医学遗传学重点总结 医学遗传学笔记(期末考研复试)
医学遗传学笔记

绪论(重点:遗传病定义及特征)1.遗传病:一般把遗传因素作为唯一或主要病因的疾病成为遗传病2.医学遗传学:用人类遗传学的理论和方法来研究遗传病从亲代传递至子代的特点,规律、起源和发生、病理机制、病变过程及其与临床关系的一门综合学科。
3.简要说明遗传病的特征?答:①遗传病的传播方式:一般是以垂直方式出现的,不延伸至无亲缘个体②遗传病的数量分布:亲祖代和子孙代是以一定数量比例出现的,社会上总体数量少,分布不均③遗传病的先天性:但并非所有的遗传病都是先天的④遗传病的家族性:发生具有家族聚集性,发病年龄通常一代比一代早,病情加重⑤遗传病的传染性:一般无传染性,但人类阮粒蛋白是一种遗传又具有传染性的疾病。
第一章人类基因和基因组(重点:断裂基因及其英文)1.割裂基因((split gene)是真核生物的结构基因,由编码序列和非编码序列组成,二者相间排列。
第二章基因突变重点(基因突变,DNA的修复系统有哪些)1.基因突变:发生在分子水平上DNA碱基对组成与序列的变化。
2. DNA的修复系统有哪些?(1)紫外线照射引起的DNA损伤与修复①光复活修复,在可见光的作用下,光复活酶被激活,能够特异性的识别、结合嘧啶二聚体,形成酶-DNA复合体,利用可见光的能量,嘧啶二聚体解聚,修复完成,酶也从DNA上解离,释放。
②切除修复,也称暗修复,无需光能。
发生在DNA复制之前。
③重组修复,发生在DNA复制过程之中和复制完成之后的一种不完全的修复形式。
(2)电离辐射引起的DNA损伤和修复①超快修复②快修复③慢修复第四章单基因病的遗传重点:判断遗传方式,并且加上特点;不规则显性遗传;遗传印记1.遗传方式的特点(1)常染色体显性遗传特点:①男女患病机会均等②患者双亲必有一个是患者③患者的子代有1/2的发病可能。
④连续传递(2)常染色体隐形遗传特点:①男女患病机会均等患者双亲往往表型正常,但都是致病基因的携带者。
②患者的同胞有1/4的发病风险,患者表型正常的同胞中有2/3是携带者,患者的子女一般不发病,但肯定都是携带者。
医学遗传学期末重点总结复习题包括答案.docx

《医学遗传学》期末重点复习题一、名词解释1.不规则显性:P582.分子病: P94 3.移码突变:P18 4 .近婚系数:P86 5.罗伯逊易位:P436.遗传咨询: P127 7 .交叉遗传:P63 8.非整倍体:P47 9 .常染色质和异染色质:P23 10.易患性: P100 11.亲缘系数: P86 12.遗传性酶病: P1OO13.核型:P31 14.断裂基因: P13 15.遗传异质性: P63 16.遗传率: P63 17.嵌合体: P47 18.外显率和表现度:P63 ( 以上均为学习指导的页码)二、填空题1. DNA的组成单位是脱氧核糖核苷酸。
2.具有 XY的男性个体,其Y 染色体上没有与 X 染色体上相对应的等位基因,则该男性个体称为半合子。
3.凡是位于同一对染色体上的若干对等位基因,彼此间互相连锁,构成一个连锁群。
4.基因表达包括转录和翻译两个过程。
5.人类体细胞有丝分裂中期的一条染色体由两条染色单体构成,彼此互称为姐妹染色体。
6.血红蛋白病中,由于珠蛋白结构异常引起的是异常血红蛋白病,由于珠蛋白链合成量异常引起的是地中海贫血。
7.“中心法则”表示生物体内遗传信息的传递或流动规律。
8.染色体畸变包括数目畸变和结构畸变两大类。
9.群体的遗传结构是指群体中的基因频率和基因型种类及频率。
10.在多基因遗传病中,易患性的高低受遗传基础和环境因素的双重影响。
11.苯丙酮尿症患者肝细胞的苯丙氨酸羟化酶( PAH)遗传性缺陷,该病的遗传方式为染色体隐性遗传。
12.染色体非整倍性改变可有单体型和多体型两种类型。
13.在真核生物中,一个成熟生殖细胞(配子)所含的全部染色体称为一个染色体组。
其上所含的全部基因称为一个基因组。
14.根据染色体着丝粒位置的不同,可将人类染色体分为三类。
15.分子病是指由于基因突变造成的蛋白质异常结构或合成量异常所引起的疾病。
16.染色体和染色质是同一物质在细胞周期的不同时期中所表现的两种不同存在形式。
医学遗传学章节笔记摘抄(3篇)

第1篇第一节:引言医学遗传学是一门研究遗传因素在疾病发生、发展和治疗中作用的学科。
它涉及遗传信息的传递、基因变异、遗传疾病的发生机制以及遗传咨询等方面。
以下是对医学遗传学章节的笔记摘抄。
一、遗传的基本概念1. 遗传物质:DNA是遗传信息的载体,存在于细胞核中。
2. 基因:基因是DNA上的功能单位,控制着生物体的性状。
3. 染色体:染色体是DNA和蛋白质的复合体,负责携带遗传信息。
4. 遗传方式:遗传方式包括显性遗传、隐性遗传和共显性遗传。
5. 遗传平衡定律:在自然人群中,基因频率和基因型频率保持稳定。
二、基因突变1. 基因突变:基因突变是指基因序列的改变,可能导致蛋白质结构和功能的改变。
2. 突变类型:点突变、插入突变、缺失突变等。
3. 突变原因:物理因素(如辐射)、化学因素(如致癌物质)、生物因素(如病毒)等。
4. 突变后果:突变可能导致蛋白质功能丧失、功能增强或无影响。
三、遗传疾病1. 遗传疾病:由遗传因素引起的疾病,可分为单基因遗传病、多基因遗传病和染色体病。
2. 单基因遗传病:由一对等位基因突变引起的疾病,如囊性纤维化、血红蛋白病等。
3. 多基因遗传病:由多个基因和环境因素共同作用引起的疾病,如高血压、糖尿病等。
4. 染色体病:由染色体数目或结构异常引起的疾病,如唐氏综合征、染色体缺失等。
四、遗传咨询1. 遗传咨询:为遗传病患者及其家属提供专业的遗传信息和建议。
2. 咨询内容:病因分析、遗传方式、复发风险、产前诊断、基因检测等。
3. 咨询方法:面对面咨询、电话咨询、网络咨询等。
五、基因诊断1. 基因诊断:通过检测基因突变,确定疾病的原因。
2. 诊断方法:DNA测序、基因芯片、PCR扩增等。
3. 基因诊断的应用:遗传疾病的诊断、遗传咨询、产前诊断等。
六、基因治疗1. 基因治疗:通过修复或替换异常基因,治疗遗传疾病。
2. 治疗策略:基因修复、基因替换、基因敲除等。
3. 基因治疗的应用:血友病、囊性纤维化、地中海贫血等。
医学遗传学重点知识总结

医学遗传学重点知识总结
1. 基本概念
- 遗传学:研究基因传承和基因变异的科学
- 基因:携带遗传信息的DNA序列
- 染色体:细胞核中包含基因的结构
- 基因型:个体的遗传信息
- 表型:个体的可观察特征
- 突变:基因发生的改变
- 遗传变异:基因型和表型在群体中的差异
2. 遗传物质
- DNA:携带遗传信息的分子
- RNA:参与基因表达的分子
- 蛋白质:由基因表达产生的功能分子
3. 遗传模式
- 常染色体显性遗传:由位于常染色体上的显性基因引起的遗传疾病
- 常染色体隐性遗传:由位于常染色体上的隐性基因引起的遗传疾病
- X连锁遗传:由位于X染色体上的基因引起的遗传疾病,男性更容易患病
- Y连锁遗传:由位于Y染色体上的基因引起的遗传疾病,男性特有
4. 遗传疾病
- 单基因遗传疾病:由单个基因突变引起的疾病,如先天性心脏病、血友病等
- 多基因遗传疾病:由多个基因突变和环境因素共同作用引起的疾病,如糖尿病、高血压等
- 染色体异常疾病:由染色体结构或数量异常引起的疾病,如唐氏综合征、爱德华氏综合征等
5. 基因组学
- 基因组:一个个体的全部基因
- 基因组测序:对个体基因组的全部DNA序列进行测定和分析- 基因组变异:个体基因组中的DNA序列差异
6. 人类遗传学
- 人类基因组计划:对人类基因组进行测序和研究的国际合作项目
- 单核苷酸多态性:个体基因组中单个碱基的变异,如SNP
- 遗传咨询:通过遗传学知识为个体提供遗传疾病的评估和咨询
以上是医学遗传学的一些重点知识总结,仅供参考。
如有任何疑问,建议咨询专业遗传学医生或相关专家。
医学遗传学笔记(重点标注)

第三章基因突变遗传物质的改变称为突变。
基因突变是指基因内部核苷酸的改变,包括碱基对的置换、插入或缺失。
3.1 基因突变产生的原因根据基因突变发生的原因,可将突变分为自发突变和诱发突变。
自发突变:在自然条件下,未经人工处理而发生的突变。
诱发突变:经人工处理而发生的突变。
基因突变的一般特性:生殖细胞突变:有利或者中性突变:同种生物遗传性状多样性的根源、不同物种演化提供丰富的原材料、促进生物物种系统发育与不同种群产生、形成的原动力有害突变:导致遗传病、构成和增加遗传负荷体细胞突变(somatic mutation)诱变因素:一、物理因素:1.紫外线:紫外线的照射可使DNA顺序中相邻的嘧啶类碱基结合成嘧啶二聚体,最常见的为胸腺嘧啶二聚体(TT)。
2.电离辐射:X-射线、γ射线、中子射线、Co60等,击中DNA链,能量被DNA吸收,导致DNA链和染色体的断裂,片段发生重排。
二、化学因素:1、羟胺(HA):羟胺可使胞嘧啶C的化学成分发生改变,而不能正常地与G配对,改为与A互补,经两次复制后,C-G就变成了T-A。
2、亚硝酸或含亚硝基化合物:这类物质可以使碱基脱去氨基(—NH2),而产生结构改变,如A被脱去氨基后就变成了次黄嘌呤(H)不再与A配对变为与C配。
3、碱基类似物:如5—溴尿嘧啶(5—BU)、2—氨基嘌呤(2—AP)等,可取代碱基而插入,引起DNA分子突变。
5—BU的化学结构与T很相似,它既可与A配对,也可与G配对。
4、烷化剂:甲醛、氯乙烯、氮芥等是具有高度诱变活性的烷化剂,可将烷基(CH3-、C2H5-等)引入多核苷酸链上的任何位置,被烷基化的核苷酸将产生错误配对而引起突变,如烷化G可与T配对,形成G—C→A—T的转换。
5、芳香族化合物:吖啶类和焦宁类等扁平分子构型的芳香族化合物可以嵌入DNA的核苷酸序列中,导致碱基插入或丢失的移码突变。
三、生物因素:病毒:风疹、麻疹、流感、疱疹等真菌和细菌:毒素或代谢产物黄曲霉素3.2基因突变的类型⏹一般分为两大类-静态突变和动态突变。
【期末复习】遗传学要点知识总结(期末考试)

遗传学一、名词解释1.同源染色体:在生物的体细胞内,具有同一种形态特征的染色体通常成对存在。
这种形态和结构相同的一对染色体称为同源染色体。
2.非同源染色体:一对同源染色体与另一对形态和结构不同的染色体之间,互称为非同源染色体3.受精:也称为配子融合,是指生殖细胞(配子)结合的过程。
4.直感:是花粉(父本)对种子或果实的性状产生影响的现象5.花粉直感:也称为胚乳直感,是指胚乳性状受精核影响直接表现父本的某些性状的现象。
(直接原因就是双受精,如玉米)6.果实直感:也称为种皮直感,是指种皮或果皮组织在发育过程中受花粉影响而表现父本的某些性状的现象。
(如棉籽的纤维)7.无融合生殖:雌雄胚子不发生核融合,但又能形成种子的一种特殊生殖方式。
8.等位基因:控制一对相对性状位于同源染色体上对应位点的两个基因9.共显性(并显性):如果双亲的性状同时在F1个体上表现出来,即一对等位基因的两个成员在杂合体中都表达的遗传现象10.复等位基因:同源染色体相同位点上存在的3个或3个以上的等位基因11.基因互作:不同对基因间相互作用共同决定同一单位性状表现的结果12.互补作用:两对独立遗传基因分别处于纯和显性或杂合状态时,共同决定一种性状的发育。
当只有一对基因是显性,或两对基因都是隐形时,则表现为另一种性状。
这种基因互作的类型称为互补作用13.积加作用:两种显性基因同时存在时产生一种性状,单独存在时能分别表现相似的性状,两种显性基因均不存在时又表现第三种性状,这种基因互作称为积加作用14.重叠作用:不同对基因互作时,不同的显性基因对表现型产生相同的影响,F2产生15:1的比例,这种基因互作称为重叠作用15.上位性:两对独立遗传基因共同对一单位性状发生作用,而且其中一对基因对另一对基因的表现有遮盖作用16.相引相(相引相):甲乙二个显性性状连系在一起遗传,甲乙两个隐性性状连系在一起遗传的杂交组合17.相斥相(相斥相):甲显性和乙隐性性状连系在一起遗传,乙显和甲隐连系在一起遗传的杂交组合18.连锁遗传:是指同一同源染色体上的非等位基因连在一起而遗传的现象19.完全连锁:位于同一同源染色体上的非等位基因之间不发生非姊妹染色单体之间的交换,则这两个非等位基因总是连接在一起而遗传的现象20.不完全连锁:指同一同源染色体上的非等位基因之间或多或少地发生姊妹染色单体之间的交换,测交后代中大部分为亲本类型,少部分为重组类型的现象21.交换:是指同源染色体的非姊妹染色单体之间的对应片段的交换,从而引起相应基因间的交换与重组22.交换值:同源染色体的非姊妹染色单体间有关基因的染色体片段发生交换的频率。
遗传医学笔记总结范文

一、引言遗传医学作为一门综合性学科,主要研究人类遗传性疾病的发生机制、传递方式、诊断、治疗、预后、再发风险和预防方法等。
本文将对遗传医学笔记进行总结,以期为读者提供参考。
二、遗传病的特点1. 遗传病是垂直传播的,不同于传染病的水平传播。
2. 遗传病的患者在亲祖代与子孙中是以一定数量比例出现的,患者与正常者有一定的数量关系。
3. 遗传病是先天性的,但不是所有的先天性疾病都是遗传病,如孕妇妊娠时风疹感染在成患儿的先天性心脏病。
4. 遗传病往往呈现出家族聚集性,但不是所有的有家族聚集性的疾病都是遗传病。
5. 遗传病的传染性。
由于朊病毒的发现,现代遗传病的概念得到了进一步的拓展。
三、遗传病的分类1. 单基因病:包括常染色体显性AD、常染色体隐性AR、性染色体显性XD、性染色体隐性XR。
2. 多基因病。
3. 染色体病。
4. 体细胞遗传病。
5. 线粒体疾病。
四、基因突变1. 基因突变是指遗传物质发生的可遗传性的变异。
2. 基因突变包括发生在细胞水平的染色体畸变和发生在分子水平的基因突变。
五、性染色质与Lyon假说1. 性染色质是性染色体在间期细胞核中显示出来的特殊结构,包括X染色质和Y染色质。
2. Lyon假说(X染色质失活假说):X染色体的失活是随机的,雌性哺乳动物体内仅有一条X染色体具有转录活性,另一条X染色体在遗传上是失活的。
六、染色体异常与母亲年龄1. 染色体异常有家族倾向。
2. 女性年龄越大,所生孩子先天性疾病的可能性就越大(大于35岁)。
七、总结遗传医学是一门研究遗传性疾病及其相关问题的学科。
了解遗传病的特点、分类、基因突变、性染色质与Lyon假说、染色体异常与母亲年龄等方面的知识,有助于我们更好地预防和治疗遗传病,提高人类健康水平。
医学遗传学考试复习重点知识总结

·了解医学遗传学的发展简史·掌握遗传病的概念、特征以及分类1.遗传学:研究遗传和变异的科学。
是揭示生命本质和遗传规律的科学遗传:是指生物亲代繁殖与其相似的后代的现象。
变异:是指同种个体之间的差异。
(遗传和变异的表现与环境不可分割)遗传学的研究范围包括遗传物质的本质、遗传物质的传递和遗传信息的实现三个方面。
2.医学遗传学:应用遗传学的理论和方法研究人类遗传性疾病和人类疾病发生的遗传学问题的一门综合性学科。
主要任务:研究遗传病的发生机制、传递方式、诊断、治疗、预后。
(尤其是预防方法)3.遗传病:遗传物质发生改变(基因突变或染色体畸变)所引起的疾病。
(1)遗传病特征:①垂直传递②基因突变或染色体畸变是其发病原因③生殖细胞或受精卵发生的遗传物质改变才能遗传,体细胞中遗传物的改变不能向后代传递④常有家族性聚集现象⑤常有先天性相关概念区分:遗传病:遗传物质改变所引起的疾病先天性疾病:婴儿出生时即显示症状的疾病家族性疾病:是指某些表现出家族性聚集现象的疾病(大多数遗传病,特别是显性遗传病,常看到连续传递的家族性聚集。
但也有不少遗传病,特别是隐性遗传病,常常散发,无家族发病史。
一些传染病(如肝炎、结核病)和某些维生素缺乏症(如夜盲)可有家族性聚集现象,但这类疾病并不是遗传病。
)(2)遗传病的类型:①单基因病:染色体上某一等位基因发生突变所导致的疾病a.常染色体显性遗传病:软骨发育不全等b.常染色体隐形遗传病:白化症、苯丙酮尿症等c.X连锁显性遗传病:抗维生素D佝偻病d.X连锁隐形遗传病:红绿色盲e.Y连锁遗传病:人类外耳道多毛症、SRY(Y染色体上的性别决定基因)f.线粒体遗传病:mtDNA,线粒体心肌病②多基因病:两对以上等位基因和环境因素共同作用所致的疾病原发性高血压、冠心病等③染色体病:染色体数目或结构的改变所致的疾病Down综合征等④体细胞遗传病:体细胞中遗传物质改变所致的疾病一般不向后代遗传,各种肿瘤的发病中都涉及特定组织中的染色质和癌基因或抑癌基因的变化,是体细胞遗传病;一些先天畸形和免疫缺陷属于体细胞遗传病。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
医学遗传学笔记——2012级临床五年五班整理绪论1、遗传病的特点:第一、遗传病是垂直传播的,不同于传染病的水平传播。
第二、遗传病的患者在亲祖代与子孙中是以一定数量比例出现的,患者与正常者有一定的数量关系。
第三、遗传病是先天性的但不是所有的先天性疾病都是遗传病(如孕妇妊娠时风疹感染在成患儿的先天性心脏病)同时也不是所有的遗传病都在出生时都表现出来(如亨廷顿氏病)第四、遗传病往往呈现出家族聚集性。
但不是所有的有家族聚集性的疾病都是遗传病(如某些与饮食习惯有关的疾病)。
第五、遗传病的传染性。
由于朊病毒的发现,现代遗传病的概念得到了进一步的拓展。
PrP基因的突变会影响蛋白质的构象称为蛋白折叠病。
错误折叠的蛋白可以诱导正常蛋白的变化所以也具有传染性。
故从这个角度来讲遗传病也有传染性。
2、遗传病的分类可以分为:1.单基因病⏹常染色体显性AD⏹常染色体隐性AR⏹性染色体显性XD⏹性染色体隐性XR2.多基因病3.染色体病4.体细胞遗传病(这类疾病包括恶性肿瘤、自身免疫缺陷、衰老等。
传统意义上的遗传病不包括这种)5.线粒体疾病第二章基因突变1、一切生物细胞内的基因都能保持其相对稳定性,但在一定内外因素的影响下,遗传物质就可能发生变化,这种遗传物质的变化及其所引起的表型改变称为突变(mutation)。
2、基因突变的特征:多向性(同一基因座上的基因可独立发生多次不同的突变而形成复等位基因)、重复性、随机性、稀有性(在自然状态下发生突变的频率很低)、可逆性(可以发生回复突变)、有害性、突变(多数是有害的)3、基因突变可以分为:自发突变、诱发突变。
增加突变率的物质称为诱变剂。
4、诱变因素:1.物理因素a)紫外线(嘧啶二聚体,光复活修复(photoreactivation repair),哺乳动物没有)b)电离和电磁辐射(DNA链的断裂与染色体链的断裂;染色体重排、染色体结构改变)所引起的修复为:●超快修复:修复速度极快,在适宜条件下,大约2分钟内即可完成修复。
●快修复:一般在X线照射后数分钟内,即可使超快修复所剩下的断裂单链的90%被修复。
●慢修复:是由重组修复系统对快修复所不能修复的单链断裂加以修复的过程。
一般修复时间较长。
c)高温严寒(据王亚馥的《遗传学》所讲是对染色体倍性的影响)(可信性值得怀疑)2.化学因素a)羟胺(hydroxylamine,HA)碱基颠换b)亚硝酸或含亚硝基化合物脱氨基从而导致碱基错配c)碱基类似物代替碱基插入导致错配(5-溴尿嘧啶,EB)d)芳香族化合物插入导致碱基移码突变(丫啶类,焦宁类)e)烷化剂高度诱变活性(引起错配)f)烧烤兴奋剂也会有影响3.生物因素a)病毒如风疹、麻疹、流感、疱疹等(分为DNA病毒和RNA病毒,前者的致病机理尚不知晓后者多半由于逆转录的cDNA分子的插入)b)真菌和细菌所产生的毒素(如黄曲霉素)5、基因突变的形式与分子机制:1.静态突变(static mutation)是在一定条件下生物各世代中以相对稳定的频率发生的基因突变。
可分为点突变和片段突变。
a)点突变(point mutation)DNA链中一个或一对碱基发生的改变i.碱基替换(base substitution)1.转换(transition)嘌呤变嘌呤,嘧啶变嘧啶2.颠换(transvertion):嘌呤变嘧啶,嘧啶变嘌呤或1.同义突变(same sense mutation)2.无义突变(non-sense mutation)3.错义突变(missense mutation)镰刀性贫血(B链第六位aa,Glu变成了Val,GAG到GTG的一个颠换)4.终止密码突变(terminator codon mutation)发生了通读ii.移码突变(frame-shift mutation)移码突变根据影响不同可以分为插入三个碱基序列(在第一个和第三个插入的序列之间是不正常的,之前和之后的序列是正常的)和插入1或2个碱基序列。
b)片断突变DNA短小片断的重复、缺失、重排等另外,突变还分为发生在编码区和发生在非编码区的突变(即影响非密码子区域的突变。
影响非密码子区域的突变包括:调控序列突变(影响转录效率)和内含子与外显子剪辑位点突变(影响mRNA的加工,如GT-AG区域的改变)。
2、动态突变(dynamic mutation):串联重复的三核苷酸序列随着世代传递而拷贝数逐代累加的突变方式。
三核苷酸重复扩增病TREDs。
TREDs分为TRED1型(扩增发生在编码区)和TRED2型(扩增发生在非编码区)如:●FRAX脆性X综合症X连锁Xq27.3内(CGG)n重复数:60-200,正常:6-60症状:智能低下,皮肤松弛,关节过度伸展,长脸。
●Huntington舞蹈病AD●SBMA脊髓肌萎缩X连锁雄激素受体蛋白,运动神经元受损DNA的修复:(这里所讲的和生化书上的有一定的出入,请大家注意)1.光复活修复:应用于嘧啶二聚体;光复活酶参与;哺乳动物没有。
2.切除修复(excision repair)貌似是NER的意思。
但这里所讲的还是切除嘧啶二聚体。
而且步骤和酶都不大一样。
(不是重点)3.重组修复(recombination repair)解决一个DNA链发生了结构改变(如嘧啶二聚体)而不能修复的问题。
跳过错误位点,子链完全正常。
(也不是重点)4.电离辐射引起的DNA损伤的修复(见上文)修复异常导致的遗传病:●着色性干皮病(XP)光修复及切除修复系统异常解旋酶、核酸内切酶等修复蛋白的基因突变(其实没有光修复的。
)(XP家族蛋白的异常)症状:对光敏感,皮肤、眼、舌易受损;皮肤上皮鳞状细胞或基底细胞皮肤癌;伴性发育不良、生长迟缓、神经系统异常而学习能力差●Bloom syndrome光敏感性reqQ解旋酶家族基因突变症状:身材矮小、免疫功能低下、日光敏感性面部红斑和轻度颜面畸形第三章基因突变的细胞分子生物学效应1、突变导致蛋白质功能异常:a)影响功能蛋白质的正常合成i.原发性损伤。
如:β-珠蛋白生成障碍性贫血机制:点突变导致转录受阻β-珠蛋白生成减少ii.继发性损伤。
如:急性间隙性卟啉症(acute intermittent porphyria,AIP)机制:缺乏PBG脱氨酶使细胞内ALA、胆色素原不能转化为血红素,血红素含量下降;而血红素的下降则调节着ALA合成酶表达的增加,ALA和胆色素原更严重的积聚,导致疾病。
(临床表现:青春期以后出现神经系统症状)b)蛋白质正常结构的改变i.原发性损伤。
如:Huntington舞蹈病PrP蛋白的堆积。
ii.继发性损伤。
如:Ehlers-Danlos综合征赖氨酸羟化酶缺陷所致,胶原分子上的赖氨酸不能被羟化,使胶原分子间的连结发生障碍,而不能适应于组织细胞内胶原网络结构的形成,最终而导致结缔组织的结构改变和功能紊乱。
c)蛋白的正常亚细胞定位i.原发性损伤。
如:甲基丙二酸尿症甲基丙二酰辅酶A羧基变位酶基因突变,使其不能进入线粒体。
线粒体内的甲基丙酰CoA因此不能转变为琥珀酰CoA,在线粒体内堆积而发病。
ii.继发性损伤。
如:I-细胞病(I-细胞即为包涵体细胞)患者具有多种临床效应,包括骨骼异常、严重的生长迟缓和智力低下等。
M-6-P的形成出问题造成酸性水解酶的堆积。
d)影响辅基或辅助因子与蛋白质结合、解离的突变i.原发性损伤。
如:同型胱氨酸尿症。
本病的分子缺陷是由于基因缺陷而致胱硫醚合成酶与辅助因子磷酸吡哆醛的结合障碍而失去活性。
大剂量的吡哆醛(维生素B6)具有一定的治疗作用ii.继发性损伤。
e)影响蛋白质与其功能性亚基及其他因子之间结构组成关系i.原发性损伤。
如:成骨不全症症状:蛋白亚单位亲和力减低,如Ⅰ型胶原组装异常致使骨发育不良。
ii.继发性损伤。
如:Zellweger综合征(脑-肝-肾综合症)2、突变导致蛋白产生的异常功能效应a)功能的丢失b)功能的加强。
如:Von willebrand病(联系组胚中内皮细胞的W-P小体)vWF与血小板结合的功能加强,不易从血小板上分离,患者损伤时,带有vWF的血小板的凝血作用减弱。
c)新功能的出现3、突变导致组织细胞蛋白表达类型的改变a)奢侈蛋白的突变。
一般具有局限性,但有的可以影响全身。
(如:苯丙酮尿症PKU)b)组织特异性蛋白(tissue-specific protein)突变。
一般情况下,组织特异性蛋白的突变所引起的病理生理改变常局限于原发的特定的组织内部。
c)持家蛋白的突变。
持家蛋白突变所引起的临床效应通常局限在一个或几个持家蛋白起特殊作用的组织中。
(前面还有一句话是:一旦发生普遍性的突变后果不堪设想往往是致死性的。
所以。
)如:精氨琥珀酸裂解酶的异常(主要表现在鸟氨酸循环上而不是核酸合成上)4、突变蛋白分子细胞病理学效应与相应临床表型之间的关系a)同一基因的不同突变产生不同的临床表型。
同一单基因(基因座)的不同突变产生极其不同的临床表型意味着遗传异质性(等位基因异质性)与临床异质性之间存在着因果联系。
b)突变引发未能预测的临床效应。
如:次黄嘌呤鸟嘌呤磷酸核糖基转移酶(HGPRT)遗传性缺陷导致自残综合症5、分子生物学机制1)先天性代谢病(遗传性酶病)a)基因突变引起酶分子的异常i.结构基因突变引起的酶结构异常①酶完全失去活性;②酶具一定程度的活性,但稳定性降低,容易被迅速裂解而失去活性;③酶与底物的亲和力降低,无法有效结合;④酶蛋白与辅助因子的亲和力下降,影响正常活性。
ii.调节基因突变引起酶蛋白合成异常b)酶分子异常引起的代谢缺陷i.酶缺陷造成代谢底物缺乏如:色氨酸加氧酶缺乏症ii.酶缺陷导致代谢底(产)物的堆积1.堆积产物对机体的直接危害如:半乳糖血症2.堆积底(产)物激发代谢旁路开放。
如:PKUiii.酶缺陷导致代谢终产物的缺乏如:白化病iv.酶缺陷导致反馈调节失常如:21-羟化酶的缺陷导致先天性肾上腺皮质增生症(男婴出生时即为假性性早熟,女婴生殖器异常后来逐渐男性化)2)分子病非酶蛋白分子结构和数量的异常所引起的疾病,统称为分子病(molecular disease)。
如:运输蛋白、免疫蛋白、膜载体蛋白、受体蛋白发生异常。
第四章单基因疾病的遗传Monogenic Inheritance1、定义:疾病的发生主要受一对等位基因控制,它们的传递方式遵循孟德尔遗传律。
①常染色体遗传常染色体显性遗传常染色体隐性遗传②X伴性遗传X连锁显性遗传X连锁隐性遗传③Y连锁遗传2、系谱(pedigree)从先证者入手,追溯调查其所有家族成员(直系亲属和旁系亲属)的数目、亲属关系及某种遗传病(或性状)的分布等资料,并按一定格式将这些资料绘制而成的图解。
先证者(proband)是某个家族中第一个被医生或遗传研究者发现的患某种遗传病的患者或具有某种性状的成员。