直线与圆锥曲线专题复习设计

直线与圆锥曲线专题复习设计
直线与圆锥曲线专题复习设计

直线与圆锥曲线专题复习设计

一、2010年考纲要求

(一)掌握过两点的直线的斜率公式,掌握直线方程的点斜式,两点式,一般式,能熟练求出直线方程。掌握两条直线平等与垂直的条件,两条直线所成的角和点到直线的距离公式,能够判断两条直线的位置关系。理解直线的倾斜角和斜率的概念,了解二元一次不等式表示平面区域,了解线性规划的意义,并会简单的应用,了解解析几何的基本思想,了解坐标法。

(二)掌握圆的标准方程和一般方程,了解参数方程的概念,理解圆的参数方程。掌握椭圆,双曲线,抛物线的定义,标准方程,及其简单几何性质,了解椭圆的参数方程,了解圆锥曲线的简单应用。

二、考题特征剖析

直线与圆锥曲线是高考解析几何的重要内容,是用坐标方法研究曲线特征的重要体现,因此这一部分内容成为历年考试的热点。解析法与向量知识的结合常常作为高考的压轴题出现,是考查能力的重要题型。

纵观近三年的高考题,试题的数目在逐渐增加,虽然题型在不断变化,但直线与圆锥曲线这一部分一直都在发挥着其主角作用,演义着高考的神话。通过认真分析可以发现,本专题在高考中占25分左右,涉及的题目有选择题,填空题及简答题。因此,能否顺利解答这一部分题目对考试成绩有着很大的影响。

选择题一般有两种不同的解题思路:一是直接计算,二是采用数形结合。尤其是直线与圆的考查,灵活利用圆的性质通常可以化解难度。一般属于中档题,成为高考的焦点问题。

对圆锥曲线定义的考查通常会把两个定义联系在以起,以准线方程,离心率等为载体考查对性质的灵活应用。体现了数形结合,等价转换等基本思想的应用。直线与圆锥曲线的位置关系一般以简答题的形式出现,有一定的难度,除了考查基本概念,圆锥曲线的性质外,还考查实际问题中的计算技巧,渗透的数学思想有:分类讨论,数形结合,等价转换,函数与方程等。

对本专题的复习要重视知识之间的联系,熟练掌握教材重视知识外,还加强对综合能力的训练,重视交汇知识的把握,做到通法与技巧相结合,合理运算,提高准确率。

三、专题讲解

【一】定义与性质

例1.(1)若抛物线22y x =上的两点A,B 到焦点的距离和是5,则线段AB 的中点到y 轴的距离是

(2)设12,F F 是椭圆22

221(0)x y a b a b

+=>>的两个焦点,若椭圆上存在点P ,

使12120F PF ∠=,则椭圆离心率的取值范围是

【解析】:(1)设A ,B ,P 在抛物线的准线l 上的射影分别是111,,A B P ,则

由抛物线的定义知115AA BB AF BF +=+=,111

15

()22PP AA BB ∴=+=,∴P 到y 轴的距离51

222

d =-=。

(2)(法一)设12,,PF m PF n ==,由余弦定理得

2

2

2

(2)2cos120c m n mn =+-2

22

2()()()32

m n m n mn m n a +=+-≥+-=,即

23(

), 1.42

c e a ≥≤< (法二)设椭圆的长半轴,短半轴,半焦距分别为:a,b,c.如图,在1Rt BFO ?中,

160,F BO ∠≥即130BFO ∠≤,

这时11

1cos 2

FO c BFO F B a ∠==≥又椭圆离心率小于1

,故所求离心率的范围是,12??

?????, 【答案】(1)2 (2

),1??

?????

【点评】:(1)说明在处理抛物线中有关“焦半径”长的问题时,借助抛物线的定义及平面几何的有关知识可简化问题的求解。

(2)求椭圆离心率的取值范围时,可利用122PF PF a +=这个定植,挖掘题目中隐含的不等关系,如2

(

)2

m n mn +≤;也可利用数形结合判定P 点位于短轴顶点B 时12F PF ∠最大,于是12120F BF ∠≥。

例2.(2009全国)已知椭圆C: 2

212

x y +=的右焦点F ,右准线为l ,点A l ∈,线

段AF 交C 于点B ,若3,FA FB =,则AF =( )

B.2

D.3

解析:设准线l 与x 轴交于点C ,由B 点向准线l 引垂线,垂足为D ,依据椭圆的

第二定义有:2BF c BD a === ,又//BD AB BD FC FC AF ∴=

, 223BD AF BF a AF c c

-∴==-

, 222;333b BD BF BD c ∴=?===

32AF BF ∴==. 故选A ,

点评:本题考查了椭圆的定义,数形结合思想的具体应用。有效地考查了考生对圆锥曲线的

相关知识的掌握程度以及如何恰当地应用相关方法解决问题。

【二】轨迹与方程

例3(2009江西)已知点100(,)P x y 为双曲线 22

2

218x y b b

-=(b 为正常数)上任一点,2F 为双曲线的右焦点,过1P 作右准线的垂线,垂足为A ,连接2F A 并延长交y 轴于2P .

(1)求线段12PP 的中点P 的轨迹E 的方程 (2)设轨迹E 与x 轴交于B,D 两点,在E 上任取一点11(,)Q x y 1(0)y ≠,直线QB,QD 分别

交y 轴于M,N 两点,求证:以MN 为直径的圆过两定点。

解析:(1)由已知得28

(3,0),(,0)3F b A b ,则直线2F A 的方程为:

3(3)y y x b b

=-

-,令x = 0得09y y =,即20(0,9)P y 。设P (x ,y ),则0000

2952

x x y y y y ?=???+?==??,即002.5x x y y =???=??代入22002218x y b b -=,得2222

41825x y b b -=即P 的轨迹E 的方程为22

22

1225x y b b

-=。 (2)在2222

1225x y b b -=中,令y = 0,得22

2,x b =,则不妨

设(,0),,0)B D ,于是直线QB

的方程为:)y x =

直线QD 的方程为

: )y x =

可得(0,

),(0,)M N ,则以MN

为直径的圆的方程为:

2

()()0x y y +-+=。令y = 0 得222

122

12,2b y x x b =-而11(,)Q x y 在2222

1225x y b b -=上,则22

21122,25

x b y -=于是5x b =±,即以MN 为直径的圆过两定点(5,0),(5,0)b b -。

【点评】轨迹方程是反映曲线特征的重要标志,也是高考的重点。在高考题型中常与圆锥曲

线向量的运算结合在一起进行考查。常见的方法:定义法,相关点法,点差法,交轨法与待定系数法,灵活利用常见曲线的性质求解轨迹方程。

【三】定值与范围

例4(2009辽宁)已知,椭圆C 经过点3

(1,)2

A ,两个焦点为(1,0),(1,0)-. (1) 求椭圆C 的方程。

(2) E , F 是椭圆C 上的两个动点,如果直线AE 的斜率与AF 的斜率互为相反

数,证明直线EF 的斜率为定值,并求出这个定值。

解:(1)由题意,c = 1,可设椭圆方程为22

2

211x y b b +=+,因为A 在椭圆上,所以2219114b b +=+,解得22

33,4

b b ==-(舍去)

。所以椭圆方程为22143x y +=。 设直线AE

方程为:3

(1)2

y k x =-+,代入22143x y +=,得2223

(34)4(32)4()1202

k x k k x k ++-+--=,设(,),(,)E E F F E x y F x y 。因为点

3

(1,

)2

A 在椭圆上,

所以223

4(

)1232,342

E E E k x y k x k k --==+-+,又直线A

F 的斜率与AF 的斜率互为相反数,在上式中以 - k 代 k ,可得

223

4()1232,342

F F F k x y k x k k +-=

=-+++,所以直线EF 的斜率

F E EF F E y y k x x -=

-()212E F F E k x x k x x -++==-,即直线EF 的斜率为定值,其值为1

2

【点评】求解圆锥曲线方程的关键是能够通过题中的已知条件确定构成方程的各个元素。直线与圆锥曲线问题一般要注重三个要点:一是要善于应用直线方程与圆锥曲线方程的联立;二是要注意注意直线与曲线的关系对相关参数的限制;三是要能够根据题意依据顺势思维进行求解。在具体的问题中要注意有关方程思想和函数思想的应用。

例5 (2009陕西)已知双曲线C 的方程为22

221(0,0)y x a b a b -=>>

,离心率

e =

。 (1) 求双曲线C 的方程;

(2) 如图,P 是双曲线C 上一点,A ,B 两点 在双曲线C 的两条渐近线上,且分别

位于第一,二象限,若1,,2

3

AP PB λλ??

=∈????

,求AOB ?面积的取值范围。 【解析】:(法一)(1)由题意知,双曲线C 的顶点( 0,a )到渐近线0ax by -=

的距离为

5

。即

5

ab

c

=

,由

222

5

,

ab

c

c

a

c a b

?

=

?

?

??

=

?

?

?=+

?

??

2

1

a

b

c

?=

?

=

?

?

=

?

,所以双曲线C的方程

2

21

4

y

x

-=。

(2)由(1)知双曲线C的两条渐近线方程为2

y x

=±。设(,2),(,2),0,0.

A m m

B n n m n

->>由,

AP PB

λ

=得P点的坐标为

2()

(,),

11

m n m n

λλ

λλ

-+

++

将P点坐标代入

2

21

4

y

x

-=,化简得

2

(1)

4

mn

λ

λ

+

=

设2,

AOBθ

∠=

14

tan()2,tan,sin2

225

π

θθθ

-=∴

==,

111

,,sin22()

22

AOB

OA OB S OA OB mn

θλ

λ

?

==∴=??==+

111

()()1,,2,

23

sλλλ

λ

??

=++∈??

??

2

11

()(1),

2

λ

'=-

由()0

'=得1

λ=。又

189

(1)2,(),(2)

334

s s s

===,

所以当1

λ=时,AOB

?的面积取得最小值2,

1

3

λ=时AOB

?的面积取得最大值,

所以AOB

?面积的取值范围是

8

2,

3

??

??

??

(法二)(1)同一

(2)设直线AB的方程为y kx m

=+,由题意知2,0

k m

<>,

2

y kx m

y x

=+

?

?

=

?

,得A点的坐标为

2

(,)

22

m m

k k

--

2

y kx m

y x

=+

?

?

=-

?

,得B点的坐标为

2

(,)

22

m m

k k

-

++

由,AP PB λ=得P 点的坐标为121[(),()]122122m m k k k k λλ

λλ-++-++-+,

将P 点坐标代入22

14y x -= , 得2224(1)4m k λλ

+=-,

设Q 为直线AB 与y 轴的交点, 则Q 点的坐标为(0 ,m ),

AOB AOQ BOQ S S S ???=+11

22A B OQ x OQ x =

?+?11()()2222A B m m

m x x m k k

=-=+-+221411

()1242m k λλ

=?=++- 以下同一

【点评】 本小题主要考查双曲线的定义、标准方程、直线和双曲线位置关系等平面解析几

何的基础知识,考查待定系数法、不等式的解法以及综合运用数学知识进行推理运算的能力.涉及到三角形的面积问题。在直线与圆锥曲线的位置关系处命题一直是个热点,基本方法是联立方程,利用判别式、韦达定理求解,运算量一般较大。这类综合题中常涉及的问题有弦长问题,面积问题,对称问题,轨迹问题,定点、定值问题,是历年来高考中的热点问题,复习时要注重通性通法的训练

【四】直线与二次曲线 例6

(2009天津)已知椭圆22

221(0)x y a b a b +=>>的两个焦点分别为

1(,0)F c -和2(,0)(0)F c c >,过点2

(,0)a E c

的直线与椭圆相交于A,B 两

点,且 1212//,

2,F A F B F A F B =

(1) 求椭圆的离心率; (2) 求直线AB 的斜率

(3) 设点C 与点A 关于坐标原点对称,直线2F B 上有一点(,)(0)H m n m ≠在

1AF C ?的外接圆上,求

n

m

的值。 【解析】(1)由12//,

F A F B 且122,F A F B =,得

22111

2

EF F B EF F A ==

从而2

21

2a c

c a c c

-=+,整理,得223a c =

。故离心率3c e a == (2)由(1),得22222b a c c =-=,所以椭圆的方程可写为222236x y c +=。

设直线AB 的方程为2

(),a y k x c

=-即(3)y k x c =-,由已知设1122(,),(,)A x y B x y ,

联立方程222

236(3)x y c y k x c ?+=?=-?,消去y 并整理,得222222(23)182760k x k cx k c c +-+-=

依题意,2248(13)0c k ?=->

,得k << 而2122

18,23k c

x x k

+=+ ① 222

122

27623k c c x x k

-?=+ ② 由题设知,点B 为线段AE 的中点,所以 1232x c x += ③

联立①③,解得22122

2

9292,,2323k c c

k c c x x k

k

-+==++将12,x x 代入②中,

解得3

k =±

(3)(法一)由(2)可知1230,2

c

x x ==

,当3k =-

时,得(0,A ,

由已知

得(0,C -,线段1AF 的垂直平分线l 的方程

(),2c y c x -

=-+直线l 与x 轴的交点(,0)2

c

是1AF C ?的外接圆的圆心,因此外接圆的方程为222()()22

c c

x y c -

+=+,直线2F B 的方程

为)y x c =-,于是点(,)H m n

的坐标满足方程组2

229()24)c c m n n m c ?-+=

???=-?

由0m ≠

,解得53,3m c n ?=??

??=??

故n m =

当3k =

时,同理可得5

n m =-

(法二)由(2)可知1230,2

c

x x ==

,当3k =-

时,得(0,A ,由

已知得(0,C ,由椭圆的对称性知B,C,2F 三点共线。因为点

(,)H m n 在1AF C ?的外接圆上,且12//,

F A F B 所以四边形1

AFCH 为等腰梯形,由直线2F B

的方程为)y x c =-,知点H

的坐标为,

()m ,因为1AH CF =

,所以222)m a +-=,

解得m c =(舍),或5

3

m c =

,则n =

,所以n m =

当3k =

时,同理可得5

n m =- 【点评】 直线与二次曲线的位置关系通常有两种方法:几何法,代数法。

【五】存在与最值问题

7

,x y 满足

10

0,0x y x y x ++≥??

+≥??≤?

的最小值是( )

A .0

B .1

C .

D .9

【点评】解析几何中的最值问题也是常见的题型之一,本题考查线性规划知识,求目标函数的最值,考查数形结合这一数学思想的运用。

例8(2009全国)已知椭圆C 的方程为22

221(0)x y a b a b

+=>>的离心率为3,过右

焦点F 的直线l 与C 相交于A,B 两点,当l 的斜率为1时,坐标原点O 到l 的距离

2

。 (1)求a , b 的值;

(2)C 上是否存在点P ,使得当l 绕F 转到某一位置时,有OP OA OB =+成

立?若存在,求出所有的P 点坐标与l 的方程;若不存在,说明理由。

【解析】(1)设(,0)F c ,当l 的斜率为1时,其方程为0,x y c --=,O 到l 的

=

12c ==,由3c e a ==

,得a b == ( 2 ) C 上存在点P ,使得当l 绕F 转到某一位置时,有OP OA OB =+成立。 由(1)知C 的方程为22236x y +=,设1122(,),(,)A x y B x y

(i )当l 不垂直于x 轴时,设l 的方程(1)y k x =-,C 上的点P ,使OP OA OB =+成立的充要条件是P 点的坐标为1212(,)x x y y ++,且2212122()3()6x x y y +++=,

整理得2222112

212122323466x y x y x x y y +++++=,又 A , B 在C 上,即22221122236,236x y x y +=+=,故12122330x x y y ++= ①,

将(1)y k x =-代入22236x y +=,并化简得2222(23)6360k x k x k +-+-=,

于是222

2

1212121222

2

6364,,(1)(1)232323k k k x x x x y y k x x k k

k

--+=?=?=--=+++, 代入①解得,22k =,此时1232

x x +=

于是1212(2)2k y y k x x +=+-=-,即3(,)22k

P -,

因此,当k =3(,)22

P ,l 0y +-=

当k =3(

,)2P ,l 0y --= (ii )当l 垂直于x 轴时,由(2,0)OA OB +=知,C 上不存在点P 使得OP OA OB =+成立。

综上,C 上存在点3(

,)2P ±,使得OP OA OB =+成立,此时l 的方程为

0y ±-=。

【点评】存在性问题是高考热门题,近几年逐渐转化到解析几何之中。这类问题的处理方法:

一般都先假设是存在的,然后根据条件去解,如有解则表示存在,否则,不存在。

四、方法总结及复习建议

1、求直线方程或者判断直线的位置关系时,要注意斜率,截距的几何意义,在判断关系时除用斜率判断之外注意向量的利用。

2、直线与圆,圆与圆的位置关系关系常用几何方法处理。

3、求曲线方程常利用待定系数法,求出相应的a,b,p等.要充分认识椭圆中参

数a,b,c,e的意义及相互关系,在求标准方程时,已知条件常与这些参数有关. 注意各种方程的一般式。

4、涉及椭圆、双曲线上的点到两个焦点的距离问题,或在圆锥曲线中涉及到焦

点与到准线的距离时常常要注意运用定义。

5、直线与圆锥曲线的位置关系问题,利用数形结合法或将它们的方程组成的方

程组转化为一元二次方程,利用判别式、韦达定理来求解或证明。

6、注意弦长公式的灵活运用。

7、离心率的思路:(1)、定义法,分别求出a、c或者用第二定义;

(2)方程法—即从a、b、c、d、e五个量中找联系,知二求三。

8、中点弦问题"点差法”最有效。

9、对于轨迹问题,要根据已知条件求出轨迹方程,再由方程说明轨迹的位置、

形状、大小等特征.求轨迹的常用方法有直接法、定义法、参数法、代入法、交轨法等。

10、与圆锥曲线有关的对称问题,利用中心对称以及轴对称的概念和性质来求解

或证明。

蕲春一中高三数学组

2010-3-30

基础_巩固练习_直线与圆锥曲线

【巩固练习】 一、选择题 1.双曲线22 134 x y -=上一点P 到左焦点的距离与到左准线的距离之比为( ) 2.椭圆22214x y m +=与双曲线22 212x y m -=有相同的焦点,则m 的值是( ) A .±1 B .1 C .-1 D .不存在 3.已知动点P (,)x y 24x =-,则动点P 的轨迹是( ) A. 椭圆 B. 双曲线 C. 抛物线 D. 直线 4.设抛物线y 2=8x 的焦点为F ,准线为l ,P 为抛物线上一点,P A ⊥l ,A 为垂足.如果直线AF 的斜 率为|PF |=( ) A ..8 C .D .16 5. 已知抛物线y 2=2px (p >0),过其焦点且斜率为1的直线交抛物线于A 、B 两点,若线段AB 的中点的纵坐标为2,则该抛物线的准线方程为( ) A .x =1 B .x =-1 C .x =2 D .x =-2 6. 已知双曲线的左、右焦点分别为F 1、F 2,在左支上过F 1的弦AB 的长为5,若2a =8,那么△ABF 2的周长是( ) A .16 B .18 C .21 D .26 二、填空题 7. 双曲线2224mx my -=的一条准线是1y =,则实数m 为________. 8.已知双曲线22 1124 x y -=的右焦点为F ,若过点F 的直线与双曲线的右支有且只有一个交点,则此直线斜率的取值范围是________. 9.过点P (3,0)的直线l 与双曲线4x 2-9y 2=36只有一个公共点,则这样的直线l 共有________条. 10.如果直线l 过定点M (1,2),且与抛物线y =2x 2有且仅有一个公共点,那么l 的方程为________. 11.过抛物线y 2=2px (p >0)的焦点F 作倾斜角为45°的直线交抛物线于A ,B 两点,若线段AB 的长为8,则p =________. 三、解答题 12.过抛物线y 2=4x 的焦点作一条直线与抛物线相交于A 、B 两点,它们的横坐标之和等于5,则这样的直线有几条. 13.设双曲线C :2 221(0)x y a a -=>与直线:1l x y +=相交于两个不同的点A 、B ,求双曲线C 的离心率e 的取值范围: 14.设双曲线22 22x y a b -=1(0

直线与圆锥曲线的综合问题专题二

专题二 直线与圆锥曲线的综合问题 第一课时 一.知识体系小结 22 2222222222 222222 cos 1(0)()sin 11(0)1(00)1(00)2(0)2(0213x a x y x a b y b a b y x y a b a b x y y x x a b y a b a b a b y px p y px p 圆锥曲线的标准方程 椭圆:焦点在轴上时参数方程,其中为参数; 焦点在轴上时. 双曲线:焦点在轴上:,;焦点在轴上:,. 抛物线:开口向右时,,开口向左时,.22)2(0)2(0)x py p x py p ,开口向上时,开口向下时. 2222 2222 2222 222222 222222 221111 1(0)123142x y x y a b a b x y x y a b a b x y x y a b a b mx ny 常用曲线方程设法技巧 共焦点的设法:与椭圆有公共焦点的椭圆方程为;与双曲线有公共焦点的双曲线方程为;与双曲线共渐近线的双曲线方程为;中心在原点,对称轴为坐标轴的椭圆、双曲线方程可设为;不清楚开口方向的抛.物线设法:焦22(0)(0)x y mx m y x my m 点在轴上,; 焦点在轴上,. 3.解决直线与圆锥曲线问题的通法: (1)设方程及点的坐标; (2)联立直线方程与曲线方程得方程组,消元得方程; (3)应用韦达定理及判别式; (4)结合已知、中点坐标公式、斜率公式及弦长公式求解. 1212|||| |.AB AB x x y y (5)直线与圆锥曲线相交的弦长公式或 222 0002220 222 0002220 2000 1()1()2(0)(). b x x y P x y k a b a y b x x y P x y k a b a y p y px p P x y k y 圆锥曲线中点弦斜率公式 在椭圆中,以,为中点的弦所在直线的斜率; 在双曲线中,以,为中点的弦所在直线的斜率; 在抛物线中,以,为中点的弦所在直线的斜率以上公式均可由点4.差法可得.

直线与圆锥曲线的位置关系综合应用(附详细答案)【打印讲义】

二轮专题——直线与圆锥曲线的位置关系综合应用 【目标】掌握直线与圆锥曲线的位置关系,并会综合应用知识处理相关问题。 【重点】直线与圆锥曲线中的最值、值域、参数范围问题,定点、定值以及探究性问题。 【难点】圆锥曲线与三角、函数与方程、不等式、数列、平面向量等知识的的综合应用. 【知识与方法】 圆锥曲线中的定点、定值、最值问题是圆锥曲线的综合问题,解决此类问题需要较强的代数运算能力和图形认识能力,要能准确地进行数与形的语言转换和运算,推理转换,并在运算过程中注意思维的严密性,以保证结果的完整. 解决圆锥曲线综合题,关键是熟练掌握每一种圆锥曲线的定义、标准方程、图形与几何性质,注意挖掘知识的内在联系及其规律,通过对知识的重新组合,以达到巩固知识、提高能力的目的. 1.在几何问题中,有些几何量与参数无关,这就构成了定值问题,解决这类问题一种思路是进行一般计算推理求出其结果;另一种是通过考查极端位置,探索出“定值”是多少,然后再进行一般性证明或计算,即将该问题涉及的几何式转化为代数式或三角形式,证明该式是恒定的。如果试题以客观题形式出现,特殊方法往往比较奏效。 2.对满足一定条件曲线上两点连结所得直线过定点或满足一定条件的曲线过定点问题,设该直线(曲线)上两点的坐标,利用坐标在直线(或曲线)上,建立点的坐标满足的方程(组),求出相应的直线(或曲线),然后再利用直线(或曲线)过定点的知识加以解决。 3.解析几何的最值和范围问题,一般先根据条件列出所求目标的函数关系式,然后根据函数关系式的特征选用参数法、配方法、判别式法、不等式法、单调性法、导数法以及三角函数最值法等求出它的最大值和最小值或值域. 当题目的条件和结论能明显体现几何特征及意义,可考虑利用数形结合法解. 【基础训练】 1、若实数x 、y 满足x 2+y 2-2x+4y=0,则x-2y 的最大值是( ) A 、5 B 、10 C 、9 D 、5+25 2、若关于x 的方程)2(12 -=-x k x 有两个不等实根,则实数k 的取值范围是( ) A 、)3 3,3 3(-B 、) 3,3(-C 、??? ? ?-0,33D 、??????????? ??--33, 2121,33 3、已知P 、Q 分别在射线y=x(x>0)和y=-x(x>0)上,且△POQ 的面积为1,(0为原点),则线段PQ 中点M 的轨迹为( ) A 、双曲线x 2 -y 2 =1 B 、双曲线x 2 -y 2 =1的右支 C 、半圆x 2 +y 2 =1(x<0) D 、一段圆弧x 2 +y 2 =1(x> 2 2) 4、一个等边三角形有两个顶点在抛物线y 2=20x 上,第三个顶点在原点,则这个三角形的面积为 5、椭圆 19 16 2 2 =+ y x 在第一象限上一动点P ,若A(4,0),B(0,3),O(0,0),则APBO S 四边形 的最大 值为 题型一、最值及值域问题 例1.【广东省梅州市2013届高三总复习质检】已知F 1,F 2分别是椭圆C :222 2 1(0)y x a b a b + =>>的 上、下焦点,其中F 1也是抛物线C 1:2 4x y =的焦点, 点M 是C 1与C 2在第二象限的交点,且15||3 MF =。 (1)求椭圆C 1的方程; (2)已知A (b ,0),B (0,a ),直线y =kx (k >0)与AB 相交于点D ,与椭圆C 1相交于点E ,F 两点,求四边形AEBF 面积的最大值。 【跟踪训练1】 【广东省肇庆市2013届高三一模】已知椭圆2212 2 : 1(0)x y C a b a b + =>> 的离心率为3 e = ,直线 :2l y x =+与以原点为圆心、以椭圆1C 的短半轴长为半径的圆O 相切. (1)求椭圆C 1的方程; (2)设椭圆1C 的左焦点为1F ,右焦点为2F ,直线1l 过点1F ,且垂直于椭圆的长轴,动直线2l 垂直于1l ,垂足为点P ,线段2P F 的垂直平分线交2l 于点M ,求点M 的轨迹2C 的方程; (3)设2C 与x 轴交于点Q ,不同的两点R 、S 在2C 上,且满足0=?RS QR ,求||Q S 的取值范围.

圆锥曲线-直线与圆锥曲线的位置关系

直线与圆锥曲线位置关系 一、基础知识: (一)直线与椭圆位置关系 1、直线与椭圆位置关系:相交(两个公共点),相切(一个公共点),相离(无公共点) 2、直线与椭圆位置关系的判定步骤:通过方程根的个数进行判定, 下面以直线y kx m =+和椭圆:()22 2210x y a b a b +=>>为例 (1)联立直线与椭圆方程:222222 y kx m b x a y a b =+??+=? (2)确定主变量x (或y )并通过直线方程消去另一变量y (或x ),代入椭圆方程得到关于主变量的一元二次方程:() 2 22 2 22b x a kx m a b ++=,整理可得: ()22 222222220a k b x a kxm a m a b +++-= (3)通过计算判别式?的符号判断方程根的个数,从而判定直线与椭圆的位置关系 ① 0?>?方程有两个不同实根?直线与椭圆相交 ② 0?=?方程有两个相同实根?直线与椭圆相切 ③ 0?>为例: (1)联立直线与双曲线方程:22 2 2 22 y kx m b x a y a b =+?? -=?,消元代入后可得: ()()2 2222222220b a k x a kxm a m a b ---+= (2)与椭圆不同,在椭圆中,因为2 2 2 0a k b +>,所以消元后的方程一定是二次方程,但双曲线中,消元后的方程二次项系数为2 2 2 b a k -,有可能为零。所以要分情况进行讨论

直线与圆锥曲线的综合问题

第32练 直线与圆锥曲线的综合问题 [题型分析·高考展望] 本部分重点考查直线和圆锥曲线的综合性问题,从近几年的高考试题来看,除了在解答题中必然有直线与圆锥曲线的联立外,在填空题中出现的圆锥曲线问题也经常与直线结合起来.本部分的主要特点是运算量大、思维难度较高,但有时灵活地借助几何性质来分析问题可能会收到事半功倍的效果.预测在今后高考中,主要围绕着直线与椭圆的位置关系进行命题,有时会与向量的共线、模和数量积等联系起来;对于方程的求解,不要忽视轨迹的求解形式,后面的设问将是对最值、定值、定点、参数围的考查,探索类和存在性问题考查的概率也很高. 常考题型精析 题型一 直线与圆锥曲线位置关系的判断及应用 例1 (1)(2015·改编)已知椭圆E :x 2a 2+y 2 b 2=1(a >b >0)的右焦点为F ,短轴的一个端点为M ,直线l :3x -4y =0交椭圆E 于A ,B 两点.若AF +BF =4,点M 到直线l 的距离不小于45 ,则椭圆E 的离心率的取值围是________________. (2)设焦点在x 轴上的椭圆M 的方程为x 24+y 2b 2=1 (b >0),其离心率为22 . ①求椭圆M 的方程; ②若直线l 过点P (0,4),则直线l 何时与椭圆M 相交? 点评 对于求过定点的直线与圆锥曲线的位置关系问题,一是利用方程的根的判别式来确定,但一定要注意,利用判别式的前提是二次项系数不为零;二是利用图形来处理和理解;三是直线过定点位置不同,导致直线与圆锥曲线的位置关系也不同.

变式训练1 已知椭圆C :x 2a 2+y 2 b 2=1(a >b >0)的焦距为4,且过点P (2,3). (1)求椭圆C 的方程; (2)设Q (x 0,y 0)(x 0y 0≠0)为椭圆C 上一点,过点Q 作x 轴的垂线,垂足为E .取点A (0,22),连结AE ,过点A 作AE 的垂线交x 轴于点D .点G 是点D 关于y 轴的对称点,作直线QG ,问这样作出的直线QG 是否与椭圆C 一定有唯一的公共点?并说明理由. 题型二 直线与圆锥曲线的弦的问题 例2 设椭圆C :x 2a 2+y 2 b 2=1 (a >b >0)的左,右焦点分别为F 1,F 2,且焦距为6,点P 是椭圆短轴的一个端点,△PF 1F 2的周长为16. (1)求椭圆C 的方程; (2)求过点(3,0)且斜率为45 的直线l 被椭圆C 所截得的线段中点的坐标. 点评 直线与圆锥曲线弦的问题包括求弦的方程,弦长,弦的位置确定,弦中点坐标轨迹等问题,解决这些问题的总体思路是设相关量,找等量关系,利用几何性质列方程(组),不等式(组)或利用一元二次方程根与系数的关系,使问题解决.

专题直线与圆、圆锥曲线知识点

专题 直线与圆、圆锥曲线 一、直线与方程 1、倾斜角与斜率:1 21 2tan x x y y k --= =α 2、直线方程:⑴点斜式:()00x x k y y -=- ⑵斜截式:b kx y += ⑶两点式: 121121y y y y x x x x --=-- ⑷截距式:1x y a b += ⑸一般式:0=++C By Ax 3、对于直线: 222111:,:b x k y l b x k y l +=+=有:⑴???≠=?21 2 121//b b k k l l ; ⑵1l 和2l 相交12k k ?≠;⑶1l 和2l 重合???==?2 12 1b b k k ;⑷12121-=?⊥k k l l . 4、对于直线: 0:, 0:22221111=++=++C y B x A l C y B x A l 有:⑴???≠=?122 11 22121//C B C B B A B A l l ;⑵1l 和2l 相交1221B A B A ≠?; ⑶1l 和2l 重合?? ?==?1 2211 221C B C B B A B A ;⑷0212121=+?⊥B B A A l l . 5、两点间距离公式: ()()21221221y y x x P P -+-= 6、点到直线距离公式: 2 2 00B A C By Ax d +++= 7、两平行线间的距离公式: 1l :01=++C By Ax 与2l :02=++C By Ax 平行,则2 2 21B A C C d +-= 二、圆与方程 1、圆的方程:⑴标准方程:()()2 2 2 r b y a x =-+-其中圆心为(,)a b ,半径为r . ⑵一般方程:02 2=++++F Ey Dx y x . 其中圆心为(,)22 D E - - ,半径为r = 2、直线与圆的位置关系 直线0=++C By Ax 与圆2 22)()(r b y a x =-+-的位置关系有三种:

67基础 知识讲解 直线与圆锥曲线

直线与圆锥曲线 【学习目标】 1.知识与技能: 通过实例了解椭圆、抛物线、双曲线的共同特征;掌握直线与圆锥曲线的位置关系的判定方法,能够把研究直线与圆锥曲线的位置关系的问题转化为研究方程组的解的问题. 2.过程与方法: 通过对圆锥曲线共同特征及点、直线与圆锥曲线的位置关系的研究,培养学生综合运用直线、圆锥曲线的各方面知识的能力. 3.情感态度与价值观: 通过对圆锥曲线共同特征及点、直线与圆锥曲线的位置关系的研究,培养学生解决问题和分析问题的能力. 【要点梳理】 要点一:圆锥曲线的共同特征 椭圆、抛物线、双曲线都是由不同的平面截一个圆锥面得到的,统称为圆锥曲线,从方程的形式看,三种曲线方程都是二次的,它们具有某些共同特征. 圆锥曲线的共同特征: 圆锥曲线上的点到一个定点F与它到一条定直线l的距离之比为定值e.当0<<1 e时,圆锥曲线是椭圆;当1 e时,圆锥曲线是抛物线.e是圆锥曲线的离心率,定点F是圆锥曲线 e 时,圆锥曲线是双曲线;当=1 的焦点,定直线l是圆锥曲线的准线.可以把它看作圆锥曲线的第二定义. 要点诠释: (1)注意点F不在直线l上,即点F在直线l外.

(2)椭圆、双曲线的准线方程分别如下表所示: 证明过程: (以焦点在x 轴的椭圆和双曲线为例) 已知点P 到定点F ()0c ,的距离与它到定直线2 a l x c =:的距离之比为常数()=,0c e a c a c a >≠且,求点 P 的轨迹. 解法步骤如下: (1)设点:设动点()P x y ,. (2)列式:由题意可知 PF e d =() 2 2 2 x c y c a a x c += (3)化简:由上式可得 ()()2 2 2 2 2 2 2 2 +=a c x a y a a c ① 当0a c >>即1e <时,令()222=0b a c b > ,方程①可化为222222+=b x a y a b ,等式两边同除以22a b ,可 得22 221x y a b +=,即焦点在x 轴上的椭圆. 当0c a >>即1e >时,令()222=0b c a b > ,方程①可化为222222=b x a y a b ,等式两边同除以22a b ,可得

直线与圆锥曲线的综合问题

第32练 直线与圆锥曲线得综合问题 [题型分析·高考展望] 本部分重点考查直线与圆锥曲线得综合性问题,从近几年得高考试题来瞧,除了在解答题中必然有直线与圆锥曲线得联立外,在填空题中出现得圆锥曲线问题也经常与直线结合起来.本部分得主要特点就是运算量大、思维难度较高,但有时灵活地借助几何性质来分析问题可能会收到事半功倍得效果。预测在今后高考中,主要围绕着直线与椭圆得位置关系进行命题,有时会与向量得共线、模与数量积等联系起来;对于方程得求解,不要忽视轨迹得求解形式,后面得设问将就是对最值、定值、定点、参数范围得考查,探索类与存在性问题考查得概率也很高. 常考题型精析 题型一 直线与圆锥曲线位置关系得判断及应用 例1 (1)(2015·福建改编)已知椭圆E :x 2a 2+y 2 b 2=1(a >b >0)得右焦点为F ,短轴得一个端点为M ,直线l :3x—4y =0交椭圆E于A ,B两点。若AF +BF =4,点M 到直线l 得距离不小于\f(4,5),则椭圆E 得离心率得取值范围就是________________。 (2)设焦点在x 轴上得椭圆M 得方程为错误!+错误!=1 (b >0),其离心率为错误!. ①求椭圆M得方程; ②若直线l 过点P(0,4),则直线l 何时与椭圆M 相交? 点评 对于求过定点得直线与圆锥曲线得位置关系问题,一就是利用方程得根得判别式来确定,但一定要注意,利用判别式得前提就是二次项系数不为零;二就是利用图形来处理与理解;三就是直线过定点位置不同,导致直线与圆锥曲线得位置关系也不同. 变式训练1 已知椭圆C :x2a2+y 2 b 2=1(a>b >0)得焦距为4,且过点P (2,\r(3))。 (1)求椭圆C得方程; (2)设Q (x 0,y0)(x 0y 0≠0)为椭圆C 上一点,过点Q 作x 轴得垂线,垂足为E 、取点A (0,2\r(2)),连结AE ,过点A 作AE 得垂线交x 轴于点D 。点G 就是点D 关于y轴得对称点,作直线Q G,问这样作出得直线QG就是否与椭圆C一定有唯一得公共点?并说明理由、 题型二 直线与圆锥曲线得弦得问题 例2 设椭圆C :x 2 a 2+错误!=1 (a>b>0)得左,右焦点分别为F1,F 2,且焦距为6,点P就是椭圆短

2021新高考数学二轮总复习专题突破练25直线与圆及圆锥曲线含解析

专题突破练25 直线与圆及圆锥曲线 1.(2020全国Ⅱ,理19)已知椭圆C 1: x 2a + y 2b =1(a>b>0)的右焦点F 与抛物线C 2的焦点重合,C 1的中心 与C 2的顶点重合.过F 且与x 轴垂直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且|CD|=4 3|AB|. (1)求C 1的离心率; (2)设M 是C 1与C 2的公共点.若|MF|=5,求C 1与C 2的标准方程. 2. 已知圆O :x 2+y 2=4,点A (√3,0),以线段AB 为直径的圆内切于圆O ,记点B 的轨迹为Γ. (1)求曲线Γ的方程; (2)直线AB 交圆O 于C ,D 两点,当B 为CD 的中点时,求直线AB 的方程. 3.(2019全国Ⅰ,理19)已知抛物线C :y 2=3x 的焦点为F ,斜率为3 2的直线l 与C 的交点为A ,B ,与x 轴的交点为P. (1)若|AF|+|BF|=4,求l 的方程; (2)若AP ????? =3PB ????? ,求|AB|.

4.(2020山东威海一模,20)已知椭圆x2 a2+y2 b2 =1(a>b>0)的左、右焦点分别为F1,F2,点P(-1,3 2 )是椭圆上 一点,|F1F2|是|PF1|和|PF2|的等差中项. (1)求椭圆的标准方程; (2)若A为椭圆的右顶点,直线AP与y轴交于点H,过点H的另一条直线与椭圆交于M,N两点,且S△HMA =6S△PHN,求直线MN的方程. 5.(2020重庆名校联盟高三二诊,19)已知椭圆C:x2 a2+y2 b2 =1(a>b>0),F1,F2为椭圆的左、右焦点,P(1,√2 2 ) 为椭圆上一点,且|PF1|=3√2 2 . (1)求椭圆的标准方程; (2)设直线l:x=-2,过点F2的直线交椭圆于A,B两点,线段AB的垂直平分线分别交直线l、直线AB于M,N两点,当∠MAN最小时,求直线AB的方程.

直线与圆锥曲线

直线与圆锥曲线 考情分析: 本节内容是高中数学的重要内容之一,也是历年高考尝试新题的板块,各种解题方法在这里表现得比较充分,尤其是在近几年高考的新课程卷中.平面向量与解几融合在一起,综合性很强,题目多变,解法灵活多样,能充分体现高考的选拔功能. 1、考查直线的基本概念,求在不同条件下的直线方程、直线的位置关系,此类题大都属中、低档题,以选择、填空题的形式出现,每年必考. 2、二次曲线的基础知识,直线与二次曲线的普通方程、参数方程,以及普通方程与参数方程的互化,常以选择题、填空题的形式出现属于中档题. 3、有关直线与圆、直线与圆锥曲线的综合题,多以解答题的形式出现,这类题主要考查学生几何知识与代数知识的综合应用,对学生分析问题、解决问题的能力要求较高. 二、考点整合 1、第一部分内容:直线的倾斜角、斜率,直线的方程,两条直线的位置关系;简单的线性规划及其实际应用;曲线和方程、圆的方程. 2、第二部分内容包括椭圆、双曲线、抛物线的定义、性质,以及它们与直线的位置关系的判定,弦长的有关计算、证明等,本部分内容为高考命题的热点. 3、椭圆、双曲线、抛物线分别是满足某些条件的点的轨迹,由这些条件可以求出它们的标准方程,并通过分析标准方程研究这三种曲线的几何性质. 4、椭圆、双曲线、抛物线统称圆锥曲线,它们的统一性如下: (1)从方程的形式看:在直角坐标系中,这几种曲线的方程都是二元二次方程,所以它们属于二次曲线; (2)从点的集合(或轨迹)的观点看:它们都是与定点和定直线距离的比是常数e 的集合(或轨迹),这个点是它们的焦点,定直线是它们的准线.只是由于离心率e 取值范围的不同,而分为椭圆(10<e )和抛物线(1=e )三种曲线; (3)这三种曲线都是由平面截圆锥面得到的截线. 5、坐标法是研究曲线的一种重要方法,本节进一步研究求曲线方程的一般方法,利用曲线的方程讨论曲线的几何性质,以及用坐标法证明简单的几何问题等. 6、椭圆、双曲线、抛物线是常见的曲线,利用它们的方程及几何性质,可以解决一些简单的实际问题;利用方程可以研究它们与直线的交点、相交弦等有关问题. 解析几何的综合问题,主要是以圆锥曲线为载体,考查直线与圆锥曲线的有关性质以及函数、方程、不等式、三角、向量等知识.考查的数学思想有数形结合的思想、分类整合的思想、换元的思想、等价转化的思想等.常见题型有求曲线方程,由方程研究性质以及定值、最值、范围、探索性问题等.这类题目一般难度较大,常作高考题中的压轴题. 三、典例精讲: 例 1 (1)由动点P 向圆12 2 =+y x 作两条切线、PB PA ,切点分别为、B A , ο60=∠APB ,则动点P 的轨迹方程为______________________. (2)设直线022:=++y x l 关于原点对称的直线为/ l ,若/ l 与椭圆14 2 2 =+y x 的交 点为、B A ,点P 为椭圆上的动点,则使得PAB ?的面积为2 1的点P 的个数为( ) A 、1 B 、2 C 、3 D 、4 (3)已知双曲线的中心在原点,离心率为3,它的一条准线与抛物线x y 42 =的准

高中数学复习指导:直线与圆锥曲线问题之设而不求与设而求.doc

“设而不求”与“设而求” 一般地,我们解答直线与圆锥曲线问题,已经形成一种习惯,利用一元二次方程的判别式 研 究范围,利用根与系数的关系研究有关参数的关系,还美其名曰“设而不求”,事实上,“设而 求”也可能比“设而不求”更加简单,避开了一元二次方程的判别式与根与系数的关系研究有关 参数的关系,也许另有一种更好的解法等待着你去探究,不信请看下面的例题: 丫2 例1、己知椭圆方程为y+/=l,过定点P(0,2)的直线交椭圆于不同的两点A 、B (在 A 、P 之间),且满足西=2顾,求的取值范围. 解析1:设AB 的方程为)=尬+ 2, A3」),Ba ,%),贝9 PA = (x },y }-2), PB = (x 2,y 2 -2),由 PB = ZPA ,得 X 2 1 3 由 Q + * '得(1 + 2比2)严+池+6二0.又△二64疋一24(1 + 2/)= 0>0,得k 2>~. y = kx + 2, Sk 6 由根与系数关系,坷+禺=一 ,= - 1+2F - 1 + 2亡 把七=2西代入坷+召=_] + 2加 有西(1+2) = _] +朮,(1) 6 0 6 把x 2=^代入“2=仃乔有彷=匚乔,(2) 由(1)、(2)可以消去西得到含有入比的关系式,这个过程比较复杂,这个关系式是 32k 2 (1+A)2 3 1 3(1+2/) 2 八 3 _― =—■—, 或者变为__+?7 =—石刁—= — , 由* >二,可以求得 召=2坷, y 2-2 = A(y l -2).

3(1+2Q A 32k「 16 32k~(1 + 久)「2

初于是建立了关于2的不等式 '2 v£,又0vQvl,解得£v2vl. 32K I O O (1+A ) O 3 当初没有斜率时,宀亍所以扫<「 解析2:构造2 + ]=玉+玉=(召+兀T ,如此可以直接把年+召=一£「 / x } x 2 x }x 2 l + 2k 6 1 ao&2 3 也=砲代入得到'+君茹莎r"込百-2,由解法1知:宀亍可以 求得2<丐<罟,又061,解得打<1?当仙殳有斜率时,4,所以押<1. 解析3:设人(西,刃),8也,%),则 力4 =(兀[,刃一2), PB = (X 2,>2-2),由 PB = APA ,得v 4+^=i, 2 O 1 又人(召,刃),3(%,%)在二+b=l 上,所以]2 2 - + ^=1. 〔2 - 事实上仅用以上这四个等式就可以求出2与西,必,兀2,%中任意一个的关系. j 吕+*=1,⑴ F 字+(勿 _2Q +2)2=[.(2) (l)x A 2 _(2)得:(Ay.)2 -(心 -22 + 2)2 = / 一 1, (22-2)(22^ -2A + 2) = -1,注意到0<2<1,所以4仇开 一2 + 1) = 2 + 1,解得 气J) _ 3 斥彳一3 1 ”=—,注意到—1S)[S1,所以—is — <1,解得一5/153,又0V/lvl, 1 4A 1 4 2 3 所以-<2<1. 3 解法评价:解法1与解法2都是利用一元二次方程根的判别式与根与系数的关系,是解析 几何常用的方法,但是用这种方法必须对直线方程进行讨论,还应注意,有些时候仅仅使用其中 的根与系数的关系而没有用根的判别式,但是由于根与系数的关系是从整体上建立有关系数的关 系的,所以无法保证实数根的存在性,因此一定要检验判别式大于零.解法3 32k 1 冷=岔, y 2-2 = /l(y l -2).

[高中数学]圆锥曲线专题-理科

圆锥曲线专题 【考纲要求】 一、直线 1.掌握直线的点方向式方程、点法向式方程、点斜式方程,认识坐标法在建立形与数的关 系中的作用; 2.会求直线的一般式方程,理解方程中字母系数表示斜率和截距的几何意义:懂得一元二 次方程的图像是直线; 3.会用直线方程判定两条直线间的平行或垂直关系(方向向量、法向量); 4.会求两条相交直线的交点坐标和夹角,掌握点到直线的距离公式. 二、圆锥曲线 1.理解曲线的方程与方程的曲线的意义,并能由此利用代数方法判定点是否在曲线上,以 及求曲线交点; 2.掌握圆、椭圆、双曲线、抛物线的定义,并理解上述曲线在直角坐标系中的标准方程的 推导过程; 3.理解椭圆、双曲线、抛物线的有关概念及简单的几何特性,掌握求这些曲线方程的基本 方法,并能根据曲线方程的关系解决简单的直线与上述曲线有两个交点情况下的有关问题; 4.能利用直线和圆、圆和圆的位置关系的几何判定,确定它们之间的位置关系,并能利用解 析法解决相应的几何问题. 【知识导图】【精解名题】 一、弦长问题 例1 如图,已知椭圆 2 21 2 x y +=及点B(0, -2),过点B引椭圆的割线(与椭圆相交的直线)BD 与椭圆交于C、D两点 (1)确定直线BD斜率的取值范围 (2)若割线BD过椭圆的左焦点 12 , F F是椭圆的右焦点,求 2 CDF ?的面积 y x B C D F1F2 O

二、轨迹问题 例2 如图,已知平行四边形ABCO,O 是坐标原点,点A 在线段MN 上移动,x=4,y=t (33)t -≤≤上移动,点C 在双曲线 22 1169 x y -=上移动,求点B 的轨迹方程 三、对称问题 例3 已知直线l :22 2,: 1169 x y y kx C =++=,问椭圆上是否存在相异两点A 、B,关于直线l 对称,请说明理由 四、最值问题 例4 已知抛物线2 :2()C x y m =--,点A 、B 及P(2, 4)均在抛物线上,且直线PA 与PB 的倾斜角互补 (1)求证:直线AB 的斜率为定值 (2)当直线AB 在y 轴上的截距为正值时,求ABP ?面积的最大值 五、参数的取值范围 例 5 已知(,0),(1,),a x b y → → == ()a → +⊥()a → - (1)求点P (x, y )的轨迹C 的方程 (2)直线:(0,0)l y kx m k m =+≠≠与曲线C 交于A 、B 两点,且在以点D (0,-1)为圆心 的同一圆上,求m 的取值范围 六、探索性问题 例6 设x, y ∈R,,i j →→ 为直角坐标平面内x, y 轴正方向上的单位向量,若向量 (2)a x i y j → →→=++,且(2)b x i y j →→→=+-且8a b →→ += (1)求点M (x, y )的轨迹方程 (2)过点(0,3)作直线l 与曲线C 交于A 、B 两点,设OP OA OB → → → =+,是否存在这样的直线l,使得四边形OAPB 是矩形?若存在,求出直线l 的方程;若不存在,请说明理由

直线与圆锥曲线的位置关系专题复习

直线与圆锥曲线的位置关系 一.知识网络结构: 2. 直线与圆锥曲线的位置关系: ⑴.从几何角度看:(特别注意)要特别注意当直线与双曲线的渐进线平行时,直线与双曲线只有一个交点;当直线与抛物线的对称轴平行或重合时,直线与抛物线也只有一个交点。 ⑵.从代数角度看:设直线L的方程与圆锥曲线的方程联立得到ax2 bx c 0。 ① .若a=0,当圆锥曲线是双曲线时,直线L与双曲线的渐进线平行或重合; 当圆锥曲线是抛物线时,直线L与抛物线的对称轴平行或重合。 ② .若a 0,设b2 4ac。a . 0时,直线和圆锥曲线相交于不同两点,相交。 b. 0时,直线和圆锥曲线相切于一点,相切。 c. 0时,直线和圆锥曲线没有公共点,相离。 二.常考题型解读:题型一:直线与椭圆的位置关系: 2 2 例1.椭圆—J 1上的点到直线X 2y .2 0的最大距离是() 16 4 A.3 B. ,11 C. 2 2 D. . 10 2 2 例2.如果椭圆—y 1的弦被点(4,2)平分,则这条弦所在的直线方程是() 36 9 A. x 2y 0 B. x 2y 4 0 C. 2x 3y 12 0 D. x 2y 8 0 题型二:直线与双曲线的位置关系: 例3.已知直线L:y kx 1与双曲线C:x2 y2=4。 ⑴若直线L与双曲线C无公共点,求k的范围;⑵若直线L与双曲线C有两个公共点,求k 的范围; ⑶若直线L与双曲线C有一个公共点,求k的范围;⑷若直线L与双曲线C的右支有两个公共点,求k的范围;⑸若直线L与双曲线C的两支各有一个公共点,求k的范围。 题型三:直线与抛物线的位置关系: 例4.在抛物线y2 2x上求一点P,使P到焦点F与P到点A(3,2)的距离之和最小。

直线圆锥曲线与向量的综合问题

直线圆锥曲线与向量的综合问题 高考考什么 知识要点: 1.直线与圆锥曲线的公共点的情况 00 ),(0 2=++??? ?==++C Bx Ax y x f c by ax 曲线:直线:)0'''(2=++C y B y A 或 (1)没有公共点 → 方程组无解 (2)一个公共点 → 0 ,0)0)=?≠→=→A ii A i 相切相交 (3)两个公共点 → 0,0>?≠A 2.连结圆锥曲线上两个点的线段称为圆锥曲线的弦,要能熟练地利用方程的根与系数关系来计算弦长,常 用的弦长公式:1212AB x y y =-=- 3.以平面向量作为工具,综合处理有关长度、角度、共线、平行、垂直、射影等问题 4.几何与向量综合时可能出现的向量容 (1) 给出直线的方向向量或; (2)给出与相交,等于已知过的中点; (3)给出,等于已知是的中点; (4)给出,等于已知A 、B 与PQ 的中点三点共线; (5) 给出以下情形之一:①;②存在实数;③若存在实数,等于已知三点共线. (6) 给出,等于已知是的定比分点,为定比,即 (7) 给出,等于已知,即是直角,给出,等于已知是钝角, 给出,等于已知是锐角。 (8)给出,等于已知是的平分线。 (9)在平行四边形中,给出,等于已知是菱形;

(10)在平行四边形中,给出,等于已知是矩形; (11)在中,给出,等于已知是的外心(三角形外接圆的圆心,三角形的外心是三角形三边垂直平分线的交点); (12)在中,给出,等于已知是的重心(三角形的重心是三角形三条中线的交点);(13)在中,给出,等于已知是的垂心(三角形的垂心是三角形三条高的交点); (14)在中,给出等于已知通过的心; (15)在中,给出等于已知是的心(三角形切圆的圆心,三角形的心是三角形三条角平分线的交点); (16)在中,给出,等于已知是中边的中线; 高考怎么考 主要题型: 1.三点共线问题;2.公共点个数问题;3.弦长问题; 4.中点问题;5.定比分点问题;6.对称问题;7.平行与垂直问题;8.角的问题。 近几年平面向量与解析几何交汇试题考查方向为 (1)考查学生对平面向量知识的简单运用,如向量共线、垂直、定比分点。 (2)考查学生把向量作为工具的运用能力,如求轨迹方程,圆锥曲线的定义,标准方程和几何性质,直线与圆锥曲线的位置关系。 特别提醒:法和韦达定理是解决直线和圆锥曲线位置关系的重要工具。 高考真题 1.[2012·卷] 若n=(-2,1)是直线l的一个法向量,则l的倾斜角的大小为________(结果用反三角函数值表示)..arctan2 [解析] 考查直线的法向量和倾斜角,关键是求出直线的斜率. 由已知可得直线的斜率k× 1 -2 =-1,∴k=2,k=tanα,所以直线的倾斜角α=arctan2. 2.[2012·卷] 如图1-3,设椭圆的中心为原点O,长轴在x轴上,上顶点为A,左、右焦点分别为F1,F2,线段OF1,OF2的中点分别为B1,B2,且△AB1B2是面积为4的直角三角形. 图1-3

专题三-直线、圆、圆锥曲线测试题(文科)解析

专题三 直线、圆、圆锥曲线测试题(文科)解析 一、选择题: 1.已知圆O 的方程是x 2+y 2-8x -2y +10=0,过点M (3,0)的最短弦所在的直线方程是( ) A .x +y -3=0 B .x -y -3=0 C .2x -y -6=0 D .2x +y -6=0 解析 x 2+y 2-8x -2y +10=0,即(x -4)2+(y -1)2=7,圆心O (4,1),设过点M (3,0)的直线为l ,则k OM =1,故k l =-1,∴y =-1×(x -3),即x +y -3=0. 2.过点(-1,3)且平行于直线x -2y +3=0的直线方程为( ) A .x -2y +7=0 B .2x +y -1=0C .x -2y -5=0 D .2x +y -5=0 解析 因为直线x -2y +3=0的斜率是12,故所求直线的方程为y -3=1 2(x +1),即x -2y +7=0. A 3.曲线y =2x -x 3在横坐标为-1的点处的切线为l ,则点P (3,2)到直线l 的距离为( ) A.722 B.922 C.1122 D.91010 解析 曲线y =2x -x 3在横坐标为-1的点处的纵坐标为-1,故切点坐标为(-1,-1).切线斜率为k =y ′|x =-1=2-3×(-1)2=-1,故切线l 的方程为y -(-1)=-1×[x -(-1)],整理得x +y +2=0,由点到直线的距离公式得点P (3,2)到直线l 的距离为|3+2+2|12+12 =722.A

4.若曲线x2+y2+2x-6y+1=0上相异两点P、Q关于直线kx+2y-4=0对称,则k的值为() A.1 B.-1 C.1 2D.2 解析曲线方程可化为(x+1)2+(y-3)2=9,由题设知直线过圆心,即k×(-1)+2×3-4=0,∴k=2.故选D. 5.直线ax-y+2a=0(a≥0)与圆x2+y2=9的位置关系是() A.相离B.相交C.相切D.不确定 解析圆x2+y2=9的圆心为(0,0),半径为3.由点到直线的距离公式d =|Ax0+By0+C| A2+B2 得该圆圆心(0,0)到直线ax-y+2a=0的距离d= 2a a2+(-1)2 =2a a2+12 ,由基本不等式可以知道2a≤a2+12,从而 d= 2a a2+12 ≤1

直线和椭圆(圆锥曲线)常考题型

直线和圆锥曲线常考题型 运用的知识: 1、两条直线111222:,:l y k x b l y k x b =+=+垂直:则121k k =-;两条直线垂直,则直线所在的向量120v v = 2、韦达定理:若一元二次方程2 0(0)ax bx c a ++=≠有两个不同的根12,x x ,则1212,b c x x x x a a +=-=。 3、中点坐标公式:121 2 ,y 22 x x y y x ++= =,其中,x y 是点1122(,)(,)A x y B x y ,的中点坐标。 4、弦长公式:若点1122(,)(,)A x y B x y ,在直线(0)y kx b k =+≠上, 则1122y kx b y kx b =+=+,,这是同点纵横坐标变换,是两大坐标变换技巧之一, AB = 或者AB = 例题1、已知直线:1l y kx =+与椭圆22 : 14x y C m +=始终有交点,求m 的取值范围 解: 14m m ≤≠且。 例题2、过点T(-1,0)作直线l 与曲线N :2 y x =交于A 、B 两点,在x 轴上是否存在一点E(0x ,0),使得ABE ?是等边三角形,若存在,求出0x ;若不存在,请说明理由。 解:依题意知,直线的斜率存在,且不等于0。 设直线:(1)l y k x =+,0k ≠,11(,)A x y ,22(,)B x y 。 由2 (1)y k x y x =+?? =?消y 整理,得2222 (21)0k x k x k +-+= ① 由直线和抛物线交于两点,得 2242(21)4410k k k ?=--=-+> 即2 1 04 k << ② 由韦达定理,得:2122 21 ,k x x k -+=-121x x =。

2018年高考数学破解命题陷阱专题27快速解决直线与圆锥曲线综合问题的解题技巧

专题27 快速解决直线与圆锥曲线综合问题的解题技巧 一.命题陷阱 1.不用韦达定理与用韦达定理的选择陷阱 2.范围不完备陷阱 3.圆锥曲线中三角形面积公式选取陷阱 4.不用定义直接化简的陷阱(圆锥曲线定义的灵活运用) 5.圆锥曲线中的求定点、定直线只考虑一般情况不考虑特殊位置陷阱 6.圆锥曲线中的求定值只考虑一般情况不考虑特殊位置陷阱 二、知识回顾 1.椭圆的标准方程 (1) 22221,(0)x y a b a b +=>>,焦点12(,0),(,0)F c F c -,其中c = (2) 22221,(0)x y a b b a +=>>,焦点12(0,),(0,)F c F c -,其中c =2.双曲线的标准方程 (1) 22221,(0,0)x y a b a b -=>>,焦点12(,0),(,0)F c F c -,其中c . (2) 22221,(0,0)x y a b b a -=>>,焦点12(0,),(0,)F c F c -,其中c 3.抛物线的标准方程 (1) 2 2 2 2 2,2,2,2,(0)y px y px x py x py p ==-==->.对应的焦点分别为: (,0),(,0),(0,),(0,)2222 p p p p F F F F --. 三.典例分析 1.不用韦达定理与用韦达定理的选择陷阱 例1. 设椭圆22221(0)x y a b a b +=>>的左焦点为F ,右顶点为A ,离心率为12 .已知A 是抛物线22(0) y px p =>的焦点,F 到抛物线的准线l 的距离为1 2 . (I )求椭圆的方程和抛物线的方程; (II )设l 上两点P ,Q 关于x 轴对称,直线AP 与椭圆相交于点B (B 异于点A ),直线BQ 与x 轴相交于点D .

相关文档
最新文档