SSR是回归平方和,p是自变量的个数,SST是总离差平方和,n是样本容量。
4. AIC(赤池信息准则)AIC是一种模型选择准则,可以用于比较不同模型之间的拟合优度。
AIC的计算公式为:AIC = 2p - 2ln(L)其中,p是模型的参数个数,L是模型的似然函数值。
以上是常见的几种拟合优度检验公式,它们在不同的情况下可以提供不同的评价标准。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
拟合优度检验
在拟合优度检验中,我们通常要比较三个观测值之间的相关、偏离等情况,并且分析可能存在的影响因素。
这里给大家介绍了四种类型的比较方法。
拟合优度检验就是根据每一组数据对全部观测值的拟合程度进
行比较,根据评价准则和权重计算得出三组数据相关系数,然后用三组数据的拟合程度进行比较分析。
下面就分别介绍这几种比较方法。
1.简单相关比较法
首先是比较三种结果之间的相关,即三种结果之间相关的显著性。
这里的显著性有很多表示方法,但通常用三种结果的平均值或者相关系数表示。
比如,第一组三种结果的平均值是0.50,则这三种结果
之间的相关为0.5。
其次是比较三种结果之间的拟合优度,也就是说,看看每种结果与另外两种结果之间的差异大小。
这里的拟合优度可以用标准差表示。
比如,第一组三种结果的标准差为1,则这三种结果之间的拟合优度为1。
3。
总体相关比较法
第二步:比较三种结果之间的拟合优度,这里拟合优度可以用标准差表示。
比如,第一组三种结果的标准差为1,则这三种结果之间的拟合优度为1。
然后,比较三种结果之间的平均值,其实就是比较三种结果之间的相关,即三种结果之间的相关的显著性。
这里的显著性有很多表示方法,但通常用三种结果的平均值或者相关系数表示。
比如,第一组三种结果的平均值是0.5,则这三种结果之间的相关为
0.5。
第三步:比较三种结果之间的总体相关。
比较时,一般只比较第一组三种结果的平均值。
不过有时也需要看看两组之间是否存在某些非线性项,还需要把一些不显著的非线性项忽略掉。
比如,在拟合优度检验时,会涉及到一些简单线性关系的分析,这时,需要考虑到拟合曲线中某些项是否显著,来做判断。
最后,将三组结果所有统计量的数值和相关系数取最小值作为总体的拟合优度。
第四步:根据三组结果的总体相关来决定拟合优度的评价准则。
比如,相关的显著性没有问题,拟合程度也相当好,但三组结果之间的平均值或相关系数还是比较高,则拟合优度为0。
如果是前面三步都符合要求,那么拟合优度为1。
2。
三种结果的相关比较法同样是比较三种结果之间的相关,只不过是各自的相关进行比较,这种方法叫做三种结果的相关比较法。