函数的幂级数展开.ppt
合集下载
高等数学课件:11-4 函数的幂级数展开式

n 2k n 2k 1
(k 0, 1, 2,)
得级数:
x
1 3!
x3
1 5!
x5
(1)n1
1 (2n1)!
x2n1
其收敛半径为 R , 对任何有限数 x , 其余项满足
sin(
(n
1)
2
)
(n 1)!
x n 1
n
sin x
x
1 3!
x3
1 5!
x5
(1)n
1 ( 2 n1)!
x 2n1
2. 间接展开法 利用一些已知的函数展开式 及幂级数的运算性质, 将所给函数展开成 幂级数. 例3. 将 f ( x) cos x 展开成为关于x 的幂级数. 解:由于
1 x
( 1 x 1)
1 1 x x2 xn 1 x
(1 x 1)
例6. 求
的麦克劳林级数.
解: sin2 x 1 1 cos 2x 22
1 1 (1)n 1
2 2 n0
( 2n) !
x (, )
1 (1)n
4n
x 2n (1)n1
4n
x 2n
2 n1
( 2n) !
f (0) f (0)x f (0) x2 f (n) (0) xn
2!
n!
两个待解决的问题 1) 对此级数, 它的收敛域是什么 ? 2) 在收敛域上 , 和函数是否为 f (x) ?
泰勒公式
若函数
的某邻域内具有 n + 1 阶导数, 则在
该邻域内有 :
f
(x)
f
(
x0 ) f (x0 )(x x0 ) f (n) (x0 ) (x n!
所以展开式对 x =1 也是成立的, 于是收敛域为
高等数学-函数展开成幂级数.ppt

解
因此
将
待解决的问题 :
若函数
的某邻域内具有任意阶导数,
为f (x) 的
泰勒级数 .
麦克劳林级数 .
定理1
各阶导数,
则 f (x) 在该邻域内能展开成泰勒级数的充要
条件是
f (x) 的泰勒公式余项满足:
证明
令
设函数 f (x) 在点 x0 的某一邻域
内具有
定理2
若 f (x) 能展成 x 的幂级数,
定义且连续,
域为
利用此题可得
上式右端的幂级数在 x =1 收敛 ,
所以展开式对 x =1 也是成立的,
于是收敛
将函数
例6
展成
解
的幂级数.
将
例7
展成 x-1 的幂级数.
解
将
内容小结
1. 函数的幂级数展开法
(1) 直接展开法
— 利用泰勒公式 ;
(2) 间接展开法
— 利用幂级数的性质及已知展开
第三步 判别在收敛区间(-R, R) 内
是否为
骤如下 :
展开方法
直接展开法
— 利用泰勒公式
间接展开法
— 利用已知其级数展开式
0.
的函数展开
例1
展开成 x 的幂级数.
解
其收敛半径为
对任何有限数 x , 其余项满足
故
( 在0与x 之间)
故得级数
将函数
例2
展开成 x 的幂级数.
解
得级数:
由此得
二项展开式 .
二项式定理.
就是代数学中的
对应
的二项展开式分别为
例3 附注
2. 间接展开法
因此
将
待解决的问题 :
若函数
的某邻域内具有任意阶导数,
为f (x) 的
泰勒级数 .
麦克劳林级数 .
定理1
各阶导数,
则 f (x) 在该邻域内能展开成泰勒级数的充要
条件是
f (x) 的泰勒公式余项满足:
证明
令
设函数 f (x) 在点 x0 的某一邻域
内具有
定理2
若 f (x) 能展成 x 的幂级数,
定义且连续,
域为
利用此题可得
上式右端的幂级数在 x =1 收敛 ,
所以展开式对 x =1 也是成立的,
于是收敛
将函数
例6
展成
解
的幂级数.
将
例7
展成 x-1 的幂级数.
解
将
内容小结
1. 函数的幂级数展开法
(1) 直接展开法
— 利用泰勒公式 ;
(2) 间接展开法
— 利用幂级数的性质及已知展开
第三步 判别在收敛区间(-R, R) 内
是否为
骤如下 :
展开方法
直接展开法
— 利用泰勒公式
间接展开法
— 利用已知其级数展开式
0.
的函数展开
例1
展开成 x 的幂级数.
解
其收敛半径为
对任何有限数 x , 其余项满足
故
( 在0与x 之间)
故得级数
将函数
例2
展开成 x 的幂级数.
解
得级数:
由此得
二项展开式 .
二项式定理.
就是代数学中的
对应
的二项展开式分别为
例3 附注
2. 间接展开法
高等数学第五节 函数幂级数展开-PPT文档资料

即
f ( 0 ) 2 S (x )f( 0 )f ( 0 )x x n 1 2 ! ) f(n ( 0 ) n x. n !
那么, 级数 ③ 收敛于函数 f(x) 的条件为
lim S ( x ) f ( x ) . n 1
n
注意到麦克劳林公式 ② 与麦克劳林级数 ③ 的关为泰勒公式 .
如果令 x 0 , 就得到 0
f (0 ) 2 f (n)(0 ) n f (x ) f (0 ) f (0 )x x x 2 ! n ! r ). n(x ②
( n 1 ) f ( x )n 1 r ( x ) x ( 0 θ 1 ) . n ( n 1 )!
( 0 ) 1 , , ( 0 ) 0 ,f f( 0 )0, f( 0 ) 1 , f
n 1 ) n ( 0 ) ( 1 ) . f(2n)( 0 )0, f(2
于是可以得到幂级数
2 n 1 1 3 15 x n x x x ( 1 ) , 3 ! 5 ! ( 2 n 1 )!
称为泰勒级数 .
二、 直接展开法
利用麦克劳林公式将函数 f(x 展开成幂级数
的方法,称为直接展开法 .
例1 试将函数 f(x) = ex 展开成 x 的幂级数.
( n ) x 解 由 f ( x ) e( n 1 , 2 , 3 , ) , 可以
得到
( n ) f ( 0 ) f ( 0 ) f ( 0 ) f ( 0 ) 1 .
( θ x ) e n 1 r ( x ) x ( 0 θ 1 ) , n ( n 1 )!
且 x≤
x θx x x , 所以 e e , 因而有
f ( 0 ) 2 S (x )f( 0 )f ( 0 )x x n 1 2 ! ) f(n ( 0 ) n x. n !
那么, 级数 ③ 收敛于函数 f(x) 的条件为
lim S ( x ) f ( x ) . n 1
n
注意到麦克劳林公式 ② 与麦克劳林级数 ③ 的关为泰勒公式 .
如果令 x 0 , 就得到 0
f (0 ) 2 f (n)(0 ) n f (x ) f (0 ) f (0 )x x x 2 ! n ! r ). n(x ②
( n 1 ) f ( x )n 1 r ( x ) x ( 0 θ 1 ) . n ( n 1 )!
( 0 ) 1 , , ( 0 ) 0 ,f f( 0 )0, f( 0 ) 1 , f
n 1 ) n ( 0 ) ( 1 ) . f(2n)( 0 )0, f(2
于是可以得到幂级数
2 n 1 1 3 15 x n x x x ( 1 ) , 3 ! 5 ! ( 2 n 1 )!
称为泰勒级数 .
二、 直接展开法
利用麦克劳林公式将函数 f(x 展开成幂级数
的方法,称为直接展开法 .
例1 试将函数 f(x) = ex 展开成 x 的幂级数.
( n ) x 解 由 f ( x ) e( n 1 , 2 , 3 , ) , 可以
得到
( n ) f ( 0 ) f ( 0 ) f ( 0 ) f ( 0 ) 1 .
( θ x ) e n 1 r ( x ) x ( 0 θ 1 ) , n ( n 1 )!
且 x≤
x θx x x , 所以 e e , 因而有
函数的幂级数展开

2013-2-27 8
f (x ) 在
定理 2 ( 充要条件 ) 设函数 f (x ) 在点 x0 有任意阶导数 . 则 f (x) 在区间 ( x0 r , x0 r ) ( r 0 ) 内等于其 Taylor 级数 ( 即可展 )的充要条件是: 对 x ( x0 , r ) , 有 lim Rn ( x) 0 . 其 n 中 Rn (x) 是 Taylor 公式中的余项. 证 把函数 f (x ) 展开为 n 阶 Taylor 公式, 有
1 ( n 1) Rn (x) f ( )( x ) n x, n!
在 0 与 x 之间.
Taylor 公式的项数无限增多时, 得
f ( x0 ) f ( n ) ( x0 ) f ( x0 ) f ( x0 )( x x0 ) ( x x0 ) 2 ( x x0 ) n 2! n!
f ( n ) ( x) n! , n 1 (1 x) 1 在点 x 0 1 x
无限次可微. 求得
( x 1 ), f ( n ) (0) n!
2013-2-27
. 其 Taylor 级数为
4
1 x x x xn .
2 n
n 0
该幂级数的收敛域为 ( 1 , 1 ) . 仅在区间 ( 1 , 1 ) 内有 f (x) = x n .
a a
x
x ln a
x n ln n a , n! n 0
| x | .
2
2013-2-27
x 2 n 1 sin x ( 1 ) , (2n 1)! n 0
n
x( , ).
f (x ) 在
定理 2 ( 充要条件 ) 设函数 f (x ) 在点 x0 有任意阶导数 . 则 f (x) 在区间 ( x0 r , x0 r ) ( r 0 ) 内等于其 Taylor 级数 ( 即可展 )的充要条件是: 对 x ( x0 , r ) , 有 lim Rn ( x) 0 . 其 n 中 Rn (x) 是 Taylor 公式中的余项. 证 把函数 f (x ) 展开为 n 阶 Taylor 公式, 有
1 ( n 1) Rn (x) f ( )( x ) n x, n!
在 0 与 x 之间.
Taylor 公式的项数无限增多时, 得
f ( x0 ) f ( n ) ( x0 ) f ( x0 ) f ( x0 )( x x0 ) ( x x0 ) 2 ( x x0 ) n 2! n!
f ( n ) ( x) n! , n 1 (1 x) 1 在点 x 0 1 x
无限次可微. 求得
( x 1 ), f ( n ) (0) n!
2013-2-27
. 其 Taylor 级数为
4
1 x x x xn .
2 n
n 0
该幂级数的收敛域为 ( 1 , 1 ) . 仅在区间 ( 1 , 1 ) 内有 f (x) = x n .
a a
x
x ln a
x n ln n a , n! n 0
| x | .
2
2013-2-27
x 2 n 1 sin x ( 1 ) , (2n 1)! n 0
n
x( , ).
幂级数展开

Lemma 设函数 ϕ ( x ) 在区间 [0, 1] 上有 n + 1 阶 连续导函数, 连续导函数, 则
ϕ (1) = ϕ (0) + ϕ '(0) ϕ ''(0)
1! + 2!
1 0
+L +
ϕ ( n ) (0)
n!
1 1 ( n +1) + ∫ ϕ (t )(1 − t ) n dt . n! 0
α
α (α −1)
2!
α (α −1)L(α − n +1)
n!
x
n
+ Rn ( x).
Taylor级数收敛半径为 R = 1. 级数收敛半径为 级数 Lagrange余项 余项
α (α − 1)L (α − n)
(n + 1)! (1 + ξ )α − n −1 x n +1 ,
是否趋向 0 ? 说不清 说不清. n o (x ) n Peano余项 o ( x ) , x → 0 时, x n → 0, 余项 14 x 不动时, o ( x n ) → 0 ? 也说不清 也说不清. n→∞ 但 不动时,
∞
f
(n)
( x0 ) n ( x − x0 ) . n!
1
x2 e , x ≠ 0, e x t f '(0) = lim = lim t = 0. 例4 f ( x ) = x →0 x t →∞ e 0, x = 0. 1 − 2 x 1 e 2 − x2 3 2t 4 x ≠ 0时,f '( x) = 3 e , f ''(0) = lim x = lim t = 0. x →0 t →∞ x x e 1 − 2 4 6 x ≠ 0时,f ''( x) = ( 6 − 4 )e x , LL LL x x
函数的幂级数展开式ppt课件泰勒级数课件

o
x0
P104,条件1,2
y f (x)
x
Pn的确定
Pn( x) a0 a1( x x0 ) a2( x x0 )2 an( x x0 )n
分析: f (x0) Pn(x0) a0
f (x0) Pn(x0) 1 a1 f (x0) Pn(x0) 2!a2
an
1 n!
代换 恒等变形
求导,积分
数项级数求和
无穷级数
特殊:数项级数
特殊:交正错项
一般:
一般:函数项级数
特殊:幂级数 一般:
判定敛散性
求R,收敛域 求和函数,
2. 数项级数求和
(1)e x 1 x 1 x2 2!
1 xn
n!
n0
1 n!
xn
此公式对应了无数个求和公式!
x0 )n
称为点 x0 处泰勒级数
f (x) 的泰勒级数 :
f (x)
f (x)
f (x0 )
f (x0 )(x x0 )
f
( x0 2!
)
(
x
x0
)2
f
(n) (x0 ) (x n!
x0 )n
n0
f
(n)( x0 )( x n!
x0 )n
不一定!
2 定理1 设函数 f (x) 在点 x0 的某一邻域
内具有
各阶导数, 则 f (x) 在该邻域内能展成泰勒级数的 充要条件是 f (x) 的__________余项满足:___________
理解1:
f (x) 的 n 阶泰勒公式
f (x) f (x0 ) f (x0 )(x x0 )
f
( x0 2!
数学物理方法3幂级数展开PPT学习教案

第8页/共92页
9
(2) 柯 西 判 据 :对于任一小的正数 , 必存在一 N 使得 n>N 时有
s p1 wn1 wn2
式中 p 为任意正整数.
(3) 绝 对 收 敛 定义
n p
wn p wk k n1
收敛,则 称
若
w
u2 v2
k
k
k
k 0
k 0
绝对收敛
wk
k 0
注1: 一个绝对收敛的复级数的各项可以任意重排次序,而不
k 0
内一致收敛,则级数和 w z wk (z) 也是 B 内的单值解析函
k 0
数, w z 的各阶导数可以由 wk (z) 逐项求导得出,即
k 0
w(n) (z)
w(n) k
(
z)
(z B,n 0,1, 2,) ,
k 0
而且
w(n) k
(
z)
在 B 内一致收敛。
k 0
第13页/共92页
1
a0 d 1
a1( z0 )d
2 i CR1 z
2 i CR1 z
1
a2 ( z0 )2 d
2 i CR1 z
a0 a1(z z0 ) a2 (z z0 )2
w(z)
第21页/共92页
22
w
(
z
)
(3) 在收敛圆
z
z0
R
内的导数可将其幂
级数逐项求导得到,
17
(2)当
z z0 R 时,
由于 z1 z0 R ,
lim ak1 a k
k
z1 z1
z0 z0
k 1 k
z1 z0 R
函数展开成幂级数(课堂PPT)

无穷级数
上一页
下一页
返回
8
证明
Rn ( x)
f (n1) ( ) ( x
(n 1)!
x0
)n1
M x x0 n1 , (n 1)!
x
x0
n1
在(,)收敛,
n0 (n 1)!
x ( x0 R, x0 R)
lim n
x x0 n1 (n 1)!
0,
故
lim
n
Rn
(
x
)
x
0,
n0
该级数在(,)内和函数s( x) 0. 可见
除s 0外, f ( x)的麦氏级数处处不收敛于 f ( x).
无穷级数
上一页
下一页
返回
6
三、函数展开成泰勒级数的条件
定理 2 f ( x)在点x0 的泰勒级数,在U ( x0 ) 内收
敛于
f
(
x)
在U
(
x0
) 内lim n
Rn
(
x)
0
.
证明 必要性 设f ( x)能展开为泰勒级数,
( x0
R,
x0
R)
可展成点x0的泰勒级数.
无穷级数
上一页
下一页
返回
9
三、函数展开成泰勒级数的方法
1.直接法(泰勒级数法)
步骤:
(1) 求an
f (n)( x0 ); n!
(2)
讨论
lim
n
Rn
0
或
f
(n) ( x)
M,
则级数在收敛区间内收敛于 f ( x).
无穷级数
上一页
下一页
返回
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
f
(n1) (
x)(1
)n
x n1 , 0
1.
前页 后页 返回
二、初等函数的幂级数展开式
例2 求k次多项式函数 f ( x) c0 c1x c2 x2 L ck xk
的幂级数展开式. 解 由于
f
(
n
)
(0)
n!cn , 0,
n k, n k,
总有
lim
n
Rn
(
x
)
0,
因而
Hale Waihona Puke 前页 后页 返回cos x 1 x2 x4 L (1)n x2n L .
此看到, 对一切 x 0都有 f ( x) S( x).
上例说明, 具有任意阶导数的函数, 其泰勒级数并不
都能收敛于该函数本身, 哪怕在很小的一个邻域内.
那么怎样的函数, 其泰勒级数才能收敛于它本身呢?
前页 后页 返回
定理14.11 设 f 在点 x0 具有任意阶导数, 那么 f 在
区间( x0 r, x0 r )上等于它的泰勒级数的和函数的
y ex
(n 2) (n 0)
1
2x
ex 1 1 x 1 x2 L 1 xn L , x (, ).
1! 2!
n!
前页 后页 返回
例4 对于正弦函数 f ( x) sin x, 有
f
(n)
(
x
)
sin
x
nπ 2
.
n
1,
2,L
.
现在考察 f 的拉格朗日型余项 Rn( x).因为 n 时,
例1 由于函数
f
(
x
)
e
1 x2
,
0,
x 0, x0
在 x 0 处的任意阶导数都等于0 (见第六章§4 第
二段末尾), 即
前页 后页 返回
f (n)(0) 0 , n 1,2,L ,
因此 f 在 x 0 的泰勒级数为
0 0 x 0 x2 L 0 xn L .
2!
n!
显然它在(, )上收敛, 且其和函数 S( x) 0. 由
的拉格朗日余项为
Rn( x)
e x (n 1)!
x n1 (0
1).
显见
前页 后页 返回
|
Rn (
x)
|
e|x| (n 1)!
|
x
|n1
.
y
对任何实数 x, 都有
6
lim e|x| | x |n1 0,
4
n (n 1)!
2
因而
lim
n
Rn
(
x)
0.
由定理 14.11 得到
(n 3) 1 O 2
§2 函数的幂级数展开
由泰勒公式知道, 可以将满足一定条件的 函数表示为一个多项式与一个余项的和. 如 果能将一个满足适当条件的函数在某个区间 上表示成一个幂级数, 就为函数的研究提供 了一种新的方法.
一、泰勒级数 二、初等函数的幂级数展开式
前页 后页 返回
一、泰勒级数
在第六章§3的泰勒定理中曾指出, 若函数f在点x0
充分条件是: 对一切满足不等式 | x x0 | r的 x , 有
lim
n
Rn
(
x)
0,
这里Rn( x)是f 在点 x0 泰勒公式的余项. 本定理的证明可以直接从第六章§3泰勒定理推出.
如果 f 能在点x0的某邻域上等于其泰勒级数的和函
数, 则称函数 f 在点 x0 的这一邻域内可以展开成泰
勒级数, 并称等式
数, 则 an xn 就是 f 在 (R, R)上的泰勒展开式, n0
前页 后页 返回
即幂级数展开式是惟一的. 在实际应用上, 主要讨论函数在 x0 0 处的展开式, 这时(3)式就变成
f (0) f (0) x f (0) x2 L f (n)(0) xn L ,
1!
2!
n!
称为麦克劳林级数. 从定理14.11知道, 余项对确定函数能否展开为幂级
Rn( x)
sin
+(n
1)
π 2
x n1
| x |n1
0,
(n 1)!
(n 1)!
所以 f ( x) sin x 在(, )上可以展开为麦克劳 林级数:
前页 后页 返回
sin x x x3 x5 L (1)n1 x2n1 L .
3! 5!
(2n 1)!
前页 后页 返回
同样可证(或用逐项求导), 在(, )上有
前页 后页 返回
其中 在x与x0之间, 称(1)式为 f 在点 x0的泰勒公式.
由于余项 Rn( x) 是关于 ( x x0 )n的高阶无穷小, 因此 在点 x0 附近 f 可用(1)式右边的多项式来近似代替,
这是泰勒公式带来的重要结论.
再进一步, 设函数 f 在x x0 处存在任意阶导数, 就 可以由函数 f 得到一个幂级数
数是极为重要的, 下面我们重新写出当 x0 0 时的
前页 后页 返回
积分型余项、拉格朗日型余项和柯西型余项, 以便
于后面的讨论. 它们分别是
Rn( x)
1 n!
x 0
f (n1)(t )( x t )ndt,
Rn( x)
(n
1 1)!
f
(n1) (
) xn1,
在
0
与
x
之间,
Rn( x)
1 n!
f ( x) f (0) f (0)x f (0) x2 L f (k)(0) xk
2!
k!
c0 c1x c2 x2 L ck xk ,
即多项式函数的幂级数展开式就是它本身.
例3 求函数 f (x) = ex 的幂级数展开式.
解 由于 f (n)( x) ex , f (n)(0) 1(n 1,2,L ), 因此 f
f ( x0 )
f ( x0 )( x x0 )
f
( x0 2!
)
(
x
x0
)2
L
f
(n) ( x0 ) n!
(
x
x0 )n
L
,
(3)
前页 后页 返回
通常称 (3) 式为 f 在 x x0 处的泰勒级数. 对于级数 (3)是否能在点 x0 附近确切地表达 f , 或者说级数(3) 在点 x0 附近的和函数是否就是 f 本身, 这就是本节 所要着重讨论的问题. 请先看一个例子.
前页 后页 返回
f (x)
f ( x0 )
f ( x0 )( x x0 )
f
( x0 2!
)
(
x
x0
)2
L
f
(n) ( x0 n!
)
(
x
x0
)n
L
(4)
的右边为 f 在 x x0 处的泰勒展开式, 或幂级数展 开式.
由级数的逐项求导性质可得:
若 f 为幂级数 an xn 在收敛区间 (R, R)上的和函 n0
的某邻域内存在直至n+1阶的连续导数, 则
f (x)
f ( x0 )
f ( x0 )( x x0 )
f
( x0 2!
)
(
x
x0
)2
L
f
(n) ( x0 n!
)
(
x
x0
)n
Rn
(
x),
(1)
这里为Rn( x)拉格朗日型余项
Rn( x)
f (n1) ( )
(n 1)!
(
x
x0
)n1 ,
(2)