信号的采样与恢复,采样定理的仿真
信号的采样与恢复、采样定理的仿真设计

建筑大学课程设计说明书题目:信号的采样与恢复、采样定理的仿真课程:数字信号处理课程设计院(部):信息与电气工程学院专业:通信工程班级:学生:学号:指导教师:莉完成日期: 2017年1月目录............................................................. - 0 - 摘要............................................................. - 2 -1、设计目的与要求................................................. - 3 -2、设计原理....................................................... - 3 -3、设计容与步骤................................................... - 4 - 3.1用MATLAB产生连续信号及其对应的频谱 ........................... - 4 - 3.2对连续信号进行抽样并产生其频谱 ................................ - 5 -3.3通过低通滤波恢复原连续信号 .................................... - 8 -4、总结.......................................................... - 13 -5、致............................................................ - 14 -6、参考文献...................................................... - 15 -运用数字信号处理知识实现对信号的采样、恢复以及采样定理的仿真,可借助于MATLAB强大的运算和图形显示功能,首先生成一个连续时间信号并生成其频谱,然后对该连续信号抽样,并对采样后的频谱进行分析,最后通过设计低通滤波器滤出抽样所得频谱中多个周期中的一个周期频谱,并显示恢复后的时域连续信号。
基于MATLAB的信号的采样与恢复、采样定理的仿真

山东建筑大学课程设计指导书课程名称:数字信号处理课程设计设计题目:信号的采样与恢复、采样定理的仿真使用班级:电信082 指导教师:张君捧一、设计要求1.对连续信号进行采样,在满足采样定理和不满足采用定理两种情况下对连续信号和采样信号进行FFT频谱分析。
2.基本教学要求:每组一台电脑,电脑安装MATLAB6.5版本以上软件。
二、设计步骤1.理论依据根据设计要求分析系统功能,掌握设计中所需理论(信号的采样、信号的恢复、抽样定理、频谱分析),阐明设计原理。
2.信号的产生和频谱分析产生一个连续时间信号(正弦信号、余弦信号、Sa函数等),并进行频谱分析,绘制其频谱图。
3.信号的采样对所产生的连续时间信号进行采样,并进行频谱分析,和连续信号的频谱进行分析比较。
改变采样频率,重复以上过程。
4.信号的恢复设计低通滤波器,采样信号通过低通滤波器,恢复原连续信号,对不同采样频率下的恢复信号进行比较,分析信号的失真情况。
三、设计成果1.设计说明书(约2000~3000字),一般包括:(1)封面(2)目录(3)摘要(4)正文①设计目的和要求(简述本设计的任务和要求,可参照任务书和指导书);②设计原理(简述设计过程中涉及到的基本理论知识);③设计内容(按设计步骤详细介绍设计过程,即任务书和指导书中指定的各项任务)I程序源代码:给出完整源程序清单。
II调试分析过程描述:包括测试数据、测试输出结果,以及对程序调试过程中存在问题的思考(列出主要问题的出错现象、出错原因、解决方法及效果等)。
III结果分析:对程序结果进行分析,并与理论分析进行比较。
(5)总结包括课程设计过程中的学习体会与收获、对Matlab语言和本次课程设计的认识以及自己的建议等内容。
(6)致谢(7)参考文献2.附件(可以将设计中得出的波形图和频谱图作为附件,在说明书中涉及相应图形时,注明相应图形在附件中位置即可;也可不要附件,所有内容全部包含在设计说明书中。
所有的实验结果图形都必须有横纵坐标标注,必须有图序和图题。
信号实验:连续信号的采样和恢复

电子科技大学实验报告学生姓名:学号:指导老师:日期:2016年 12月 10日一、实验室名称: 连续信号的采样和恢复 二、实验项目名称:实验项目四:连续信号的采样和恢复 三、实验原理:实际采样和恢复系统如图3.4-1所示。
可以证明,奈奎斯特采样定理仍然成立。
⊗)x t )(t P T )图3.4-1 实际采样和恢复系统采样脉冲:其中,T s πω2=,2/)2/sin(τωτωτs s kk k T a =,T <<τ。
采样后的信号:∑∞-∞=-=−→←k s S FS k j X T j X t x )((1)()(ωωω当采样频率大于信号最高频率两倍,可以用低通滤波器)(ωj H r 由采样后的()()2()FT T ksk p t P j a k ωπδωω+∞=-∞←−→=-∑信号)(t x S 恢复原始信号)(t x 。
目的:1、使学生通过采样保持电路理解采样原理。
2、使学生理解采样信号的恢复。
任务:记录观察到的波形与频谱;从理论上分析实验中信号的采样保持与恢复的波形与频谱,并与观察结果比较。
四、实验内容实验内容(一)、采样定理验证实验内容(二)、采样产生频谱交迭的验证五、项目需用仪器设备名称:数字信号处理实验箱、信号与系统实验板的低通滤波器模块U11和U22、采样保持器模块U43、PC 机端信号与系统实验软件、+5V 电源六、实验步骤:打开PC 机端软件SSP.EXE ,在下拉菜单“实验选择”中选择“实验六”;使用串口电缆连接计算机串口和实验箱串口,打开实验箱电源。
实验内容(一)、采样定理验证 实验步骤:1、连接接口区的“输入信号1”和“输出信号”,如图3.4-2所示。
图3.4-2 观察原始信号的连线示意图2、信号选择:按“3”选择“正弦波”,再按“+”或“-”设置正弦波频率为“2.6kHz ”。
按“F4”键把采样脉冲设为10kHz 。
七、实验数据及结果分析:八、九.实验结论:1.当采样频率大于信号最高频率两倍,可以用低通滤波器将由采样后的信号恢复到原始信号。
实验五 抽样定理与信号恢复

一. 实验目的
1、掌握连续时间信号与抽样信号的关系。 2、掌握抽样信号频谱的特点。 3、验证抽样定理。
二. 实验原理
1 . 信号抽样的原理 2. 抽样信号频谱的特点
3. 抽样信号恢复原信号的条件
三. 实验仪器及材料
1、双踪示波器
1台
2、信号与系统实验箱
1台
3、函数信号发生器
a. 当抽样频率分别为3KHz、6KHz、和12KHz,截止频 率为2KHz时Fs(t)和F'(t)的波形;
b. 当抽样频率分别为3KHz、6KHz、和12KHz,截止频 率为4KHz时Fs(t)和F'(t)的波形;
五. 实验报告要求
1、画出抽样频率分别为3KHz、6KHz和12KHz 时抽样信号的波形。
1台
四. 实验内容和步骤
1. 抽样信号波形的观测 2. 验证抽样定理与信号恢复
1.抽样信号波形的观测
1. 调节信号源,使之输出f=1KHz,幅度A=3V的三角波; 2. 连接信号源输出端与抽样定理模块上点P41; 3. 拨码开关K401拨至左边; 4. 用示波器观察TP42处抽样信号的波形,调整电位器 W41改变抽样频率,使抽样频率分别为3K、6K和12K, 观察并记录这3种情况下抽样信号的波形。
2、整理信号恢复实验的结果,画出各种情况下 F(t)与F′(t)波形,比较后得出结论。
3、比较F(t)分别为正弦波和三角波,其 Fs(t)的频谱特点。
4、通过本实验你有何体会。
2. 调节信号源,使其输出f=1KHz,A=1V的三角波;连接 信号源输出端与P41,并把抽样信号Fs(t)的输出端P42 与低通滤波器输入端相连,示波器CH1接原始被抽样 信号输入点P41,CH2接恢复信号输出点TP45,对比观 察信号恢复情况:
《信号与系统实验》信号的采样与恢复(抽样定理)实验

《信号与系统实验》信号的采样与恢复(抽样定理)实验一、实验目的1、了解电信号的采样方法与过程以及信号恢复的方法。
2、验证抽样定理。
二、实验设备1、信号与系统实验箱2、双踪示波器三、原理说明1、离散时间信号可以从离散信号源获得,也可以从连续时间信号抽样而得。
抽样信号f s(t)可以看成连续f(t)和一组开关函数s (t)的乘积。
s (t)是一组周期性窄脉冲,见实验图5-1,T s(t)称为抽样周期,其倒数f s(t)= 1/T s称为抽样频率。
图5-1 矩形抽样脉冲对抽样信号进行傅立叶分析可知,抽样信号的频率包括了原连续信号以及无限个经过平移的信号频率。
平移的频率等于抽样频率f s(t)及其谐波频率2f s、3f s》》》》》》。
当抽样信号是周期性窄脉冲时,平移后的频率幅度(sinx)/x规律衰减。
抽样信号的频谱是原信号频谱周期的延拓,它占有的频带要比原信号频谱宽得多。
2、正如测得了足够的实验数据以后,我们可以在坐标纸上把一系列数据点连起来,得到一条光滑的曲线一样,抽样信号在一定条件下也可以恢复到原信号。
只要用一截止频率等于原信号频谱中最高频率f n的低通滤波器,滤除高频分量,经滤波后得到的信号包含了原信号频谱的全部内容,故在低通滤波器输出可以得到恢复后的原信号。
3、但原信号得以恢复的条件是f s 2,其中f s为抽样频率,为原信号占有的频带宽度。
而f min=2 为最低抽样频率又称“柰奎斯特抽样率”。
当f s<2 时,抽样信号的频谱会发生混迭,从发生混迭后的频谱中我们无法用低通滤波器获得原信号频谱的全部内容。
在实际使用中,仅包含有限频率的信号是及少的,因此即使f s=2 ,恢复后的信号失真还是难免的。
图5-2画出了当抽样频率f s>2 (不混叠时)f s<2 (混叠时)两种情况下冲激抽样信号的频谱。
t f(t)0F()t 0m ωm ω-(a)连续信号的频谱Ts t 0f s (t)F()t0m ωm ω-s ω-s ω()(b)高抽样频率时的抽样信号及频谱 不混叠图5-2 冲激抽样信号的频谱实验中f s >2 、f s =2 、f s <2 三种抽样频率对连续信号进行抽样,以验证抽样定理——要使信号采样后能不失真地还原,抽样频率f s 必须大于信号频率中最高频率的两倍。
实验一:抽样定理-信号的取样与恢复

实验一:抽样定理-信号的取样与恢复实验目的和要求1.加深对抽样定理-信号的取样与恢复的感观认识和理解。
2.搭建抽样定理-信号的取样与恢复仿真系统。
实验内容1.搭建抽样定理-信号的取样与恢复仿真系统。
2.分析信号流程及特性。
3.思考信号抽样恢复无失真的条件。
主要实验仪器与器材1.安装有System View软件的计算机实验指导抽样定理实际的宏观物理过程都是连续变化的,物理量的空间分布也是连续变化的。
在今天的数字时代,连续变化的物理量要用它的一些离散分布的采样值来表示,而且这些采样值的表达方式也是离散的这些离散的数字表示的物理量的含义或者说包含的信息量与原先的连续变化的物理量是否相同?是否可以由这些抽样值准确恢复一个连续的原函数?抽样是把时间上连续的模拟信号变成一系列时间上离散的抽样值的过程。
能否由此样值序列重建原信号,是抽样定理要回答的问题。
抽样定理的大意是,如果对一个频带有限的时间连续的模拟信号抽样,当抽样速率达到一定数值时,那么根据它的抽样值就能重建原信号。
也就是说,若要传输模拟信号,不一定要传输模拟信号本身,只需传输按抽样定理得到的抽样值即可。
因此,抽样定理是模拟信号数字化的理论依据。
低通抽样定理根据信号是低通型的还是带通型的,抽样定理分低通抽样定理和带通抽样定理;根据用来抽样的脉冲序列是等间隔的还是非等间隔的,又分均匀抽样定理和非均匀抽样;根据抽样的脉冲序列是冲击序列还是非冲击序列,又可分理想抽样和实际抽样。
本实验以低通型抽样为例。
一个频带限制在(0, fH)赫内的时间连续信号m(t),如果以Ts≤1/(2fH)秒的间隔对它进行等间隔(均匀)抽样,则m(t)将被所得到的抽样值完全确定。
此定理告诉我们:若m(t)的频谱在某一角频率ωH以上为零,则m(t)中的全部信息完全包含在其间隔不大于1/(2fH)秒的均匀抽样序列里。
换句话说,在信号最高频率分量的每一个周期内起码应抽样两次。
或者说,抽样速率fs(每秒内的抽样点数)应不小于2fH,若抽样速率fs<2fH,则会产生失真,这种失真叫混叠失真。
信号的采样与恢复

中北大学课程设计说明书学生姓名:学号:学院:信息与通信工程专业:电子信息工程题目:信息处理综合实践:信号的采样与恢复、采样定理的仿真指导教师:职称:2014 年 6 月 26 日中北大学课程设计任务书2013/2014 学年第二学期学院:信息与通信工程专业:电子信息工程学生姓名:学号:学生姓名:学号:学生姓名:学号:课程设计题目:信息处理综合实践:信号的采样与恢复、采样定理的仿真起迄日期:2014年6月9日~2012年6月27日课程设计地点:学院楼201实验室、510实验室、608实验室指导教师:负责人:下达任务书日期: 2014 年6月9 日课程设计任务书1.设计目的:运用数字信号处理的理论知识进行频谱分析和滤波器设计,通过理论推导得出相应结论,再利用MATLAB 或C 语言作为编程工具进行计算机仿真实现,从而加深对所学理论知识的理解,培养解决实际问题的能力。
2.设计内容和要求(包括原始数据、技术参数、条件、设计要求等):课程设计内容(1)掌握USB总线或PCI总线的基本结构,了解基于USB总线或PCI总线A/D卡的通用结构。
(2)通过A/D卡,编写信号的采集、存储和显示程序。
(3)对连续信号进行采样,在满足采样定理和不满足采样定理情况下对连续信号和采样信号进行频谱分析;(4)分析采样结果;(5)根据信号频谱特点,自定义性能指标,设计IIR数字低通滤波器设计。
滤波器的类型可以从巴特沃斯滤波器、切比雪夫滤波器、椭圆滤波器、贝塞尔滤波器中任选其中的三种。
分别给出所设计滤波器的频率响应;(6)用所设计的滤波器对采样信号进行恢复,对不同采样频率下的恢复信号进行比较分析;课程设计基本要求(1)掌握数字信号处理的基本概念、基本理论和基本方法;(2)学会用MATLAB 对信号进行分析和处理;(3)要求两位同学各负责一种方法,第三位同学分析运算效率,共同完成任务;3.设计工作任务及工作量的要求〔包括课程设计计算说明书(论文)、图纸、实物样品等〕:(1)课程设计说明书(2)关于基于USB总线或PCI总线A/D卡的报告。
抽样定理与信号恢复实验报告

抽样定理与信号恢复实验报告抽样定理与信号恢复实验报告引言:信号恢复是数字信号处理中的一个重要问题,其目标是通过采样和重构技术来恢复原始信号。
在实际应用中,由于各种原因,我们往往无法直接获得完整的信号,而只能通过采样来获取信号的部分信息。
因此,如何有效地从有限的采样数据中恢复原始信号成为一个关键问题。
本实验旨在通过抽样定理来解决信号恢复问题,并通过实验验证其有效性。
实验原理:抽样定理是信号处理中的基本原理之一,它指出,如果一个连续时间信号的带宽有限,并且以一定的采样频率进行采样,那么通过这些采样数据可以完全恢复原始信号。
具体而言,抽样定理要求采样频率至少是信号带宽的两倍,即Nyquist采样定理。
实验步骤:1. 准备信号源:我们选择了一个正弦信号作为原始信号源,其频率为f0,幅度为A。
通过函数生成器产生该信号,并连接到示波器上。
2. 采样:根据抽样定理,我们选择了采样频率为2f0,即原始信号频率的两倍。
通过示波器的采样功能,将信号进行采样,并记录采样数据。
3. 信号恢复:根据采样数据,我们使用重构算法对信号进行恢复。
在本实验中,我们选择了最常用的插值法进行信号恢复。
通过对采样数据进行插值处理,可以得到连续时间的信号。
4. 重构信号验证:将恢复的信号与原始信号进行对比,验证重构的准确性。
通过示波器将原始信号和恢复信号进行叠加显示,观察它们的相似程度。
实验结果与分析:在本实验中,我们选择了一个频率为1kHz的正弦信号作为原始信号源,采样频率选择为2kHz。
通过示波器进行采样,并得到了采样数据。
接下来,我们使用插值法对采样数据进行信号恢复,并将恢复的信号与原始信号进行对比。
通过观察示波器显示的结果,我们可以明显看到恢复的信号与原始信号非常接近,几乎无法区分它们之间的差异。
这表明,通过抽样定理和插值法,我们成功地从有限的采样数据中恢复了原始信号。
结论:本实验通过采样定理与信号恢复技术,成功地实现了从有限采样数据中恢复原始信号的目标。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录摘要 (2)正文一、设计目的与要求 (3)二、设计原理 (4)三、设计内容和步骤 (5)1.用MATLAB产生连续信号y=sin(t)和其对应的频谱 (6)2.对连续信号y=sin(t)进行抽样并产生其频谱 (7)3. 通过低通滤波恢复原连续信号 (9)四、总结 (12)五、致谢 (13)六、参考文献 (14)摘要数字信号处理是一门理论与实践紧密结合的课程。
做大量的习题和上机实验,有助于进一步理解和巩固理论知识,还有助于提高分析和解决实际问题的能力。
过去用其他算法语言,实验程序复杂,在有限的实验课时内所做的实验内容少。
MATLAB强大的运算和图形显示功能,可使数字信号处理上机实验效率大大提高。
特别是它的频谱分析和滤波器分析与设计功能很强,使数字信号处理工作变得十分简单、直观。
本实验设计的题目是:信号的采样与恢复、采样定理的仿真。
通过产生一个连续时间信号并生成其频谱,然后对该连续信号抽样,并对采样后的频谱进行分析,最后通过设计低通滤波器滤出抽样所得频谱中多个周期中的一个周期频谱,并显示恢复后的时域连续信号。
实验中,原连续信号的频谱由于无法实现真正的连续,所以通过扩大采样点的数目来代替,理论上当采样点数无穷多的时候即可实现连续,基于此尽可能增加采样点数并以此来产生连续信号的频谱。
信号采样过程中,通过采样点的不同控制采样频率实现大于或小于二倍最高连续信号的频率,从而可以很好的验证采样定理。
信号恢复,滤波器的参数需要很好的设置,以实现将抽样后的信号进行滤波恢复原连续信号。
一、设计目的与要求1.设计目的和要求1.掌握利用MATLAB在数字信号处理中的基本应用,并会对结果用所学知识进行分析。
2.对连续信号进行采样,在满足采样定理和不满足采用定理两种情况下对连续信号和采样信号进行FFT频谱分析。
3.从采样信号中恢复原信号,对不同采样频率下的恢复信号进行比较分析。
4.基本要求:每组一台电脑,电脑安装MATLAB6.5版本以上软件。
二、设计原理本实验主要涉及采样定理的相关内容以及低通滤波器恢复原连续信号的相关知识。
1.采样定理:设连续信号)(t x a 属带限信号,最高截止频率为c Ω,如果采样角频率c s Ω≥Ω2,那么让采样性信号)(t x a ∧通过一个增益为T 、截止频率为2/s Ω的理想低通滤波器,可以唯一地恢复出原连续信号)(t x a 。
否则,c s Ω<Ω2会造成采样信号中的频谱混叠现象,不可能无失真地恢复原连续信号。
对连续信号进行等间隔采样形成采样信号,对其进行傅里叶变换可以发现采样信号的频谱是原连续信号的频谱以采样频率s Ω为周期进行周期性的延拓形成的。
对模拟信号进行采样可以看做一个模拟信号通过一个电子开关S ,设电子开关每隔周期T 和上一次,每次和上的时间为τ,在电子开关的输出端得到采样信号x^a(t)。
用公式表示如下:(2.2.1)图1 对模拟信号进行采样2.信号的恢复:可用传输函数)(ωj G 的理想低通滤波器不失真地将原模拟信号)(t f 恢复出来,只是一种理想恢复。
2)2sin()(21)(t t d e j G t g s s j ΩΩ=Ω=⎰∞∞-ωωπ因为Ts π2=ΩTt T t t g ππ)sin()(=(2.2.2) 理想低通滤波器的输入输出)(t f ∧和)(t y ,)(t y =)(t f ∧*)(t g =ττd t g t f )()(-⎰∞∞- (2.2.3)三、设计内容和步骤1.用MATLAB产生连续信号y=sin(t)和其对应的频谱%................时域连续信号和频谱...................................... x1=0:pi/10:(8*pi);w=linspace(0,8*pi,length(x1));figuresubplot(211)plot(x1,sin(x1)); %原时域连续信号y=sin(t)xlabel('t');ylabel('x(t)');title('原时域连续信号y=sin(t)');gridsin1=sin(x1);n=0:(length(x1)-1);subplot(212)plot(w,fft1(w,sin1,n)); %其对应频域信号Y=FFT(sin(t)) xlabel('w');ylabel('x(w)');title('其对应频域信号Y=FT(sin(t))');grid其中要用到子函数fft1,程序代码如下:function result=fft1(w,hanshu,n)a=cell(1,length(w));for i=1:length(w) hanshu.*((exp(-j*(i-1)*pi/100)).^n); a{i}=sum(m); endfor i=1:length(w) result(i)=a{i}; end子函数通过控制参数n的取值多少可分别计算离散和近似连续信号的频谱值并作为函数值进行返回。
产生图形如下:2.对连续信号y=sin(t)进行抽样并产生其频谱%................采样后的信号和频谱....................................... n1=input('请输入采样点数n:');n=0:n1;zb=size(n);figuresinf=sin(8*pi*n/zb(2));subplot(211);stem(n,sinf,'.');xlabel('n');ylabel('x(n)');title('采样后的时域信号y=x(n)’);w=0:(pi/100):4*pi;subplot(212)plot(w,fft1(w,sinf,n));xlabel('w');ylabel('x(w)');title('采样后的频域信号y=FT(sin(n))');grid当输入n=10时,所得结果如下:当输入n=50时,所得结果如下:由抽样定理可知,抽样后的信号频谱是原信号频谱以抽样频率为周期进行周期延拓形成的,周期性在上面两个图中都有很好的体现。
但是从10点和50点采样后的结果以及与员连续信号频谱对比可以看出,10点对应的频谱出现了频谱混叠而并非原信号频谱的周期延拓。
这是因为N 取值过小导致采样角频率c s Ω<Ω2,因此经周期延拓出现了频谱混叠。
而N 取50时,其采样角频率c s Ω≥Ω2,从而可以实现原信号频谱以抽样频率为周期进行周期延拓,并不产生混叠,从而为下一步通过低通滤波器滤出其中的一个周期(即不失真的原连续信号)打下了基础。
3.通过低通滤波恢复原连续信号%................经低通滤波恢复原信号...................................... [B,A]=butter(8,350/500); %设置低通滤波器参数 [H,w]=freqz(B,A,512,2000);figure; %绘制低通频谱图plot(w*2000/(2*pi),abs(H)); xlabel('Hz');ylabel('频率响应幅度'); title('低通滤波器'); grid;低通滤波器的频谱图figurey=filter(B,A,sinf);subplot(2,1,1);plot(y); %恢复后的连续信号y=sin(t) xlabel('t');ylabel('x(t)');title('恢复后的连续信号y=sin(t)');grid;Y=fft(y,512);w=(0:255)/256*500;subplot(2,1,2);plot(w,abs([Y(1:256)])); %绘制频谱图xlabel('Hz');ylabel('频率响应幅度');title('频谱图');grid;n=10时恢复后的信号和频谱n=50时恢复后的信号和频谱经上面的两个图可以看出,采样50点的恢复波形明显比10点的好。
但是由于滤波器设计的还有待于改进,所以波形并不是显示的很圆滑,但是已经可以基本达到实验目的,将原输入连续信号恢复。
四、总结经过此次试验,感觉自己确实收获了很多,无论是对知识的理解和应用,还是实验过程中自我的遇到问题解决问题的信心、恒心以及同学间的相互鼓励、支持和帮助。
本实验用到的理论知识并不是很多,也很容易理解,理论知识是基础,学以致用才是关键。
实验中,MATLAB的使用很重要,一些关于矩阵的基础知识自己应该非常清楚,另外还要学会如何调用、查询MATLAB函数库中的函数,只有自己切实的懂,才会明白如何恰如其分的使用。
另外,要学会用自己掌握的理论知识对结果进行分析,以实现对程序代码进行不断改进,得出正确的结果。
经过此次实验,我认识到,知识只有会用才是真正意义上的学会,只有在不断的遭遇问题与解决问题间自己才能不断的进步,这进一步说明,自己并不能单纯的学习理论知识,应该加强实践,只有这样自己的专业能力才会有质的提高。
此次实验中,同学间的相互帮助也让自己受益颇多,同时也认识到,应该怎么与别人更好协作。
五、致谢此次实验首先感谢老师的热心耐心指导,老师的热情帮助总能使我们的忙乱的思路得以清晰,而且还时不时对我们的进展提供建议和纠错,并时常鼓励我们,真诚感谢老师!其次也感谢同学的热情帮助,由于自己水平所限,自己经常遇到各种各样的问题,而这些问题又不能经常麻烦老师,但在同学的帮助下也同样得以完美解决,自己才能够按时做完这次实验,也同样真诚感谢他们!六、参考文献[1] 高西全、丁玉美编著.数字信号处理.西安:西安电子科技大学出版社,2008.[2] 丁玉美、高西全编著.数字信号处理学习指导.西安:西安电子科技大学出版社,2001.[3] 郑君里等编.信号与系统.北京:高等教育出版社,2000.[4] 刘树棠译.数字信号处理——使用MATLAB.西安:西安交通大学出版社,2002.[5] 导向科技编著.MATLAB程序设计与实例应用.北京:中国铁道出版社,2001.[6] 罗军辉等编著.MATLAB7.0在数字信号处理中的应用.北京:机械工业出版社,2005.[7] 陈怀琛等编著.MATLAB及在电子信息课中的应用.北京:电子工业出版社,2002.[8] 胡广书编著.数字信号处理――理论、算法与实现.北京:清华大学出版社,2002.[9] 梁虹等编.信号与线性系统分析――基于MATLAB的方法与实现.北京:高等教育出版社,2006.[10] 刘卫国主编.MATLAB程序设计与应用(第二版). 北京:高等教育出版社,2006.。