高一数学下学期第一次月考试题 文
高一下学期第一次月考数学试卷 (20)

高一学年三月月考数学试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A ={-2,-1,0,1,2},B ={x |(x -1)(x +2)<0},则A ∩B =( )A .{-1,0}B .{0,1}C .{-1,0,1}D .{0,1,2} 2.下列函数为奇函数的是 ( )A .y =xB .y =e xC .y =cos xD .y =e x -e -x3.已知α是第二象限角,sinα=513,则cosα= ( )A .-1213B .-513 C.513 D .12134.设a =⎝ ⎛⎭⎪⎫340.5,b =⎝ ⎛⎭⎪⎫430.4,c =log 34(log 34),则 ( )A .c <b <aB .a <b <cC .c <a <bD .a <c <b5.向量a =(1,-1),b = (-1,2),则(2a +b )·a = ( )A .-1B .0C .1D .2 6.已知三角形ABC ∆中,30A =︒,105C =︒,4b =,则a = ( )A .2B .C ..7.设C ∆AB 的内角A ,B ,C 的对边分别为a ,b ,c .若2a =,c =,cos A =,且b c <,则b = ( )A .2 C ..3 8.等差数列{}n a 的前n 项和n S ,若132,12a S ==,则6a = ( ) A .8B .10C .12D .149. 等差数列{}n a 的公差是2,若248,,a a a 成等比数列,则{}n a 的前n 项和n S = ( )A .(1)n n +B .(1)n n -C .(1)2n n + D . (1)2n n -10.若ABC ∆的三个内角满足sin :sin :sin 2:5:6A B C =,则ABC ∆是 ( ) A.锐角三角形 B.钝角三角形 C.直角三角形 D.锐角三角形或钝角三角形11. 设等差数列{a n }的前n 项和为S n ,且a 1>0,a 3+a 10>0,a 6a 7<0,则满足S n >0的最大自然数n 的值为 ( )A .6B .7C .12D .1312. 若,a b 是函数()()20,0f x x px q p q =-+>> 的两个不同的零点,且,,2a b - 这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p q + 的值等于 ( )A .6B .7C .8D .9第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.设n S 是数列{}n a 的前n 项和,且11a =-,11n n n a S S ++=,则n S =________. 14.在ABC ∆中,3,2,60==︒=BC AC A ,则AB 等于__________.15.设数列n a 是以2为首项,1为公差的等差数列,{}n b 是以1为首项,2为公比的等比数列,则1210b b b a a a +++=__________.16. 在ABC ∆中,角A ,B ,C 所对的边分别是a ,b ,c ,若222b c a bc +=-,且4AC AB ⋅=-,则ABC ∆的面积等于 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.(本题满分10分)已知等差数列{a n }的公差d =1,前n 项和为S n .(1)若1,a 1,a 3成等比数列,求a 1; (2)若S 5>a 1a 9,求a 1的取值范围.18.(本题满分12分)已知ABC ∆的内角A B C 、、的对边分别为a b c 、、,且4a =,c =,sin 4sin A B =.(1)求边b的长;(2)求角C的大小.19.(本题满分12分)△ABC中,内角A,B,C所对的边分别为a,b,c,已知△ABC的面积为12,cos,4b c A-==-(I)求a和sin C的值;(II)求πcos26A⎛⎫+⎪⎝⎭的值.20.(本题满分12分)在ABC∆中,内角A,B,C所对的边分别为a,b,c,已知4Aπ=,22b a-=122c.(1)求tan C的值;(2)若ABC∆的面积为3,求b的值.21.(本题满分12分)等差数列{a n}的前n项和为S n,等比数列{b n}的公比为12,满足S3=15,a1+2b1=3,a2+4b2=6.(1)求数列{a n},{b n}的通项a n,b n;(2)求数列{a n·b n}的前n项和T n.22.(本题满分12分)n S 为数列{n a }的前n 项和.已知n a >0, 3422+=+n n n S a a . (Ⅰ)求{n a }的通项公式; (Ⅱ)设11n n n b a a +=错误!未找到引用源。
四川省成都市2023-2024学年高一下学期第一次月考数学试题含答案

武侯高中高2023级2023——2024下期第一次月考试题数学(答案在最后)学校:__________姓名:__________班级:__________考号:__________一、单选题1.如图,四边形ABCD 中,AB DC =,则必有()A.AD CB= B.DO OB= C.AC DB= D.OA OC= 【答案】B 【解析】【分析】根据AB DC =,得出四边形ABCD 是平行四边形,由此判断四个选项是否正确即可.【详解】四边形ABCD 中,AB DC =,则//AB DC 且AB DC =,所以四边形ABCD 是平行四边形;则有AD CB =-,故A 错误;由四边形ABCD 是平行四边形,可知O 是DB 中点,则DO OB =,B 正确;由图可知AC DB≠,C 错误;由四边形ABCD 是平行四边形,可知O 是AC 中点,OA OC =-,D 错误.故选:B .2.下列说法正确的是()A.若a b ∥ ,b c ∥,则a c∥ B.两个有共同起点,且长度相等的向量,它们的终点相同C.两个单位向量的长度相等D.若两个单位向量平行,则这两个单位向量相等【答案】C 【解析】【分析】A.由0b =判断;B.由平面向量的定义判断;C.由单位向量的定义判断; D.由共线向量判断.【详解】A.当0b = 时,满足a b ∥ ,b c ∥,而,a c 不一定平行,故错误;B.两个有共同起点,且长度相等的向量,方向不一定相同,所以它们的终点不一定相同,故错误;C.由单位向量的定义知,两个单位向量的长度相等,故正确;D.若两个单位向量平行,则方向相同或相反,但大小不一定相同,则这两个单位向量不一定相等,故错误;故选:C3.若a b ,是平面内的一组基底,则下列四组向量中能作为平面向量的基底的是()A.,a b b a --B.21,2a b a b++ C.23,64b a a b-- D.,a b a b+- 【答案】D 【解析】【分析】根据基底的知识对选项进行分析,从而确定正确答案.【详解】A 选项,()b a a b -=-- ,所以a b b a -- ,共线,不能作为基底.B 选项,1222a b a b ⎛⎫+=+ ⎪⎝⎭ ,所以12,2a b a b ++ 共线,不能作为基底.C 选项,()64223a b b a -=-- ,所以64,23a b b a --共线,不能作为基底.D 选项,易知a b a b +-,不共线,可以作为基底.故选:D4.将函数2cos 413y x π⎛⎫=-+ ⎪⎝⎭图象上各点的横坐标伸长到原来的2倍,再向左平移3π个单位,纵坐标不变,所得函数图象的一条对称轴的方程是()A.12x π=B.6x π=-C.3x π=-D.12x π=-【答案】B 【解析】【分析】根据图像的伸缩和平移变换得到2cos(2)13y x π=++,再整体代入即可求得对称轴方程.【详解】将函数2cos 413y x π⎛⎫=-+ ⎪⎝⎭图象上各点的横坐标伸长到原来的2倍,得到2cos 213y x π⎛⎫=-+ ⎪⎝⎭,再向左平移3π个单位,得到2cos[2()]12cos(2)1333y x x πππ=+-+=++,令23x k π+=π,Z k ∈,则26k x ππ=-,Z k ∈.显然,=0k 时,对称轴方程为6x π=-,其他选项不符合.故选:B5.设a ,b 是非零向量,“a a bb =”是“a b =”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】B 【解析】【分析】根据向量相等、单位向量判断条件间的推出关系,结合充分、必要性定义即知答案.【详解】由a a b b =表示单位向量相等,则,a b 同向,但不能确定它们模是否相等,即不能推出a b =,由a b =表示,a b 同向且模相等,则a a b b = ,所以“a a bb =”是“a b =”的必要而不充分条件.故选:B6.已知向量,a b ,且2,52,72AB a b BC a b CD a b =+=-+=+,则下列一定共线的三点是()A.,,A B CB.,,B C DC.,,A B DD.,,A C D【答案】C 【解析】【分析】利用向量的共线来证明三点共线的.【详解】2,52,72AB a b BC a b CD a b =+=-+=+,则不存在任何R λ∈,使得AB BC λ=,所以,,A B C 不共线,A 选项错误;则不存在任何R μ∈,使得BC CD μ=,所以,,B C D 不共线,B 选项错误;由向量的加法原理知242BD BC CD a b AB =+=+=.则有//BD AB ,又BD 与AB有公共点B ,所以,,A B D 三点共线,C 选项正确;44AB BC a b AC ==-++,则不存在任何R t ∈,使得AC tCD = ,所以,,A C D 不共线,D 选项错误.故选:C .7.已知sin α=5,且α为锐角,tan β=-3,且β为钝角,则角α+β的值为()A.4π B.34π C.3π D.23π【答案】B 【解析】【分析】先求出tan α12=,再利用两角和的正切公式求出tan(α+β)=-1,判断出角α+β的范围,即可求出α+β的值.【详解】sin α,且α为锐角,则cos α5=,tan αsin 1cos 2αα==.所以tan(α+β)=tan tan 1tan tan αβαβ+-=13211(3)2--⨯-=-1.又α+β∈3(,22ππ,故α+β=34π.故选:B8.筒车亦称“水转筒车”,是一种以水流作动力,取水灌田的工具,唐陈廷章《水轮赋》:“水能利物,轮乃曲成.升降满农夫之用,低徊随匠氏之程.始崩腾以电散,俄宛转以风生.虽破浪于川湄,善行无迹;既斡流于波面,终夜有声.”如图,一个半径为4m 的筒车按逆时针方向每分钟转一圈,筒车的轴心O 距离水面的高度为2m .在筒车转动的一圈内,盛水筒P 距离水面的高度不低于4m 的时间为()A.9秒B.12秒C.15秒D.20秒【答案】D 【解析】【分析】画出示意图,结合题意和三角函数值可解出答案.【详解】假设,,A O B 所在直线垂直于水面,且4AB =米,如下示意图,由已知可得12,4OA OB OP OP ====,所以1111cos 602OB POB POB OP ∠==⇒∠=︒,处在劣弧 11PP 时高度不低于4米,转动的角速度为360660︒=︒/每秒,所以水筒P 距离水面的高度不低于4m 的时间为120206=秒,故选:D.二、多选题9.已知函数()cos f x x x =+,则下列判断正确的是()A.()f x 的图象关于直线π6x =对称 B.()f x 的图象关于点π,06⎛⎫- ⎪⎝⎭对称C.()f x 在区间2π,03⎡⎤-⎢⎥⎣⎦上单调递增 D.当π2π,33x ⎛⎫∈-⎪⎝⎭时,()()1,1f x ∈-【答案】BC 【解析】【分析】利用辅助角公式化简函数()f x 的解析式,利用正弦型函数的对称性可判断AB 选项;利用正弦型函数的单调性可判断C 选项;利用正弦型函数的值域可判断D 选项.【详解】因为()πcos 2sin 6f x x x x ⎛⎫=+=+ ⎪⎝⎭,对于A选项,ππ2sin 63f ⎛⎫==⎪⎝⎭,故函数()f x 的图象不关于直线π6x =对称,A 错;对于B 选项,π2sin 006f ⎛⎫-== ⎪⎝⎭,故函数()f x 的图象关于点π,06⎛⎫- ⎪⎝⎭对称,B 对;对于C 选项,当2π03x -≤≤时,πππ266x -≤+≤,则函数()f x 在区间2π,03⎡⎤-⎢⎥⎣⎦上单调递增,C 对;对于D 选项,当π2π33x -<<时,ππ5π666x -<+<,则1πsin 126x ⎛⎫-<+≤ ⎪⎝⎭,所以,()(]π2sin 1,26f x x ⎛⎫=+∈- ⎪⎝⎭,D 错.故选:BC.10.下图是函数()sin()(0π)f x A x ωϕϕ=+<<的部分图像,则()A.2πT =B.π3ϕ=C.π,06⎛⎫-⎪⎝⎭是()f x 的一个对称中心 D.()f x 的单调递增区间为5πππ,π1212k k ⎡⎤-++⎢⎥⎣⎦(Z k ∈)【答案】BCD 【解析】【分析】由图象可得πT =,由2πT ω=可求出ω,再将π12⎛⎝代入可求出ϕ可判断A ,B ;由三角函数的性质可判断C ,D .【详解】根据图像象得35ππ3ππ246124T T =-=⇒=⇒=ω,故A 错误;π12x =时,πππ22π2π1223k k ⨯+=+⇒=+ϕϕ,0πϕ<< ,π3ϕ∴=,故()π23f x x ⎛⎫=+ ⎪⎝⎭,故B 正确;因为πππ20663f ⎡⎤⎛⎫⎛⎫-=⋅-+= ⎪ ⎪⎢⎝⎭⎝⎭⎣⎦,所以π,06⎛⎫- ⎪⎝⎭是()f x 的一个对称中心,C 正确;令πππ2π22π232k x k -+≤+≤+,解得5ππππ1212k x k -+≤≤+,Z k ∈.故D 正确.故选:BCD .11.潮汐现象是地球上的海水受月球和太阳的万有引力作用而引起的周期性涨落现象.某观测站通过长时间观察,发现某港口的潮汐涨落规律为πcos 63y A x ω⎛⎫=++ ⎪⎝⎭(其中0A >,0ω>),其中y (单位:m )为港口水深,x (单位:h )为时间()024x ≤≤,该观测站观察到水位最高点和最低点的时间间隔最少为6h ,且中午12点的水深为8m ,为保证安全,当水深超过8m 时,应限制船只出入,则下列说法正确的是()A.π6ω=B.最高水位为12mC.该港口从上午8点开始首次限制船只出入D.一天内限制船只出入的时长为4h 【答案】AC 【解析】【分析】根据题意可求得6π=ω,可知A 正确;由12点时的水位为8m 代入计算可得4A =,即最高水位为10m ,B 选项错误;易知ππ4cos 663y x ⎛⎫=++⎪⎝⎭,解不等式利用三角函数单调性可得从上午8点开始首次开放船只出入,一天内开放出入时长为8h ,即可判断C 正确,D 错误.【详解】对于A ,依题意π62T ω==,所以6π=ω,故A 正确;对于B ,当12x =时,ππcos 126863y A ⎛⎫=⨯++=⎪⎝⎭,解得4A =,所以最高水位为10m ,故B 错误;对于CD ,由上可知ππ4cos 663y x ⎛⎫=++⎪⎝⎭,令8y ≥,解得812x ≤≤或者2024x ≤≤,所以从上午8点开始首次开放船只出入,一天内开放出入时长为8h ,故C 正确,D 错误.故选:AC.三、填空题12.设e为单位向量,2a =r ,当,a e 的夹角为π3时,a 在e 上的投影向量为______.【答案】e【解析】【分析】利用投影向量的定义计算可得结果.【详解】根据题意可得向量a 在e 上的投影向量为22π21cos 31a e e a e e e e ee e⨯⨯⋅⋅⋅=== .故答案为:e13.已知向量a 、b 满足5a = ,4b = ,a 与b 的夹角为120,若()()2ka b a b -⊥+ ,则k =________.【答案】45##0.8【解析】【分析】运用平面向量数量积公式计算即可.【详解】因为5a = ,4b = ,a 与b的夹角为120 ,所以1cos12054102a b a b ⎛⎫⋅==⨯⨯-=- ⎪⎝⎭.因为()2ka b -⊥()a b +r r ,所以()()()()222222521610215120ka b a b kab k a b k k k -⋅+=-+-⋅=-⨯--=-=,解得45k =.故答案为:45.14.已知1tan 3x =,则1sin 2cos 2x x +=______【答案】2【解析】【分析】根据二倍角公式以及齐次式即可求解.【详解】2222222211121sin 2cos sin 2sin cos 1tan 2tan 332cos 2cos sin 1tan 113x x x x x x x x x x x ⎛⎫++⨯ ⎪+++++⎝⎭====--⎛⎫- ⎪⎝⎭.故答案为:2四、解答题15.已知1a b a == ,与b 的夹角为45︒.(1)求()a b a +⋅的值;(2)求2a b -的值【答案】(1)2(2【解析】【分析】(1)先求2,a a b ⋅ ,再根据运算法则展开计算即可;(2)先计算2b,再平方,进而开方即可.【小问1详解】因为22||1,||||cos 451122a a a b a b ==⋅=︒=⨯=所以2()112a b a a a b ++⋅=⋅=+=【小问2详解】因为22||2b b ==,所以2222|2|(2)444242a b a b a b a b -=-=+⋅=+--=所以|2|a b -=16.已知函数()222cos 1f x x x =+-.(1)求函数()f x 的最小正周期;(2)若3π,π4θ⎛⎫∈⎪⎝⎭且()85f θ=-,求cos 2θ的值.【答案】(1)π(2)410-【解析】【分析】(1)利用辅助角公式化简,求出最小正周期;(2)将θ代入可求出πsin 26θ⎛⎫+ ⎪⎝⎭,结合π26+θ的范围,求出πcos 26θ⎛⎫+ ⎪⎝⎭,因为ππ2266θθ=+-,由两角差的余弦公式求出结果.【小问1详解】()2π22cos 12cos 22sin 26f x x x x x x ⎛⎫=+-=+=+ ⎪⎝⎭,所以()f x 的最小正周期2ππ2T ==【小问2详解】()π82sin 265f θθ⎛⎫=+=- ⎪⎝⎭,所以π4sin 265θ⎛⎫+=- ⎪⎝⎭,因为3π,π4θ⎛⎫∈⎪⎝⎭,1π25π3663π,θ⎛⎫∈ ⎪⎝⎭+,所以π3cos 265θ⎛⎫+== ⎪⎝⎭,所以ππππππcos 2cos 2cos 2cos sin 2sin 666666θθθθ⎛⎫⎛⎫⎛⎫=+-=+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭3414525210-⎛⎫=⨯+-⨯=⎪⎝⎭.17.如图,在ABC 中,6AB =,60ABC ∠=︒,D ,E 分别在边AB ,AC 上,且满足2AD DB = ,3CE EA =,F 为BC 中点.(1)若DE AB AC λμ=+,求实数λ,μ的值;(2)若8AF DE ⋅=-,求边BC 的长.【答案】(1)23λ=-,14μ=.(2)8【解析】【分析】(1)根据向量的线性运算以及平面向量的基本定理求得正确答案.(2)利用转化法化简8AF DE ⋅=-,从而求得BC 的长.【小问1详解】∵2AD DB = ,3CE EA= ,∴23AD AB = ,14AE AC = ∴1243DE AE AD AC AB =-=- ,∴23λ=-,14μ=.【小问2详解】12AF BF BA BC BA =-=- ,()1212154343412DE AC AB BC BA BA BC BA =-=-+=+ ,22115115241282412AF DE BC BA BC BA BC BC BA BA ⎛⎫⎛⎫⋅=-⋅+=-⋅- ⎪ ⎪⎝⎭⎝⎭设BC a = ,∵6AB = ,60ABC ∠=︒,221115668824212AF DE a a ⋅=-⨯⨯-⨯=- ,即2560a a --=,解得7a =-(舍)或8a =,∴BC 长为8.18.设(,)P x y 是角θ的终边上任意一点,其中0x ≠,0y ≠,并记r =cot x y θ=,sec r xθ=,csc r y θ=.(Ⅰ)求证222222sin cos tan cot sec +csc θθθθθθ+--+是一个定值,并求出这个定值;(Ⅱ)求函数()sin cos tan cot sec +csc f θθθθθθθ=++++的最小值.【答案】(Ⅰ)定值为3;(Ⅱ)min ()1f θ=-;【解析】【分析】(Ⅰ)由题可知,分别将6个三角函数分别代入,进行简单的化简,即可得到定值3;(Ⅱ)将()f x 中的未知量均用sin ,cos θθ来表示,得到1sin cos ()sin cos sin cos sin cos g θθθθθθθθθ+=+++,运用换元法设sin cos t θθ+=,化简成2()111g t t θ=-++-,再利用对勾函数的性质即可得到最值.【详解】解:(Ⅰ)222222222222222222sin cos tan cot sec +csc =y x y x r r r x y r y xθθθθθθ+--++--++2222222221113x y r y r x r x y+--⇒++=++=;(Ⅱ)由条件,1cot tan x y θθ==,1sec cos x θ=,1csc sin θθ=令()sin cos tan cot sec +csc g θθθθθθθ=++++sin cos 11sin cos +cos sin cos sin θθθθθθθθ=++++1sin cos sin cos sin cos sin cos θθθθθθθθ+=+++,令sin cos t θθ+=,则sin cos =2sin()4t πθθθ=++[2,2]∈-,1t ≠±,且21sin cos 2t θθ-=,从而2222()11t g y t t t θ==++--22(1)1t t t +=+-221111t t t t =+=-++--,令1u t =-,则21y u u =++,[21,21]u ∈---,且0u ≠,2u ≠-.所以,(,122][322,)y ∈-∞-⋃++∞.从而()221f y θ=≥-,即min ()221f θ=-.19.已知函数()2000ππ2sin sin 2sin 266f x x x x C ωωω⎛⎫⎛⎫=+++-+ ⎪ ⎪⎝⎭⎝⎭(R C ∈)有最大值为2,且相邻的两条对称轴的距离为π2(1)求函数()f x 的解析式,并求其对称轴方程;(2)将()f t 向右平移π6个单位,再将横坐标伸长为原来的24π倍,再将纵坐标扩大为原来的25倍,再将其向上平移60个单位,得到()g t ,则可以用函数()sin()H g t A t B ωϕ==++模型来模拟某摩天轮的座舱距离地面高度H 随时间t (单位:分钟)变化的情况.已知该摩天轮有24个座舱,游客在座舱转到离地面最近的位置进仓,若甲、乙已经坐在a ,b 两个座舱里,且a ,b 中间隔了3个座舱,如图所示,在运行一周的过程中,求两人距离地面高度差h 关于时间t 的函数解析式,并求最大值.【答案】(1)()π2sin 26f x x ⎛⎫=- ⎪⎝⎭,ππ32k x =+,Z k ∈(2)ππ()50sin 126f x t ⎛⎫=-⎪⎝⎭,50【解析】【分析】(1)由二倍角公式与两角和与差的正弦公式化简得()0π2sin 216f x x C ω⎛⎫=-++ ⎪⎝⎭,再结合最值及周期即可得解析式;(2)由正弦型函数的平移变换与伸缩变换得变换后的解析式为ππ50sin 60122y t ⎛⎫=-+ ⎪⎝⎭,则ππ50sin 126h H H ⎛⎫=-==- ⎪⎝⎭甲乙,再求最值即可.【小问1详解】()00001cos 2π22sin 2cos 2cos 2126x f x x C x x C ωωωω-=⨯++=-++0π2sin 216x C ω⎛⎫=-++ ⎪⎝⎭,所以2121C C ++=⇒=-,因为相邻两条对称轴的距离为π2,所以半周期为ππ22T T =⇒=,故002ππ12=⇒=ωω,()π2sin 26f x x ⎛⎫=- ⎪⎝⎭令ππππ2π6232k x k x -=+⇒=+,Z k ∈【小问2详解】()f t 向右平移π6得到π2sin 22y t ⎛⎫=- ⎪⎝⎭,将横坐标伸长为原来的24π倍,得到ππ2sin 122y t ⎛⎫=- ⎪⎝⎭,将纵坐标扩大为原来的25倍,得到ππ50sin 122y t ⎛⎫=- ⎪⎝⎭,再将其向上平移60个单位,得到ππ50sin 60122y t ⎛⎫=-+ ⎪⎝⎭游客甲与游客乙中间隔了3个座舱,则相隔了2ππ4243⨯=,令ππ50sin 60122H t ⎛⎫=-+ ⎪⎝⎭甲,则π5π50sin 60126H t ⎛⎫=-+ ⎪⎝⎭乙,则πππ5π50sin sin 122126h H H t t ⎛⎫⎛⎫=-=--- ⎪ ⎪⎝⎭⎝⎭甲乙π1πcos 12212t t =-ππ50sin 126t ⎛⎫=- ⎪⎝⎭,π12ω=,24T =,024t ≤≤,故πππ11π61266t -≤-≤,当πππ1262t -=或3π82t ⇒=或20时,max 50h =。
高一数学下学期第一次月考试卷(含解析)-人教版高一全册数学试题

2015-2016学年某某鄂尔多斯市准格尔旗世纪中学高一(下)第一次月考数学试卷一.选择题(每题5分,共60分)1.tan 300°+sin 450°的值为()A.1+B.1﹣C.﹣1﹣ D.﹣1+2.以下命题正确的是()A.小于90°的角是锐角B.A={α|α=k•180°,k∈Z},B={β|β=k•90°,k∈Z},则A⊆BC.﹣950°12′是第三象限角D.α,β终边相同,则α=β3.在空间直角坐标系中的点P(a,b,c),有下列叙述:①点P(a,b,c)关于横轴(x轴)的对称点是P1(a,﹣b,c);②点P(a,b,c)关于yOz坐标平面的对称点为P2(a,﹣b,﹣c);③点P(a,b,c)关于纵轴(y轴)的对称点是P3(a,﹣b,c);④点P(a,b,c)关于坐标原点的对称点为P4(﹣a,﹣b,﹣c).其中正确叙述的个数为()A.3 B.2 C.1 D.04.已知α是第二象限的角,其终边上一点为P(a,),且cosα=a,则sinα的值等于()A.B.C.D.5.函数y=2sin(﹣2x)(x∈[0,π])为增函数的区间是()A.[0,] B.[] C.[,] D.[,π]6.已知,且,则tanφ=()A.B.C.﹣D.7.已知点A(1,2,﹣1),点C与点A关于平面xOy对称,点B与点A关于x轴对称,则线段BC的长为()A.2 B.4 C.2 D.28.直线y=a(a为常数)与y=tanωx(ω>0)的相邻两支的交点距离为()A.πB.C. D.与a有关的值9.函数的图象()A.关于原点成中心对称B.关于y轴成轴对称C.关于成中心对称D.关于直线成轴对称10.已知θ∈[0,2π),|cosθ|<|sinθ|,且sinθ<tanθ,则θ的取值X围是()A.B.C.D.11.化简cosα+sinα(π<α<)得()A.sinα+cosα﹣2 B.2﹣sinα﹣cosαC.sinα﹣cosα D.cosα﹣sinα12.圆心角为60°的扇形,它的弧长为2π,则它的内切圆的半径为()A.2 B.C.1 D.二、填空题(每题5分,共20分,把答案填在题中横线上)13.函数的定义域为.14.函数y=2cos(ωx)的最小正周期是4π,则ω=.15.已知tanα=2,则tan2α的值为.16.已知sin(﹣x)=,则cos(﹣x)=.三.解答题(共70分)17.已知sinα+cosα=,α∈(0,π),求的值.18.已知函数f(x)=Asin(ωx+φ),x∈R(其中)的图象与x轴的交点中,相邻两个交点之间的距离为,且图象上一个最低点为.(Ⅰ)求f(x)的解析式;(Ⅱ)当,求f(x)的值域.19.sin θ和cos θ为方程2x2﹣mx+1=0的两根,求+.20.已知函数y=2acos(2x﹣)+b的定义域是[0,],值域是[﹣5,1],求a、b的值.21.函数f(x)=3sin(2x+)的部分图象如图所示.(Ⅰ)写出f(x)的最小正周期及图中x0,y0的值;(Ⅱ)求f(x)在区间[﹣,﹣]上的最大值和最小值.22.已知函数.(1)求函数f(x)的最小正周期和单调增区间;(2)函数f(x)的图象可以由函数y=sin2x(x∈R)的图象经过怎样的变换得到?2015-2016学年某某鄂尔多斯市准格尔旗世纪中学高一(下)第一次月考数学试卷参考答案与试题解析一.选择题(每题5分,共60分)1.tan 300°+sin 450°的值为()A.1+B.1﹣C.﹣1﹣ D.﹣1+【考点】诱导公式的作用.【分析】由诱导公式逐步化简可得原式等于﹣tan60°+sin90°,为可求值的特殊角,进而可得答案.【解答】解:由诱导公式可得:tan 300°+sin 450°=tan(360°﹣60°)+sin(360°+90°)=﹣tan60°+sin90°=﹣+1=1﹣,故选B2.以下命题正确的是()A.小于90°的角是锐角B.A={α|α=k•180°,k∈Z},B={β|β=k•90°,k∈Z},则A⊆BC.﹣950°12′是第三象限角D.α,β终边相同,则α=β【考点】命题的真假判断与应用.【分析】根据角的X围以及终边相同角的关系分别进行判断即可.【解答】解:A.∵0°角满足小于90°,但0°角不是锐角,故A错误,B.当k=2n时,β=k•90°=n•180°,当k=2n+1时,β=k•90°=k•180°+90°,则A⊆B成立,C.﹣950°12′=﹣4×360°+129°48′,∵129°48′是第二象限角,∴﹣950°12′是第二象限角,故C错误,D.α,β终边相同,则α=β+k•360°,k∈Z,故D错误,故选:B3.在空间直角坐标系中的点P(a,b,c),有下列叙述:①点P(a,b,c)关于横轴(x轴)的对称点是P1(a,﹣b,c);②点P(a,b,c)关于yOz坐标平面的对称点为P2(a,﹣b,﹣c);③点P(a,b,c)关于纵轴(y轴)的对称点是P3(a,﹣b,c);④点P(a,b,c)关于坐标原点的对称点为P4(﹣a,﹣b,﹣c).其中正确叙述的个数为()A.3 B.2 C.1 D.0【考点】命题的真假判断与应用.【分析】根据空间点的对称性分别进行判断即可.【解答】解:①点P(a,b,c)关于横轴(x轴),则x不变,其余相反,即对称点是P1(a,﹣b,﹣c);故①错误,②点P(a,b,c)关于yOz坐标平面的对称,则y,z不变,x相反,即对称点P2(﹣a,b,c);故②错误③点P(a,b,c)关于纵轴(y轴)的对称,则y不变,x,z相反,即对称点是P3(﹣a,b,﹣c);故③错误,④点P(a,b,c)关于坐标原点的对称,则x,y,z都为相反数,即对称点为P4(﹣a,﹣b,﹣c).故④正确,故选:C4.已知α是第二象限的角,其终边上一点为P(a,),且cosα=a,则sinα的值等于()A.B.C.D.【考点】任意角的三角函数的定义.【分析】根据三角函数的大小建立方程求出a的值即可得到结论.【解答】解:∵α是第二象限的角,其终边上一点为P(a,),且cosα=a,∴a<0,且cosα=a=,平方得a=﹣,则sinα===,故选:A.5.函数y=2sin(﹣2x)(x∈[0,π])为增函数的区间是()A.[0,] B.[] C.[,] D.[,π]【考点】复合三角函数的单调性.【分析】利用正弦函数的单调性,确定单调区间,结合x的X围,可得结论.【解答】解:由正弦函数的单调性可得≤﹣2x≤(k∈Z)∴﹣﹣kπ≤x≤﹣﹣kπk=﹣1,则故选C.6.已知,且,则tanφ=()A.B.C.﹣D.【考点】同角三角函数间的基本关系.【分析】先由诱导公式化简cos(φ)=﹣sinφ=确定sinφ的值,再根据φ的X 围确定cosφ的值,最终得到答案.【解答】解:由,得,又,∴∴tanφ=﹣故选C.7.已知点A(1,2,﹣1),点C与点A关于平面xOy对称,点B与点A关于x轴对称,则线段BC的长为()A.2 B.4 C.2 D.2【考点】空间中的点的坐标.【分析】求出对称点的坐标,然后求解距离.【解答】解:点A(1,2,﹣1),点C与点A关于平面xoy对称,可得C(1,2,1),点B与点A关于x轴对称,B(1,﹣2,1),∴|BC|==4故选:B.8.直线y=a(a为常数)与y=tanωx(ω>0)的相邻两支的交点距离为()A.πB.C. D.与a有关的值【考点】三角函数的周期性及其求法.【分析】直线y=a与正切曲线y=tanωx两相邻交点间的距离,便是此正切曲线的最小正周期.【解答】解:因为直线y=a(a为常数)与正切曲线y=tanωx相交的相邻两点间的距离就是正切函数的周期,∵y=tanωx的周期是:,∴直线y=a(a为常数)与正切曲线y=tanωx相交的相邻两点间的距离是:.故选:B.9.函数的图象()A.关于原点成中心对称B.关于y轴成轴对称C.关于成中心对称D.关于直线成轴对称【考点】正弦函数的对称性.【分析】将x=0代入函数得到f(0)=2sin(﹣)=﹣1,从而可判断A、B;将代入函数f(x)中得到f()=0,即可判断C、D,从而可得到答案.【解答】解:令x=0代入函数得到f(0)=2sin(﹣)=﹣1,故A、B不对;将代入函数f(x)中得到f()=0,故是函数f(x)的对称中心,故C 对,D不对.故选C.10.已知θ∈[0,2π),|cosθ|<|sinθ|,且sinθ<tanθ,则θ的取值X围是()A.B.C.D.【考点】三角函数的化简求值.【分析】由已知的sinθ<tanθ,移项并利用同角三角函数间的基本关系变形后得到tanθ(1﹣cosθ)大于0,由余弦函数的值域得到1﹣cosθ大于0,从而得到tanθ大于0,可得出θ为第一或第三象限,若θ为第一象限角,得到sinθ和cosθ都大于0,化简|cosθ|<|sinθ|,并利用同角三角函数间的基本关系得到tanθ大于1,利用正切函数的图象与性质可得出此时θ的X围;若θ为第三象限角,得到sinθ和cosθ都小于0,化简|cosθ|<|sinθ|,并利用同角三角函数间的基本关系得到tanθ大于1,利用正切函数的图象与性质可得出此时θ的X围,综上,得到满足题意的θ的X围.【解答】解:∵sinθ<tanθ,即tanθ﹣sinθ>0,∴tanθ(1﹣cosθ)>0,由1﹣cosθ>0,得到tanθ>0,当θ属于第一象限时,sinθ>0,cosθ>0,∴|cosθ|<|sinθ|化为cosθ<sinθ,即tanθ>1,则θ∈(,);当θ属于第三象限时,sinθ<0,cosθ<0,∴|cosθ|<|sinθ|化为﹣cosθ<﹣sinθ,即tanθ>1,则θ∈(,),综上,θ的取值X围是.故选C11.化简cosα+sinα(π<α<)得()A.sinα+cosα﹣2 B.2﹣sinα﹣cosαC.sinα﹣cosα D.cosα﹣sinα【考点】三角函数的化简求值.【分析】利用同角三角函数基本关系式、三角函数值在各个象限的符号即可得出.【解答】解:∵π<α<,∴==,同理可得=,∴原式=﹣(1﹣sinα)﹣(1﹣cosα)=﹣2+cosα+sinα.故选:A.12.圆心角为60°的扇形,它的弧长为2π,则它的内切圆的半径为()A.2 B.C.1 D.【考点】圆的标准方程.【分析】设扇形和内切圆的半径分别为R,r.由弧长公式可得2π=R,解得R.再利用3r=R=6即可求得扇形的内切圆的半径.【解答】解:设扇形和内切圆的半径分别为R,r.由2π=R,解得R=6.由题意可得3r=R=6,即r=2.∴扇形的内切圆的半径为2.故选:A.二、填空题(每题5分,共20分,把答案填在题中横线上)13.函数的定义域为.【考点】正切函数的定义域.【分析】根据正弦函数的定义域,我们构造关于x的不等式,解不等式,求出自变量x的取值X围,即可得到函数的定义域.【解答】解:要使函数的解析式有意义自变量x须满足:≠kπ+,k∈Z解得:故函数的定义域为故答案为14.函数y=2cos(ωx)的最小正周期是4π,则ω=±.【考点】三角函数的周期性及其求法.【分析】利用周期公式列出关于ω的方程,求出方程的解即可得到ω的值.【解答】解:∵=4π,∴ω=±.故答案为:±15.已知tanα=2,则tan2α的值为﹣.【考点】二倍角的正切.【分析】由条件利用二倍角的正切公式求得tan2α的值.【解答】解:∵tanα=2,∴tan2α===﹣,故答案为:﹣.16.已知sin(﹣x)=,则cos(﹣x)= ﹣.【考点】运用诱导公式化简求值.【分析】原式中的角度变形后,利用诱导公式化简,将已知等式代入计算即可求出值.【解答】解:∵sin(﹣x)=,∴cos(﹣x)=cos[+(﹣x)]=﹣sin(﹣x)=﹣.故答案为:﹣三.解答题(共70分)17.已知sinα+cosα=,α∈(0,π),求的值.【考点】三角函数的化简求值.【分析】把已知等式两边平方,利用完全平方公式及同角三角函数间的基本关系变形求出2sinαcosα的值,进而判断出sinα﹣cosα的正负,利用完全平方公式及同角三角函数间的基本关系求出sinα﹣cosα的值,联立求出sinα与cosα的值,即可确定出的值.【解答】解:把sinα+cosα=①,两边平方得:(sinα+cosα)2=1+2sinαcosα=,∴2sinαcosα=﹣,∵α∈(0,π),∴sinα>0,cosα<0,即sinα﹣cosα>0,∴(sinα﹣cosα)2=1﹣2sinαcosα=,即sinα﹣cosα=②,联立①②,解得:sinα=,cosα=﹣,则==﹣.18.已知函数f(x)=Asin(ωx+φ),x∈R(其中)的图象与x轴的交点中,相邻两个交点之间的距离为,且图象上一个最低点为.(Ⅰ)求f(x)的解析式;(Ⅱ)当,求f(x)的值域.【考点】由y=Asin(ωx+φ)的部分图象确定其解析式;正弦函数的定义域和值域.【分析】(1)根据最低点M可求得A;由x轴上相邻的两个交点之间的距离可求得ω;进而把点M代入f(x)即可求得φ,把A,ω,φ代入f(x)即可得到函数的解析式.(2)根据x的X围进而可确定当的X围,根据正弦函数的单调性可求得函数的最大值和最小值.确定函数的值域.【解答】解:(1)由最低点为得A=2.由x轴上相邻的两个交点之间的距离为得=,即T=π,由点在图象上的故∴又,∴(2)∵,∴当=,即时,f(x)取得最大值2;当即时,f(x)取得最小值﹣1,故f(x)的值域为[﹣1,2]19.sin θ和cos θ为方程2x2﹣mx+1=0的两根,求+.【考点】三角函数的化简求值.【分析】利用韦达定理可求得sinθ+cosθ=,sinθ•cosθ=,利用同角三角函数基本关系式即可解得m,将所求的关系式化简为sinθ+cosθ,即可求得答案.【解答】解:∵sinθ和cosθ为方程2x2﹣mx+1=0的两根,∴sinθ+cosθ=,sinθ•cosθ=,∵(sinθ+cosθ)2=sin2θ+2sinθcosθ+cos2θ=1+2sinθcosθ,∴m2=1+2×,解得:m=±2,∴+=+=sinθ+cosθ=.20.已知函数y=2acos(2x﹣)+b的定义域是[0,],值域是[﹣5,1],求a、b的值.【考点】余弦函数的定义域和值域.【分析】由求出的X围,由余弦函数的性质求出cos(2x﹣)的值域,根据解析式对a分类讨论,由原函数的值域分别列出方程组,求出a、b的值.【解答】解:由得,,∴cos(2x﹣),当a>0时,∵函数的值域是[﹣5,1],∴,解得,当a<0时,∵函数的值域是[﹣5,1],∴,解得,综上可得,或.21.函数f(x)=3sin(2x+)的部分图象如图所示.(Ⅰ)写出f(x)的最小正周期及图中x0,y0的值;(Ⅱ)求f(x)在区间[﹣,﹣]上的最大值和最小值.【考点】三角函数的周期性及其求法;正弦函数的定义域和值域.【分析】(Ⅰ)由题目所给的解析式和图象可得所求;(Ⅱ)由x∈[﹣,﹣]可得2x+∈[﹣,0],由三角函数的性质可得最值.【解答】解:(Ⅰ)∵f(x)=3sin(2x+),∴f(x)的最小正周期T==π,可知y0为函数的最大值3,x0=;(Ⅱ)∵x∈[﹣,﹣],∴2x+∈[﹣,0],∴当2x+=0,即x=时,f(x)取最大值0,当2x+=,即x=﹣时,f(x)取最小值﹣322.已知函数.(1)求函数f(x)的最小正周期和单调增区间;(2)函数f(x)的图象可以由函数y=sin2x(x∈R)的图象经过怎样的变换得到?【考点】函数y=Asin(ωx+φ)的图象变换;三角函数的周期性及其求法;正弦函数的单调性.【分析】(1)由函数的解析式求得周期,由求得x的X围,即可得到函数的单调增区间(2)由条件可得,再根据函数y=Asin(ωx+∅)的图象变换规律得出结论.【解答】解:(1)由函数,可得周期等于 T==π.由求得,故函数的递增区间是.(2)由条件可得.故将y=sin2x的图象向左平移个单位,再向上平移个单位,即可得到f(x)的图象.。
高一下学期第一次月考数学试题(解析版

(1)求角 ;
(2)求 的取值范围.
【18题答案】
【答案】(1)条件选择见解析
(2)
【解析】
【分析】(1)若选①由正弦定理得 即可求出 ;若选②由正弦定理得 即可求出 .
(2)用正弦定理得表示出 得到 利用三角函数求出 的取值范围.
【小问1详解】
若选①则由正弦定理得
【解析】
【分析】由题可得 .作差法可判断A;用基本不等式可判断B;分别化简不等式左边和右边可判断C;假设法可判断D.
【详解】如图
易知 .
A: (当 时取等号) 故A正确;
B: (当 时取等号)故B正确;
C:
又 (当 时取等号) 故C正确;
D:假设 成立
则
即
即
当 且 时上式不成立故D错误.
故选:ABC.
同理由 三点共线则存在实数 使得
所以 解得 所以 所以A正确.
又由 且
可得 解得 则
可得 所以B正确;
又由
当且仅当 时等号成立所以C正确.
又由 可得 所以D不正确.
故选:ABC.
12.设 分别为 中ab两边上的高 的面积记为S.当 时下列不等式正确的是( )
A. 【20题答案】
【答案】(1)
(2)
【解析】
【分析】(1)由最大值和最小值求得 的值由 以及 可得 的值再由最高点可求得 的值即可得 的解析式由正弦函数的对称中心可得 对称中心;
(2)由图象的平移变换求得 的解析式由正弦函数的性质可得 的值域令 的取值为 的值域解不等式即可求解.
【小问1详解】
由题意可得: 可得 所以
A. B.
C. D.
2023-2024学年新疆乌鲁木齐市高一下册第一次月考数学试题(含解析)

2023-2024学年新疆乌鲁木齐市高一下册第一次月考数学试题一、单选题1.已知复数z 满足1i z =-,则z 的虚部是()A .1-B .1C .i -D .i【正确答案】A【分析】由虚部定义可得结果.【详解】由虚部定义可知:z 的虚部为1-.故选:A.2.已知,a b →→为非零不共线向量,向量8a k b →→-与k a b →→-+共线,则k =()A .B .-C .±D .8【正确答案】C利用向量共线的充要条件是存在实数λ,使得8()a k b k a b λ→→→→-=-+,及向量相等列方程解得.【详解】解: 向量8a k b →→-与k a b →→-+共线,∴存在实数λ,使得8()a k b k a b λ→→→→-=-+,即8a k b k a b λλ→→→→-=-+,又 ,a b →→为非零不共线向量,∴8kk λλ=-⎧⎨-=⎩,解得.k =±故选:C.本题考查向量共线的条件,向量相等的条件,属于基础题.3.在ABC 中,内角A 、B 、C 所对的边分别为a 、b 、c ,若sin :sin :sin 2:4:5A B C =,则cos B =()A .1320B .3740C .516-D .18【正确答案】A【分析】由正弦定理可得::sin :sin :sin 2:4:5a b c A B C ==,利用余弦定理可求得cos B 的值.【详解】因为::sin :sin :sin 2:4:5a b c A B C ==,令2a t =,4b t =,()50c t t =>,则2222224251613cos 222520a cb t t t B ac t t +-+-===⨯⨯.故选:A.4.如图,在△ABC 中,AB a = ,AC b = ,DC =3BD ,A E=2EC ,则DE =()A .1334a b+ B .53124a b-C .3143a b+ D .35412a b-+ 【正确答案】D【分析】直接按照平面向量的三角形法则及题目中比例关系进行化简即可.【详解】由平面向量的三角形法则,可知()313135354343412412DE DC CE BC ACAC AB AC AB AC a b ⎛⎫=+=+-=--=-+=-+ ⎪⎝⎭.故选:D.5.在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ;若()sin sin sin a A b B A c C +=,则C =()A .30︒B .60︒C .120︒D .150︒【正确答案】D【分析】利用正弦定理将已知式转化为边的形式,然后再利用余弦定理可求得结果【详解】因为sin (sin )sin a A b B A c C +=,所以由正弦定理得22()ab b c+=,化简得222a b c +-=,所以由余弦定理得222cos 2a b c C ab +-==因为(0,)C π∈,所以56C π=,即150C =︒故选:D6.已知4a = ,()1,0b =- 且()2a b b +⊥ ,则a 与b的夹角为()A .30B .60C .120D .150【正确答案】C【分析】根据向量垂直和向量数量积运算律可构造方程求得a b ⋅,由向量夹角公式可求得结果.【详解】()2a b b +⊥ ,()22220a b b a b b a b ∴+⋅=⋅+=⋅+= ,解得:2a b ⋅=- ,21cos ,412a b a b a b⋅-∴<>===-⨯⋅ ,,120a b ∴<>=o r r .故选:C.7.在ABC 中,角,,A B C 所对的边分别为,,a b c ,已知()2cos cos cos +=B a C c A b,sin 2C =,则ABC 的形状为()A .等腰三角形B .直角三角形C .等边三角形D .等腰直角三角形【正确答案】C【分析】利用正弦定理边化角可求得cos B ,得到π3B =;结合特殊角三角函数值和三角形内角和为π可求得结果.【详解】由正弦定理得:()2cos sin cos sin cos sin +=B A C C A B ,()2cos sin 2cos sin sin B A C B B B ∴+==,又()0,πB ∈,sin 0B ∴≠,1cos 2B ∴=,则π3B =;sin 2C =,()0,πC ∈,π3C ∴=或2π3,又πB C +<,π3C ∴=,()ππ3A B C ∴=-+=,ABC ∴ 为等边三角形.故选:C.8.在△ABC 中,24CA CB ==,F 为△ABC 的外心,则CF AB ⋅=()A .-6B .-8C .-9D .-12【正确答案】A【分析】设△ABC 的外接圆半径为r ,,CFA CFB βα∠=∠=.由余弦定理得到22cos 2r r α=-,和22cos 8r r β=-.把CF AB ⋅ 整理为CF AB ⋅22cos cos r r βα=-,整体代入即可.【详解】设△ABC 的外接圆半径为r ,,CFA CFB βα∠=∠=.由余弦定理得:2222cos BC BF CF BF CF α=+- ,即222cos r r α=-,所以22cos 2r r α=-2222cos AC AF CF AF CF β=+- ,即228cos r r β=-.所以22cos 8r r β=-.所以()CF AB CF AF FB+⋅=⋅ CF AF CF FB =+⋅⋅ 22cos cos cos cos r FC FA FC FB FC FA FC F r B βαβα=⋅⋅⋅⋅-=-=-因为22cos 2r r α=-,22cos 8r r β=-,所以()2222cos cos 826CF AB r r r r βα⋅=-=---=- .故选:A向量的基本运算处理的常用方法:(1)向量几何化:画出合适的图形,利用向量的运算法则处理;(2)向量坐标化:建立适当的坐标系,利用向量的坐标运算处理.二、多选题9.下列说法错误的是()A .若//,//a b b c,则// a cB .若a b =,则23a b<C .对任意非零向量a,a a是和它共线的一个单位向量D .零向量没有方向【正确答案】ABD【分析】对于A ,举例判断即可,对于B ,向量不能比较大小,对于C ,由单位向量的定义判断,对于D ,由向量的定义判断【详解】对于A ,当0b = 时,满足//,//a b b c,而a 与c 不一定共线,所以A 错误,对于B ,因为向量是有方向和大小的量,所以向量不能比较大小,所以B 错误,对于C ,因为a是非零向量,所以a a是和它共线的一个单位向量,所以C 正确,对于D ,因为向量是有方向和大小的量,所以零向量是有方向的,它的方向是任意的,所以D 错误,故选:ABD10.在△ABC 中,下列说法正确的是()A .若2sin a b A =,则6B π=B .若A B >,则sin sin A B>C.45AB B ∠︒==,若AC =D .若222b c a +>,则△ABG 为锐角三角形【正确答案】BC【分析】由正弦定理对选项ABC 进行变形求解,由余弦定理判断D .【详解】选项A ,2sin a b A =由正弦定理得sin 2sin sin A B A =,三角形中sin 0A ≠,所以1sin 2B =,而(0,)B π∈,所以6B π=或56B π=,A 错;选项B ,△ABC 中,sin sin a bA B=,所以sin sin A B a b A B >⇔>⇔>,B 正确;选项C ,由于sin sin AB ACC B=,4sin 3C π==,又AC AB <,所以C B >,C 角可能为锐角也可能为钝角,三角形有两解,C 正确;选项D ,222b c a +>,由余弦定理得cos 0A >,A 为锐角,但,B C 两个角大小不确定,不能得出其为锐角三角形,D 错.故选:BC .11.下列说法正确的是()A .在ABC 中,12BD DC =,E 为AC 的中点,则1263DE AC AB=-B .已知非零向量AB 与AC 满足0AB AC BC AB AC ⎛⎫ ⎪+⋅= ⎪⎝⎭,则ABC 是等腰三角形C .已知()3,4a = ,()0,1b =- ,则a 在b上的投影向量是()0,4D .在边长为4的正方形ABCD 中,点E 在边BC 上,且3BE EC =,点F 是CD 中点,则8AE BF ⋅= 【正确答案】ABC【分析】利用向量线性运算直接推导可得A 正确;设ABAC AP ABAC=+ ,可知直线AP 为BAC ∠的角平分线,结合⊥AP BC 可知B 正确;利用投影向量的求法可求得C 正确;以A 为坐标原点建立平面直角坐标系,利用向量数量积的坐标运算可知D 错误.【详解】对于A,如图所示,()2211233263DE DC CE BC EC AC AB AC AC AB =+=-=--=-,A 正确;对于B ,设AB ACAP AB AC=+,AB AB 表示与AB 同向的单位向量,AC ACuuu r uuu r 表示与AC 同向的单位向量,∴直线AP 为BAC ∠的角平分线,又0AP BC ⋅=,即⊥AP BC ,AB AC ∴=,ABC ∴ 为等腰三角形,B 正确;对于C ,cos ,4a ba ab b⋅<>==-,()0,1b b b==-,a ∴r 在b上的投影向量为()cos ,0,4b a a b b<>⋅=,C 正确;对于D ,以A 为坐标原点,,AB AD正方向为,x y 轴,可建立如图所示平面直角坐标系,则()0,0A ,()4,0B ,()4,3E ,()2,4F ,()4,3AE ∴= ,()2,4BF =-,()42344AE BF ∴⋅=⨯-+⨯=,D 错误.故选:ABC.12.已知两个不相等的非零向量,a b,两组向量12345,,,,x x x x x 和12345,,,,y y y y y 均由3个a 和2个b排列而成,记1122334455min ,S x y x y x y x y x y S =⋅+⋅+⋅+⋅+⋅ 表示S 所有可能取值中的最小值,则下列命题正确的是()A .S 有3个不同的值B .22min22S a a b b=+⋅+ C .若//a b ,则min S 与b 无关D .若2min ||2||,4||a b S b == ,则a b⊥【正确答案】AD【分析】求出S 的三种结果,得出min S ,对选项进行分析得出答案.【详解】,(1234.5i i x y i = ,,,)均由3个a和2个b 排列而成,所以1122334455S x y x y x y x y x y =⋅+⋅+⋅+⋅+⋅ 可能情况有三种︰22132S a b =+;2222S a a b b =+⋅+ ;234S a b a =⋅+ ,故A 选项正确;()222221223220S S S S a b a b a b a b a b-=-=+-⋅≥+-=-≥.则S 中最小为234S a b a =⋅+ ,即2min 4S a b a =⋅+,B 选项错误;若//a b 则2min 4S a b a =⋅+ 与b 有关,故C 选项错误;若2a b = ,222min 4444S a b a a b b b =⋅+=⋅+= ,有0a b ⋅= ,则a b ⊥ ,D 选项正确.故选:AD .三、填空题13.已知点(1,2)A ,点(4,5)B ,若2AP PB =,则点P 的坐标是________.【正确答案】P (3,4)【详解】试题分析:设(),P x y ,代入2AP PB =得()()1,224,53,3x y x y x y --=--∴==()3,3P ∴向量的坐标运算14.设23i 4i a b +=+,其中,a b 是实数,则i a b +=__________.【分析】由23i 4i a b +=+可得23a b =⎧⎨=⎩,从而得i 23i a b +=+,再根据复数的模定义即可求得i a b +.【详解】解:因为23i 4i a b +=+,所以243a b =⎧⎨=⎩,解得23a b =⎧⎨=⎩,所以i 23i a b +=+,所以|a b +15.李子坝站的“单轨穿楼”是重庆轨道交通的一大特色,吸引众多A 游客打卡拍照.阿伟为了测量李子坝站站台距离地面的高度AB ,采取了以下方法:在观最台的D 点处测得站台A 点处的仰角为45 ;后退15米后,在F 点处测很站台A 点处的仰角为30 ,已知阿伟的眼睛距离地面高度为 1.5CD EF ==米,则季子坝站站台F 的高度AB 为___________米.153182+【分析】假设AG 长度,AGC 使用勾股定理,AEC △使用正弦定理,解出AG 高度,进而求出AB 高度.【详解】假设AG 高度为x 米,则AC 2米,对AEC △使用正弦定理得:sin sin AC CEAEC CAE=行,所以sin 30sin(4530)AC CE=-o o,所以215sin 30sin 45cos30cos 45sin 30=-o o oo o,所以216224-x =解得15(31)2x =,所以1531315318222()==AB +,故153182+16.在锐角ABC 中,角,,A B C 所对的边分别为,,a b c ,它的面积等于)22234b c a +-且2222b c a a +=+,则ABC 的面积的取值范围是_________.【正确答案】333,2⎭【分析】根据三角形面积公式化简已知等式可求得A ,结合余弦定理可求得2a bc =,利用正弦定理边化角,再结合三角恒等变换知识可求得31π1sin 2264bc B =⎛⎫-+ ⎪⎝⎭,由正弦型函数值域求法可求得bc 取值范围,代入三角形面积公式即可.【详解】)2221sin 24ABCb c a S A +-==,2221sin 24b c a A A bc +-==,即tan A =π0,2A ⎛⎫∈ ⎪⎝⎭,π3A ∴=;由2222b c a a +=+得:22221cos 222b c a a a A bc bc bc +-====,2a bc ∴=;由正弦定理得:πsin sin sin 2sin 3a b c bcA B C ===,b ∴=sin c B =,()33sin sin sin sin bc B C B A B ∴===+⎝⎭31π1sin 2264B =⎛⎫-+ ⎪⎝⎭;ABC 为锐角三角形,π022ππ032B C B ⎧<<⎪⎪∴⎨⎪<=-<⎪⎩,解得:ππ62B <<,ππ5π2666B ∴<-<,1πsin 2126B ⎛⎫∴<-≤ ⎪⎝⎭,则[)4,6bc ∈,1sin 242ABC S bc A bc ⎫∴==∈⎪⎪⎭.故答案为.⎭四、解答题17.已知复数()222159i z m m m =--+-,其中R m ∈.(1)若z 为实数,求m 的值;(2)若z 为纯虚数,求1iz+的值.【正确答案】(1)3m =±(2)88i+【分析】(1)由题意得290m -=,求解即可;(2)先由题意求得16i z =,再根据复数的除法法则化简复数1iz +,由此可求得答案.【详解】(1)若z 为实数,则290m -=,解得3m =±.(2)若z 为纯虚数,则22215090m m m ⎧--=⎨-≠⎩,解得5m =,∴16i z =,故()()()16i 1i 16i 88i 1i 1i 1i 1i z -===++++-,18.已知向量,a b 满足()()26a b a b +⋅-=- ,且1a = ,2b = .(1)求a b ⋅ ;(2)求a 与b 的夹角θ(3)求a b + .【正确答案】(1)1-(2)2π3【分析】(1)根据向量数量积的运算律可直接构造方程求得结果;(2)利用向量夹角公式直接求解即可;(3)由a b + .【详解】(1)()()222276a b a b a a b b a b +⋅-=-⋅-=--⋅=- ,1a b ∴⋅=- .(2)11cos 122a b a b θ⋅-===-⨯⋅ ,又[]0,πθ∈,2π3θ∴=.(3)a b += 19.已知平面向量()1,a x = ,()23,b x x =+- ,x ∈R .(1)若a b ⊥ ,求a b - ;(2)若a 与b 的夹角为锐角,求x 的取值范围.【正确答案】(1)2或10(2)()()1,00,3-【分析】(1)根据垂直关系可构造方程求得x ,由向量模长的坐标运算可求得结果;(2)根据向量共线的坐标表示可求得x 的值,根据夹角为锐角可构造不等式组求得结果.【详解】(1)a b ⊥ ,2230a b x x ∴⋅=+-= ,解得:=1x -或3x =,当=1x -时,()0,2a b -=- ,2a b ∴-= ;当3x =时,()8,6a b -=-,10a b ∴-=;综上所述:2a b -= 或10(2)若,a b 共线,则()23x x x -=+,解得:0x =或2x =-,当0x =时,()1,0a = ,()3,0b = ,此时,a b 同向;当2x =-时,()1,2a =- ,()1,2b =- ,此时,a b 反向;∴若a 与b 的夹角为锐角,则22300a b x x x ⎧⋅=+->⎪⎨≠⎪⎩,解得:13x -<<且0x ≠,x ∴的取值范围为()()1,00,3- .20.在ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,且sin sin sin A C a b B a c--=+.(1)求角C 的大小;(2)若c =AB 边上的中线长为5,求ABC 的面积.【正确答案】(1)3π;(2)2.【分析】(1)利用正弦定理将角化边,反凑余弦定理,即可求得C ;(2)倍长中线至CD ,在DAC △中由余弦定理,结合(1)中所求,即可求得ab ,由面积公式即可求得结果.【详解】(1)由正弦定理得a c a b b a c--=+,化简得222a b c ab +-=.由余弦定理得2221cos 22a b c C ab +-==,由()0,πC ∈可得π3C =.(2)倍长AB 边上的中线至CD ,连接DA ,在DAC △中,由CAD ∠的余弦定理可得22221001cos 10022a b CAD a b ab ab +-∠==-⇒++=,又由(1)知222a b c ab +-=即2248a b ab +-=,所以26ab =,所以113133sin 262222S ab C ==⨯=.本题考查利用正弦定理和余弦定理解三角形,属综合基础题.21.已知ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,满足sin sin 1sin sin sin sin A b B B C b A c B +=++(1)求角C ;(2)CD 是ACB ∠的角平分线,若33CD =,ABC 的面积为23c 的值.【正确答案】(1)3C π=;(2)23c =【分析】(1)先由正弦定理得21a b b c ba cb+=++,化简整理得222a b c ab +-=,再由余弦定理求得cos C ,即可求解;(2)先由面积求得8ab =,再由角平分线得AD b BD a =,结合平面向量得a b CD CA CB a b a b=+++ ,平方整理求得6a b +=,再由(1)中222a b c ab +-=即可求出c 的值.【详解】(1)由正弦定理得21a b b c ba cb+=++,即1a b b c a c +=++,整理得()()()()a a c b b c a c b c +++=++,化简得222a b c ab +-=,由余弦定理得2221cos 22a b c C ab +-==,又()0,C π∈,则3C π=;(2)由面积公式得11sin 222ab C ab ==8ab =,又CD 是ACB ∠的角平分线,则1sin 261sin 26ACD BCD CA CD S CA AD S CB BD CB CD ππ⋅⋅⋅===⋅⋅⋅ ,即AD b BD a =,则()b b a b CD CA AD CA AB CA CB CA CA CB a b a b a b a b =+=+=+-=+++++ ,所以()()()2222222222a b a ab b CD CA CB CA CA CB CB a b a b a b a b a b ⎛⎫=+=+⋅+ ⎪++⎝⎭+++ ,即()()()2222222162132a b ab a b ab a b a b a b =+⋅⋅++++,整理得()2221633a b a b =+,又8ab =,解得6a b +=,则()222220a b a b ab +=+-=,由(1)知22220812c a b ab =+-=-=,则c =.22.如图,某巡逻艇在A 处发现北偏东30°B 处有一艘走私船,正沿东偏南45°的方向以3海里/小时的速度向我海岸行驶,巡逻艇立即以/小时的速度沿着正东方向直线追去,1小时后,巡逻艇到达C 处,走私船到达D 处,此时走私船发现了巡逻艇,立即改变航向,以原速向正东方向逃窜,巡逻艇立即加速以/小时的速度沿着直线追击(1)当走私船发现了巡逻艇时,两船相距多少海里(2)问巡逻艇应该沿什么方向去追,才能最快追上走私船【正确答案】(1).(2)巡逻艇应该北偏东75︒方向去追,才能最快追上走私船.【分析】(1)在ABC 中,解三角形得BC =45ABC ︒∠=,在BCD △中,由余弦定理求得CD .(2)在BCD △中,解三角形得60BCD ︒∠=,90BDC ︒∠=,得到135CDE ︒∠=,在CDE 中,由正弦定理求得30∠= DCE ,结合图形知巡逻艇的追赶方向.【详解】(1)由题意知,当走私船发现了巡逻艇时,走私船在D 处,巡逻艇在C 处,此时313,1BD AC =⨯===由题意知903060BAC ︒︒︒∠=-=在ABC 中,AB AC =+=由余弦定理得2222cos BC AB AC AB AC BAC=+-⋅⋅∠221122=++-+⋅=所以BC =在ABC 中,由正弦定理得sin sin AC BC ABC BAC =∠∠,即sin sin 60ABC ︒=∠所以sin 45,ABC ABC ︒∠=∴∠=(135 舍去)所在180604575ACB ︒︒︒︒∠=--=又180********CBD ︒︒︒︒︒∠=---=在BCD △中,30,3,CBD BD BC ︒∠===由余弦定理得2222cos 30CD BC BD BC BD ︒=+-⋅⋅(22323cos33︒=+-⋅=⨯CD ∴=.(2)当巡逻艇经过t 小时经CE 方向在E 处追上走私船,则,3,3CE DE t CD ===在BCD △中,由正弦定理得:sin sin sin CD BD BC CBD BCD BDC ==∠∠∠3sin BCD ==∠所以sin 60BCD BCD ︒∠=∴∠=,90,135BDC CDE ︒︒∠=∠=在CDE 中,由正弦定理得:sin sin CE DE CDE DCE =∠∠则1sin2DCE ︒∠==,故30∠= DCE (150 舍)ACE ACB BCD DCE ∠=∠+∠+∠7560309075︒︒︒=+++ =故巡逻艇应该北偏东75︒方向去追,才能最快追上走私船.。
2022-2023学年上海市新川中学高一年级下册学期第一次月考数学试题【含答案】

2022-2023学年上海市新川中学高一下学期第一次月考数学试题一、填空题1.的终边经过点,则的正切值为________.α()5,12-α【答案】125-【分析】直接根据正切函数的广义定义带入即可算出.【详解】.1212tan 55y x α-===-故答案为: .125-2.已知是第二象限角,,则________.α1sin 3α=πsin 2α⎛⎫+=⎪⎝⎭【答案】【分析】根据诱导公式,结合同角的三角函数关系式进行求解即可.【详解】因为是第二象限角,,α1sin 3α=所以πsin cos 2αα⎛⎫+==== ⎪⎝⎭故答案为:3.已知角终边上一点,则________.α()2,3P -()()πcos sin π23πcos πcot 2αααα⎛⎫+- ⎪⎝⎭=⎛⎫++ ⎪⎝⎭【答案】【分析】根据三角函数定义及诱导公式化简即可得解.【详解】由诱导公式知,,()()πcos sin πsin sin 2sin 3πcos (tan )cos πcot 2ααααααααα⎛⎫+- ⎪-⋅⎝⎭===--⋅-⎛⎫++ ⎪⎝⎭因为角终边上一点,α()2,3P -所以sin α所以原式sin α=-=故答案为:4化成的形式___________.cos x x -sin()(0,02)A x A ϕϕπ+>≤<【答案】112sin 6x π⎛⎫+ ⎪⎝⎭,再由诱导公式将其转化为cos 2sin(6x x x π-=-的形式即可.sin()(0,02)A x A ϕϕπ+>≤<,1cos cos )2(sin cos cos sin 2sin()2666x x x x x x x πππ-=-=-=-.112sin()2sin[2(2sin()666x x x ππππ-=+-=+故答案为:.112sin()6x π+5.化简________.()()()()sin 70cos 10cos 70sin 170αααα︒+︒+-︒+︒-=【分析】根据诱导公式以及两角和的正弦公式进行化简,即可求得答案.【详解】由题意可得()()()()sin 70cos 10cos 70sin 170αααα︒+︒+-︒+︒-()()()()sin 70cos 10cos 70sin 10αααα=︒+︒+-︒+︒+()()7010]sin 6sin[0αα︒+-︒+=︒==6.若,则_______________.1cos()3αβ-=22(sin sin )(cos cos )αβαβ+++=【答案】83【解析】原式展开,利用、两角差的余弦公式,化简整理,即可得答案.22sin cos 1αα+=【详解】222222(sin sin )(cos cos )sin +sin 2sin sin cos cos 2cos cos αβαβαβαβαβαβ+++=++++=.22sin sin 2cos 282cos()2323cos αβαβαβ++=+-=+=故答案为:83【点睛】本题考查同角三角函数的关系,两角差的余弦公式,考查计算化简的能力,属基础题.7.已知,,则________.2tan()5αβ+=1tan()44πβ-=tan()4πα+=【答案】322【分析】由,再结合两角差的正切公式求解即可.()()44ππααββ+=+--【详解】解:因为,,2tan()5αβ+=1tan()44πβ-=又,()()44ππααββ+=+--所以=,tan()tan()4tan()tan[()()]441tan()tan()4παββππααββπαββ+--+=+--=++-213542122154-=+⨯故答案为.322【点睛】本题考查了两角差的正切公式及考查了角的拼凑,重点考查了观()()44ππααββ+=+--察能力及运算能力,属中档题.8.已知则________.1sin cos 3αα+=2πcos 4α⎛⎫-=⎪⎝⎭【答案】118【分析】由两角差余弦公式可得,结合条件可求.πππcos cos cos sin sin444ααα⎛⎫-=+ ⎪⎝⎭2πcos 4α⎛⎫- ⎪⎝⎭【详解】因为πππcos cos cos sin sin444ααα⎛⎫-=+ ⎪⎝⎭所以,)πcos cos sin 4ααα⎛⎫-+ ⎪⎝⎭又,1sin cos 3αα+=所以,2π111cos 42918α⎛⎫-=⨯=⎪⎝⎭故答案为:.1189.中,,,________.ABC 60A ∠=︒75C ∠=︒a =ABC S = 【分析】根据正弦定理可求得c ,再求出B ,根据三角形面积公式即可求得答案.【详解】因为sin 75sin(4530)sin 45cos30cos 45sin 30︒=︒+=︒+︒在中,由正弦定理可得,ABC sin ,sin sin sin a c a C c A C A =∴===因为,,故,60A ∠=︒75C ∠=︒45B ∠=︒所以,11sin 22ABC S ac B ===10.边长为10,14,16的三角形中最大角与最小角的和为________.【答案】##2π3120【分析】利用余弦定理求得最大角与最小角的和的补角即可.【详解】解:设边长为10,14,16分别对应边a ,b ,c ,由余弦定理得:,2222221016141cos 2210162a c b B ac +-+-===⨯⨯因为,()0,B π∈所以,则,3B π=23A C π+=故三角形中最大角与最小角的和为,2π3故答案为:2π311.在中,边,,则角的取值范围是________________.ABC ∆2BC =AB C 【答案】0,3π⎛⎤ ⎝⎦【分析】利用余弦定理构建方程,利用判别式可得不等式,从而可求角的取值范围.C 【详解】由题意,设,由余弦定理得,AC b =2222cos AB AC BC AC BC C =+-⋅⋅即,即,,2344cos b b C =+-24cos 10b b C -+=216cos 40C ∴∆=-≥或,1cos 2C ∴≥1cos 2C ≤-,不可能为钝角,则,AB BC < C ∴1cos 2C ≥又,.0C >03C π∴<≤因此,角的取值范围是.C 0,3π⎛⎤ ⎥⎝⎦故答案为:.0,3π⎛⎤ ⎥⎝⎦【点睛】本题考查余弦定理的运用,考查解不等式,解题的关键是利用余弦定理构建方程,利用判别式得不等式,属于中等题.12.已知,存在实数,使得对任意,总成立,则的最小值是0θ>ϕn N *∈()cos cos8n πθϕ+<θ______.【答案】27π【分析】作出单位圆,根据终边位置可得;结合,即可求得最n θϕ+4πθ>2N πθ*∈()2k N k πθ*=∈小值.【详解】作出单位圆如图所示,由题意知:的终边需落在图中阴影部分区域,n θϕ+,即,()()188n n ππθϕθϕθ⎛⎫∴++-+=>--⎡⎤ ⎪⎣⎦⎝⎭4πθ>对任意,总成立,,即,n N *∈()cos cos 8n πθϕ+<2N πθ*∴∈()2k N k πθ*=∈又,,.4πθ>1,2,3,4,5,6,7k ∴=min 27πθ∴=故答案为:.27π【点睛】关键点点睛:本题考查三角函数中的恒成立问题的求解,解题关键是能够根据三角函数定义,结合单位圆,确定角的终边的位置,进而利用位置关系构造不等式求得所求变量所满足的范围.二、单选题13.下列命题中,正确的是( )A .第二象限角大于第一象限角;B .若是角终边上一点,则()(),20P a a a ≠αsin α=C.若,则、的终边相同;sin sin αβ=αβD ..tan x =ππ,Z 3x x k k ⎧⎫=-∈⎨⎬⎩⎭【答案】D【分析】取特例可判断AC ,根据三角函数的定义判断B ,利用周期解出三角方程的解集判断D.【详解】因为象限角不能比较大小,如是第二象限角,是第一象限角,故A 错误;100α=︒400β=︒因为是角终边上一点,所以,()(),20P a a a ≠α|r a==所以B 错误;sin α==当时,满足,但、的终边不相同,故C 错误;π2π,33αβ==sin sin αβ=αβ当上的解为,故在定义域上的解为,tan x =ππ(,)22-π3-ππ,Z 3x x k k ⎧⎫=-∈⎨⎬⎩⎭故D 正确.故选:D14.化简 )A .B .C .D .2sin 22sin 2-2sin 24cos 2-2sin 24cos2-+【答案】C【分析】根据正弦、余弦的二倍角公式即可求解.【详解】又2sin 2cos 22cos 2==-+因为,所以,即原式22ππ<<sin 20,cos 20><2sin 24cos 2=- 故选C【点睛】本题考查正弦、余弦的二倍角公式,属于基础题.15.中,设,则的形状为( )ABC 21cos cos cos 2CA B -=ABC A .直角三角形B .锐角三角形C .等腰三角形D .钝角三角形【答案】C 【分析】先将降幂扩角,再将利用诱导公式换成,再利用和角公式展开即可2cos 2Ccos C ()cos A B -+得出结论.【详解】由得21cos cos cos 2C A B -=1cos 1cos cos 2CA B +-=整理得,因为,12cos cos cos A B C -=πA B C ++=所以()()cos cos πcos cos cos sin sin C A B A B A B A B=-+=-+=-+⎡⎤⎣⎦所以12cos cos cos cos sin sin A B A B A B -=-+所以()1cos cos sin sin cos A B A B A B =+=-又因为,所以,即.(),0,πA B ∈0A B -=A B =所以为等腰三角形.ABC 故选:C.16.设a ,,,若对任意实数x 都有,则满足条件的有R b ∈[)0,2πc ∈()π2sin 3sin 3x a bx c ⎛⎫-=+ ⎪⎝⎭序实数组的组数为( )()a b c ,,A .1组;B .2组;C .4组;D .无数组.【答案】C【分析】由题意得出,,然后对、的取值进行分类讨论,结合题中等式求出的值,3b =2=a a b c 即可得出正确选项.【详解】由题意知,函数与函数的最大值相等,最小值也相等,2sin 3π3y x ⎛⎫=- ⎪⎝⎭()sin y a bx c =+则,2=a 函数与函数的最小正周期相等,则,2sin 3π3y x ⎛⎫=- ⎪⎝⎭()sin y a bx c =+3b =当,时,由于,则,2a =3b =()2sin 32sin 33πx x c ⎛⎫-=+ ⎪⎝⎭()π2πZ 3c k k =-+∈由于,此时,;02πc ≤<5π3c =当,时,,2a =3b =-()()2sin 32sin 32sin 33πx x c x c π⎛⎫-=-+=-+ ⎪⎝⎭则,得,,此时,;()ππ2πZ 3c k k -=-∈()4π2πZ 3c k k =-∈02πc ≤< 4π3c =当,时,,2a =-3b =()()2sin 32sin 32sin 33πx x c x c π⎛⎫-=-+=++ ⎪⎝⎭则,得,,则;()ππ2πZ 3c k k +=-∈()()213c k k Z ππ=--∈02c π≤< 23c π=当,时,,2a =-3b =-()()π2sin 32sin 32sin 33x x c x c ⎛⎫-=--+=- ⎪⎝⎭则,得,,则.()π2πZ 3c k k -=-∈()π2πZ 3c k k =-∈02πc ≤< π3c =因此,满足条件的有序实数组的组数为组.()a b c ,,4故选:C .三、解答题17.已知,,都是锐角,求的值.cos αsin βαβαβ+【答案】π4αβ+=【分析】利用同角三角函数的基本关系求得,的值,再利用两角和的余弦公式求出sin αcos β的值,可得的值.()cos αβ+αβ+【详解】因为,cos α=sin β=αβ所以sin α==cos β==所以()cos cos cos sin sin αβαβαβ+=-==因,为都是锐角,所以,.所以,αβπ02α<<π02β<<0παβ<+<所以.π4αβ+=18.证明:()sin 211tan 1sin 2cos 212θθθθ+=+++【答案】证明见解析【分析】根据二倍角公式以及同角三角函数之间的基本关系即可得出证明.【详解】证明:由二倍角公式以及可得,22sin 22sin cos cos 2cos sin θθθθθθ==-,22sin cos 1θθ+=222sin 212sin cos sin cos sin 2cos 212sin cos 2cos θθθθθθθθθθ+++=+++()()2sin cos sin cos 2cos sin cos 2cos θθθθθθθθ++==+1sin cos 2cos cos θθθθ⎛⎫=+ ⎪⎝⎭()1tan 12θ=+得证.19.设点P 是以原点为圆心的单位圆上的一个动点,它从初始位置出发,沿单位圆按顺时()01,0P 针方向转动角后到达点,然后继续沿着单位圆按顺时针方向转动角到达点,若π02αα⎛⎫<< ⎪⎝⎭1P π32P点的纵坐标为,求点的坐标.2P 35-1P【答案】【分析】由三角函数的定义可得,利用两角差的正弦、余弦公式可求得、π3sin 35α⎛⎫--=-⎪⎝⎭sin α的值,即可得出点的坐标.cos α1P 【详解】由三角函数的定义可知,点的纵坐标为,即,2P π3sin 35α⎛⎫--=-⎪⎝⎭π3sin 35α⎛⎫-+=- ⎪⎝⎭故.因为,则,π3sin 35α⎛⎫+= ⎪⎝⎭π02α<<ππ5π336α<+<若,不符合题意;πππ332α<+<πsin 13α⎛⎫<+< ⎪⎝⎭若,则,符合题意.ππ5π236α≤+<1πsin 123α⎛⎫<+≤⎪⎝⎭故.所以.ππ5π236α≤+<π4cos 35α⎛⎫+==-⎪⎝⎭所以ππ1ππcos cos cos 33233αααα⎡⎤⎛⎫⎛⎫⎛⎫=+-=+++=⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦.ππ1ππsin sin sin 33233αααα⎡⎤⎛⎫⎛⎫⎛⎫=+-=+-+=⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦而()cos cos αα-==()sinsin αα-=-=所以点的坐标为.1P 20.在中,角A ,B ,C 对应边为a ,b ,c ,其中.ABC 2b =(1)若,且,求边长c ;120A C +=︒2a c =(2)若,求的面积.15,sin A C a A =︒-=ABC ABC S 【答案】(2)3【分析】(1)利用正弦定理以及三角恒等变换的知识求得.c (2)利用正弦定理、两角和的正弦公式以及三角形的面积公式求得正确答案.【详解】(1)依题意,,2a c =由正弦定理得,即,sin 2sin A C =()sin 1202sin C C︒-=,1sin 2sin ,tan 2C C C C +==由于,所以,则,0120C ︒<<︒30C =︒90,60A B =︒=︒由正弦定理得.sin ,sin sin sin c b b Cc C B B====(2)依题意,,sin a A =由正弦定理得,sin sin A C A =由于,,所以,15180A ︒<<︒sin 0A>sin C =由于,所以为锐角,所以,150A C -=︒>C 45C =︒则,60,75A B =︒=︒()sin 75sin 4530sin 45cos30cos 45sin 30︒=︒+︒=︒︒+︒︒=由正弦定理得,sin ,sin sin sin c b b Cc C B B====)21==所以.)11sin 221322ABC S bc A ==⨯⨯=△21.在某海滨城市附近海面有一台风,据监测,当前台风中心位于城市(如图)的东偏南O 方向300千米的海面处,并以20千米/时的速度向西偏北45°方向移动,台风侵袭(cos θθ=P的范围为圆形区域,当前半径为60千米,并以10千米/时的速度不断增大,问几个小时后该城市开始受到台风的侵袭?受到台风的侵袭的时间有多少小时?【答案】12小时后该城市开始受到台风侵袭,受到台风的侵袭的时间有12小时.【分析】设经过小时台风中心移动到点时,台风边沿恰好在城,由题意得,t Q O,在中,300,20,r()6010OP PQ t OQ t t ====+cos 45a θθ==-︒4sin 5a θ==POQ ∆由余弦定理得:.2222cos OQ OP PQ OP PQ a =+-⋅【详解】解:设经过小时台风中心移动到点时,台风边沿恰好在城,t Q O 由题意得,300,20,r()6010OP PQ t OQ t t====+cos 45a θθ==-︒4sin 5a θ∴==由余弦定理得:2222cos OQ OP PQ OP PQ a=+-⋅即2224(6010)300(20)230020t 5t t +=+-⨯⨯⨯即2362880t t -+=解得,1212,24t t ==2112t t -=答:12小时后该城市开始受到台风侵袭,受到台风的侵袭的时间有12小时.【点睛】本题主要考查了余弦定理在实际生活中的应用,需熟记定理内容,属于基础题.。
2021-2022学年高一下学期第一次月考数学试题含答案 (2)
(2)问从种植起,第几年树木生长最快?
22.对于定义在D上的函数f(x),如果存在实数x0,使得f(x0)=x0,那么称x0是函数f(x)的一个不动点.已知f(x)=ax2+1.
(1)当a=-2时,求f(x)的不动点;
(2)若函数f(x)有两个不动点x1,x2,且x1<2<x2.
【答案】(1) ;(2) .
19.已知函数 .
(Ⅰ)求函数 的定义域,并判断函数 的奇偶性;
(Ⅱ)求解关于 的不等式 .
【19题答案】
【答案】(Ⅰ)定义域为 ,函数 既不是奇函数,也不是偶函数;(Ⅱ) .
20.已知函数 .
(1)求函数 的最小正周期;
(2)求函数 在区间 上 单调递增区间.
【20题答案】
A. B.
C. D.
【5题答案】
【答案】D
6. “ ”是“ ”成立的()
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分也不必要条件
【6题答案】
【答案】B
7.函数 的部分图象如图所示.将 图象上所有的点向右平移 个单位长度,所得图象的函数解析式是()
A. B.
C. D.
【7题答案】
① 在区间 上是单调的;
②当定义域是 时, 的值域也是 ,则称 是函数 的一个“黄金区间”.
如果 可是函数 的一个“黄金区间“,则 的最大值为()
A. B.1C. D.2
二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得2分.
9.若 为第二象限角,则下列结论正确的是()
A B. C. D.
【9题答案】
高一数学下学期第一次月考试题(含解析)新人教A版
2012-2013学年天津八中高一(下)第一次月考数学试卷参考答案与试题解析一、选择题:本大题共10小题,(每小题4分,共40分)在每小题给出的四个选项中,只有一项是符合题目要求的.1.(4分)在△ABC中,已知b=20,c=30,A=60°,则a的值为()A.B.C.D.考点:余弦定理.专题:计算题;解三角形.分析:根据余弦定理,列出a2关于b、c和cosA的式子,算出a2=700,开方即得边a的长度.解答:解:∵△ABC中,b=20,c=30,A=60°,∴根据余弦定理,得a2=b2+c2﹣2bccosA=202+302﹣2×20×30cos60°=700因此,a==10故选:A点评:本题给出三角形两边及其夹角的大小,求第三边的大小,着重考查了利用余弦定理解三角形的知识,属于基础题.2.(4分)在△ABC中,若b=2asinB,则A等于()A.30°或60°B.45°或60°C.120°或60°D.30°或150°考点:正弦定理的应用.专题:计算题.分析:结合已知及正弦定理可求sinA,进而可根据特殊角的三角形函数值可求A解答:解:∵b=2asinB,由正弦定理可得,sinB=2sinAsinB∵sinB≠0∴sinA=∴A=30°或150°故选D点评:本题主要考查了正弦定理及特殊角的三角函数值的简单应用,属于基础试题3.(4分)在△ABC中,已知a=5,c=4,B=30°,则△ABC的面积为()A.3B.5C.5D.10考点:三角形的面积公式.专题:计算题;解三角形.分析:由正弦定理关于面积公式,得S=acsinB,代入题中数据即可得到△ABC的面积.解答:解:∵a=5,c=4,B=30°,∴由正弦定理,得△ABC的面积为S=acsinB=×5×4×sin30°=5故选:B点评:本题给出三角形的两边及其夹角大小,求三角形的面积.着重考查了运用正弦定理解三角形的知识,属于基础题.4.(4分)在△ABC中,若(a+b+c)(b+c﹣a)=3bc,则A=()A.90°B.60°C.135°D.150°考点:余弦定理.专题:计算题.分析:把已知条件的左边利用平方差公式化简后,与右边合并即可得到b2+c2﹣a2=bc,然后利用余弦定理表示出cosA的式子,把化简得到的b2+c2﹣a2=bc代入即可求出cosA的值,然后根据A的范围,利用特殊角的三角函数值即可求出A的度数.解答:解:由(a+b+c)(b+c﹣a)=(b+c)2﹣a2=b2+2bc+c2﹣a2=3bc,化简得:b2+c2﹣a2=bc,则根据余弦定理得:cosA===,又A∈(0,180°),所以A=60°.故选B点评:此题考查学生灵活运用余弦定理化简求值,考查了整体代换的数学思想,是一道综合题.5.(4分)(2003•北京)在等差数列{a n}中,已知a1+a2+a3+a4+a5=20,那么a3=()A.4B.5C.6D.7考点:等差数列的性质.专题:计算题.分析:法一:设首项为a1,公差为d,由已知有5a1+10d=20,所以a3=4.法二:因为a1+a5=a2+a4=2a3,所以由a1+a2+a3+a4+a5=20得5a3=20,故a3=4.解答:解:法一:∵{a n}为等差数列,设首项为a1,公差为d,由已知有5a1+10d=20,∴a1+2d=4,即a3=4.故选A.法二在等差数列中,∵a1+a5=a2+a4=2a3,∴由a1+a2+a3+a4+a5=20得5a3=20,∴a3=4.故选A.点评:本题考查数列的性质和应用,解题时要注意公式的灵活运用.6.(4分)等差数列前10项和为100,前100项和为10.则前110项的和为()A.﹣90 B.90 C.﹣110 D.10考点:等差数列的前n项和.专题:等差数列与等比数列.分析:根据等差数列前n项和公式求得首项和公差,再由前n项和公式求得前110项的和.解答:解:记该等差数列为{a n},设其公差为d,因为等差数列的求和公式为S n=na1+n(n﹣1),所以S10=10a1+10×(10﹣1)=100,即a1+9×=10﹣﹣﹣﹣﹣(1)同理S100=100a1+100(100﹣1)=10,即10a1+990=1﹣﹣﹣﹣﹣﹣(2)由(1),(2)得:a1=,d=﹣,所以S110=110a1+110(110﹣1)=﹣110,故选C点评:本题考查等差数列前n项和公式的直接应用,属基础题.7.(4分)已知等差数列{a n}中,a3+a4=26,则它的前6项和S6的值为()A.104 B.78 C.52 D.26考点:等差数列的前n项和.专题:等差数列与等比数列.分析:由等差数列的性质可得a1+a6=26,代入求和公式可得答案.解答:解:由等差数列的性质可得a1+a6=a3+a4=26,而S6===78故选B点评:本题考查等差数列的性质和求和公式,属基础题.8.(4分)(2010•湖南模拟)+1与﹣1,两数的等比中项是()A.1B.﹣1 C.±1D.考点:等比数列的性质.专题:计算题.分析:设出两数的等比中项为x,根据等比中项的定义可知,x的平方等于两数之积,得到一个关于x的方程,求出方程的解即可得到两数的等比中项.解答:解:设两数的等比中项为x,根据题意可知:x2=(+1)(﹣1),即x2=1,解得x=±1.故选C点评:此题考查学生掌握等比数列的性质,是一道基础题.学生做题时应注意等比中项有两个.9.(4分)已知等差数列{a n}的前n项和为,则这个数列的通项公式为 3 .A.a n=2n+3 B.a n=2n C.a n=2n﹣1 D.a n=2n﹣3考点:等差数列的通项公式;等差数列的前n项和.专题:等差数列与等比数列.分析:当n=1时,可得a1,n≥2时,a n=S n﹣S n﹣1,验证n=1时是否符合即可.解答:解:当n=1时,a1=S1=12﹣2×1=﹣1,当n≥2时,a n=S n﹣S n﹣1=n2﹣2n﹣(n﹣1)2+2(n﹣1)=2n﹣3把n=1代入上式可得2×1﹣3=﹣1=a1,故数列的通项公式为:a n=2n﹣3故选D点评:本题考查等差数列的通项公式和求和公式,属基础题.10.(4分)△ABC中,角A、B、C的对边分别为a、b、c,如果a2+b2>c2,则△ABC的形状是()A.锐角三角形B.钝角三角形C.直角三角形D.不能确定考点:三角形的形状判断.专题:解三角形.分析:直接通过特殊值,满足条件a2+b2>c2,推出结果即可.解答:解:当a=b=c时,满足a2+b2>c2,当a>b>c时,满足a2+b2>c2,当a2=b2+c2时,满足a2+b2>c2,所以三角形可能是锐角三角形,直角三角形,钝角三角形.故选D.点评:本题考查三角形的形状的判断,特殊值法能够避繁就简,注意表达式的形式的转化.二、填空题:本大题共4小题,(每小题4分,共16分).答案填在题中横线上.(答案不全或多出的不给分)11.(4分)在△ABC中,若sinA:sinB:sinC=7:8:13,则C= 120 度.考点:正弦定理.专题:计算题;转化思想.分析:利用正弦定理可将sinA:sinB:sinC转化为三边之比,进而利用余弦定理求得cosC,故∠C可求.解答:解:∵由正弦定理可得sinA:sinB:sinC=a:b:c,∴a:b:c=7:8:13,令a=7k,b=8k,c=13k(k>0),利用余弦定理有cosC===,∵0°<C<180°,∴C=120°.故答案为120.点评:此题在求解过程中,先用正弦定理求边,再用余弦定理求角,体现了正、余弦定理的综合运用.12.(4分)已知等比数列{a n}中,a1•a10=5,则a4•a5•a6•a7= 25 .考点:等比数列的通项公式;等差数列的前n项和.专题:计算题;等差数列与等比数列.分析:直接利用等比数列的性质可得,a5•a6=a4•a7=,可求解答:解:由等比数列的性质可知,a5•a6=a4•a7==5∴a4a5a6a7==25故答案为:25点评:本题主要考查了等比数列的性质的简单应用,属于基础试题13.(4分)等差数列{a n}中,a1=,前n项和为S n,且S3=S12,则使S n取最大值时,n= 7或8 .考点:等差数列的前n项和;数列的函数特性;等差数列的通项公式.专题:等差数列与等比数列.分析:由题意可得a4+a5+a6+…+a12=0,又a4+a12=a5+a11=…=2a8,可得前7项为正数,第8项为0,从第9项开始为负值,进而可得答案.解答:解:∵S3=S12,∴S12﹣S3=0,故a4+a5+a6+…+a12=0,①由等差数列的性质可得a4+a12=a5+a11=…=2a8,②综合①②可得a8=0,结合a1=>0可知,等差数列{a n}中,前7项为正数,第8项为0,从第9项开始为负值,故数列的前7项或前8项和最大,故答案为:7或8点评:本题考查等差数列的性质和前n项和的性质,属基础题.14.(4分)黑白两种颜色的正六边形地面砖按如图的规律拼成若干个图案:则第n个图案中有白色地面砖4n+2 块考点:归纳推理.专题:探究型.分析:通过已知的几个图案找出规律,可转化为求一个等差数列的通项公式问题即可.解答:解:第1个图案中有白色地面砖6块;第2个图案中有白色地面砖10块;第3个图案中有白色地面砖14块;…设第n个图案中有白色地面砖n块,用数列{a n}表示,则a1=6,a2=10,a3=14,可知a2﹣a1=a3﹣a2=4,…可知数列{a n}是以6为首项,4为公差的等差数列,∴a n=6+4(n﹣1)=4n+2.故答案为4n+2.点评:由已知的几个图案找出规律转化为求一个等差数列的通项公式是解题的关键.三、解答题:本大题共6小题,共40分.解答应写出文字说明,证明过程或演算步骤.15.(6分)(2004•山东)等差数列{a n}的前n项和记为S n.已知a10=30,a20=50.(Ⅰ)求通项a n;(Ⅱ)若S n=242,求n.考点:等差数列的通项公式;等差数列的前n项和.专题:计算题.分析:(1)利用等差数列的通项公式,根据a10和a20的值建立方程组,求得a1和d,则通项a n可得.(2)把等差数列的求和公式代入S n=242进而求得n.解答:解:(Ⅰ)由a n=a1+(n﹣1)d,a10=30,a20=50,得方程组解得a1=12,d=2.所以a n=2n+10.(Ⅱ)由得方程解得n=11或n=﹣22(舍去).点评:本小题主要考查等差数列的通项公式、求和公式,考查运算能力.16.(6分)在等比数列{a n}中,a1最小,且a1+a n=66,a2•a n﹣1=128,前n项和S n=126,(1).求公比q;(2).求n.考点:等比数列的通项公式;等比数列的性质.专题:计算题.分析:(1)设a n=a1q n﹣1,用a n和a1表示出a2•a n﹣1根据韦达定理推知a1和a n是方程x2﹣66x+128=0的两根,求得a1和a n进而求得q n﹣1,把a1和a n代入S n=126,进而求得q,(2)把q代入q n﹣1=32,求得n.解答:解:(1)∵{a n}成等比数列,∴a1•a n=a2•a n﹣1=128,∵a1+a n=66∴a1、a n是方程x2﹣66x+128=0的两个实数根,解方程x2﹣66x+128=0,得:x1=2,x2=64;又a1最小,∴a1=2,a n=64;又S n=126,∴由从而得:,即q=2;(2)由a n=a1q n﹣1得:2×2n﹣1=64,∴n=6.点评:本题主要考查等比数列的性质以及等比数列的通项公式和前n项和公式.解题的过程中巧妙的利用了一元二次方程中的韦达定理是解题的关键,属基础题.17.(8分)△ABC中,D在边BC上,且BD=2,DC=1,∠B=60°,∠ADC=150°,求AC的长及△ABC的面积.考点:三角形中的几何计算.专题:计算题.分析:∠BAD=150°﹣60°=90°,可得AD=2sin60°=,余弦定理求出AC,利用直角三角形中的边角关系求出AB,利用AB×BDsin∠B 求出△ABC的面积.解答:解:在△ABC中,∠BAD=150°﹣60°=90°,∴AD=2sin60°=.在△ACD中,AC2=()2+12﹣2××1×cos150°=7,∴AC=.∴AB=2cos60°=1,S△ABC=×1×3×sin60°=.点评:本题考查直角三角形中的边角关系,余弦定理的应用,求出AD的值是解题的关键.18.(8分)(2009•福建)等比数列{a n}中,已知a1=2,a4=16(I)求数列{a n}的通项公式;(Ⅱ)若a3,a5分别为等差数列{b n}的第3项和第5项,试求数列{b n}的通项公式及前n项和S n.考点:等差数列与等比数列的综合.专题:计算题;转化思想.分析:(I)由a1=2,a4=16直接求出公比q再代入等比数列的通项公式即可.(Ⅱ)利用题中条件求出b3=8,b5=32,又由数列{b n}是等差数列求出.再代入求出通项公式及前n项和S n.解答:解:(I)设{a n}的公比为q由已知得16=2q3,解得q=2(Ⅱ)由(I)得a3=8,a5=32,则b3=8,b5=32设{b n}的公差为d,则有解得.从而b n=﹣16+12(n﹣1)=12n﹣28所以数列{b n}的前n项和.点评:本小题主要考查等差数列、等比数列等基础知识,考查运算求解能力,考查归化与转化思想.19.(8分)已知{a n}是等差数列,其中a1=25,a4=16(1)求{a n}的通项;(2)数列{a n}从哪一项开始小于0;(3)求a1+a3+a5+…+a19值.考点:等差数列的前n项和;等差数列的性质.专题:计算题.分析:(1)由{a n}是等差数列,其中a1=25,a4=16,利用等差数列通项公式能求出公差d,由此能求出a n=28﹣3n.(2)由a n=28﹣3n<0,得到n>,由此能求出数列{a n}从第几项开始小于0.(3)a1+a3+a5+…+a19是首项为25,公差为﹣6的等差数列,共有10项,由等差数列的前n项和公式能求出其结果.解答:解:(1)∵a4=a1+3d=25+3d=16,∴d=﹣3,,∴a n=28﹣3n…(3分)(2)∵∴数列{a n}从第10项开始小于0 …(6分)(3)a1+a3+a5+…+a19是首项为25,公差为﹣6的等差数列,共有10项其和…(10分)点评:本题考查等差数列的性质和应用,是基础题,也是高考的重点题型.解题时要认真审题,熟练掌握等差数列的通项公式和前n项和公式.20.(8分)已知a、b、c分别是△ABC的三个内角A、B、C所对的边;(1)若△ABC面积,求a、b的值;(2)若a=ccosB且b=csinA,试判断△ABC的形状.考点:余弦定理;三角形的形状判断.专题:计算题.分析:(1)由A的度数求出sinA和cosA的值,再由c及三角形的面积,利用三角形的面积公式求出b的值,然后由b,c及cosA的值,利用余弦定理即可求出a的值;(2)由三角形的三边a,b及c,利用余弦定理表示出cosB,代入已知的a=ccosB,化简可得出a2+b2=c2,利用勾股定理的逆定理即可判断出三角形为直角三角形,在直角三角形ABC中,利用锐角三角函数定义表示出sinA,代入b=csinA,化简可得b=a,从而得到三角形ABC为等腰直角三角形.解答:解:(1)∵,∴,得b=1,由余弦定理得:a2=b2+c2﹣2bccosA=12+22﹣2×1×2•cos60°=3,所以.(2)由余弦定理得:,∴a2+b2=c2,所以∠C=90°;在Rt△ABC中,,所以,所以△ABC是等腰直角三角形.点评:此题考查了三角形的面积公式,余弦定理,正弦定理,以及特殊角的三角函数值,考查了勾股定理的逆定理,锐角三角函数的定义,熟练掌握定理及公式是解本题的关键.。
第一次月考试题-2021-2022学年高一数学(人教A版2019必修第二册)含解析
2021-2022学年高一下册数学月考试题考试范围(第六章和第七章)本试卷共4页,22小题,满分150分,考试用时120分钟。
注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。
用2B 铅笔将试卷类型(B)填涂在答题卡相应位置上,将条形码横贴在答题卡右上角“条形码粘贴处”。
2.作答选择题时,选出每小题答案后,用28铅笔在答题卡上对应题目选项的答案信息点涂黑:如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上,3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案:不准使用铅笔和涂改液。
不按以上要求作答无效。
4.考生必须保持答题卡的整洁,考试结束后,将试卷和答题卡一井交回。
一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(2022·广东南沙·高二期末)若向量(),2a m = ,()7,2b m =- ,a b ⊥ ,则m =()A .49B .49-C .45D .45-2.(2022·广东高州·二模)设()12i 1i +=+x y (i 是虚数单位,x ∈R ,y R ∈),则i x y +=()A .B C .2D3.(2022·广东·广州市协和中学高三阶段练习)若非零向量a 、b 满足a b + ,且()a b b -⊥,则a 与b的夹角为()A .6πB .4πC .34πD .56π4.(2021·广东·仲元中学高一期中)在ABC 中,23A π=,a =,则bc =()A .12B .3C .1D .25.(2021·广东中山·模拟预测)在平行四边形ABCD 中,E 为AC 的三等分点(靠近点A ),连BE 并延长,交AD 于H ,则EH=()A .1143AD AB -B .1153AD AB-C .1163AD AB -D .1164AD AB -6.(2022·广东·模拟预测)复数1i z a b =+在复平面内对应的点为1Z ,将点1Z 绕坐标原点逆时针旋转一定的角度θ,得到点2Z ,2Z 对应的复数为2z ,则2z =().A .()cos sin cos sin ib a a b θθθθ++-B .()cos sin cos sin ib a a b θθθθ+--C .()cos sin cos sin i a b b a θθθθ-++D .()cos sin cos sin ia b b a θθθθ--+7.(2021·广东肇庆·模拟预测)已知2,3a b == ,4a b -= ,若对任意实数t ,21(0)ka tb k +>>恒成立,则k 的取值范围是()A .B .(0,3C .)+∞D .)+∞8.(2021·广东·高三阶段练习)2021年7月份河南郑州地区发生水灾,灾后需要对市区所有街道进行消毒处理.下面是消毒装备的示意图,MN 为路面,PQ 为消毒设备的高,O Q 为喷杆,PQ MN ⊥,34PQO π∠=,O 处是喷洒消毒水的喷头,且喷头的喷射角3AOB π∠=,已知2PQ =,OQ =宽度AB 的最小值为()AB .CD .二、选择题:本题共4小题,每小题5分,共20分。
四川省广安市高一数学下学期第一次月考试题(文)
四川省广安市2017-2018学年高一数学下学期第一次月考试题(文)一、选择题(本大题共12小题,共60分)1.等于().A. B. C. D.2.等于().A. B. C. D.3.等于().A. B. C. D.4. 函数的周期为().A. B. C. D.5. 已知为第二象限角,,则等于().A. B. C. D.6. 在中,若,,,则角的大小为().A. B. C. D.7. 已知满足,则角的大小为().A. B. C. D.8. 在中,已知,那么是().A.直角三角形B.等腰三角形C.正三角形D.等腰直角三角形9. 在中,,则等于().A. B. C. D.10. 若锐角中,,则的取值范围是().A. B. C. D.11. 函数单调递增区间是().A. B. C.D.12. 已知曲线与直线相交,若在轴右侧的交点自左向右依次记为,则等于().A. B.2 C.3 D.4二、解答题(本大题共10小题,共120.0分)13. 已知,则 .14. 计算 .15.的三个角对边分别为,已知,,,则的外接圆半径为 .16. 现有下列4种说法①在中,,则为钝角三角形;②的三个角对边分别为,若,则角为钝角;③的三个角对边分别为,若,则为等腰三角形;④若是以三个相邻的自然数为边长的钝角三角形,则这样的三角形只有一个.其中正确的有 .17.已知,求下列各式的值:①②18. 如下图,在中,是边上一点,且 .(1)求的长;(2)若,求的面积.19. 已知(1)求的值;(2)求的值.20. 已知函数(1)求函数的最小正周期;(2)当时,求函数的值域.21. 风景秀美的湖畔有四颗高大的银杏树,记做,欲测量两棵树和两棵树之间的距离,但湖岸部分地方有铁丝网不能靠近,现在可以方便的测得间的距离为100米,如图,同时也可以测量出,,,,则两棵树和两棵树之间的距离各为多少?22. 已知,函数,其中 .(1)设,求的取值范围,并把表示为的函数;(2) 求函数的最大值(可以用表示);(3) 若对区间内的任意实数,总有,求实数的取值范围.广安二中2018年春高2017级第一次月考(数学)答案和解析【答案】1.C2.B3.A4.D5.D6.A7.B8.B9.C 10.A 11.C 12.A 13.14. 1 15. 16. 517. 解:①;②.18. 解:(1)在 △ABD 中,根据正弦定理可得:;(2)△ACD 的面积为.19. .解:(1)∵向量a =(sin x ,),b =(cos x ,﹣1),a ∥b ,∴cos x +sin x =0,于是tan x =﹣,∴tan2x ==.…(2)∵函数f (x )=(a +b )•b =(sin x +cos x ,﹣)•(cos x ,﹣1))=sin x cos x +cos 2x +f (x )=+ = sin (2x +)+,由题得sin (2θ+)+=,即sin (2θ+)=,由0<θ<,得<2θ+,……20. 解:2)62sin(222cos2sin3)(.19--=--=πxxxxf,(1)∴()f x的最小正周期π=T,最小值为-4;(2)由0)(=Cf得1)62sin(=-πC,而),0(π∈C,∴3π=C,由AB sin2sin=得ab2=,由Cabbac cos2222-+=得322=-+abba∴2,1==ba21. 解:在中,由正弦定理:在中,,∴由余弦定理:∴.即A、P两棵树之间的距离为米,P、Q两棵树之间的距离为米.22. 解:(1)由已知可得,又因为,所以从而,所以.又因为,所以,因为,所以,;(2)求函数f(x)的最大值即求,的最大值.,对称轴为.当,即时,;当,即时,;当,即时,;综上,当时,f(x)的最大值是;当时,f(x)的最大值是;当时,f(x)的最大值是;(3)由题意知函数f(x)在上的最大值,由(2)知当时,f(x)的最大值是.所以,即且,所以,当时,f(x)的最大值是;此时,即,所以,此时,当时,f(x)的最大值是;即恒成立,综上所述.【解析】1. 【分析】本题考查诱导公式、两角和与差的三角函数及特殊角的三角函数,根据题意利用诱导公式及两角和与差的三角函数可得,进而即可求得结果. 【解答】解:.故选C.2. 【分析】本题考查二倍角公式,根据题意直接利用二倍角公式即可求得结果.【解答】解:.故选B.3. 【分析】本题考查两角和与差的三角函数,根据题意利用两角和与差的三角函数可化为sin30°,进而即可求得结果.【解答】解:.故选A.4. 【分析】本题考查二倍角公式及正弦函数的性质,根据题意可得y=2sin2x,然后利用正弦函数的性质即可得到结果.【解答】解:y=2sinxcosx=2sin2x,因此函数的周期为.故选D.5. 【分析】本题考查同角三角函数关系及二倍角公式,根据题意利用同角三角函数关系可得,进而利用二倍角公式即可求得结果.【解答】解:∵为第二象限角,,∴,∴.故选D.6. 【分析】本题考查正弦定理,根据题意利用正弦定理即可求得结果.【解答】解:由正弦定理得,解得,因为,则.故选A.7. 【分析】本题考查余弦定理,根据题意可得,然后利用余弦定理可求得cos C,进而即可求得结果.【解答】解:由,得,由余弦定理得,∵C∈(0°,180°),∴C=60°.故选B.8. 【分析】本题考查诱导公式及两角和与差的三角函数,三角形的内角和为π,利用诱导公式可知sin C=sin(A+B),与已知联立,利用两角和与差的正弦即可判断△ABC的形状.【解答】解:∵在△ABC中,sin C=sin[π-(A+B)]=sin(A+B),∴sin C=2sin A cos B⇔sin(A+B)=2sin A cos B,即sin A cos B+cos A sin B=2sin A cos B,∴sin A cos B-cos A sin B=0,∴sin(A-B)=0,∴A=B.∴△ABC一定是等腰三角形.故选B.9. 【分析】本题考查正弦定理的应用及三角形的解法,根据题意利用三角形的内角和求出三角形的三个内角,然后利用正弦定理即可求得结果.【解答】解:在△ABC中,若A:B:C=1:2:3,又A+B+C=180°,因此A=30°,B=,60°C=90°,所以.故选C.10. 【分析】本题考查二倍角公式、正弦定理及余弦函数的性质,根据题意利用二倍角公式及正弦定理可得,然后利用余弦函数的性质即可求得结果.【解答】解:因为,所以,由正弦定理,在锐角中,,,所以,所以的取值范围是.故选C.11. 【分析】本题考查函数单调性,根据题意利用复合函数的单调性即可得到结果.【解答】解:令,则,根据复合函数的单调性可得函数t在t>0时的减区间,令,得,因此函数的增区间为.故选C.12. 【分析】本题考查三角函数的恒等变换,直线与曲线的相交的性质,利用三角函数的恒等变换化简函数的解析式为y=1+sin2x,由,解得,可分别求点的坐标,可得长度.【解答】解:,由,解得,即,故P1、P2、…、P5的横坐标分别为:,,,,.故.故选B.13. 【分析】本题考查诱导公式及二倍角公式,根据题意先求得,然后利用二倍角公式即可求得结果.【解答】解:由,得,因此.故答案为.14. 【分析】本题考查两角和与差的三角函数,根据题意利用两角和与差的正切函数可得,即,进而即可求得结果.【解得】解:由,得,即,因此.故答案为1.15. 【分析】本题考查余弦定理及正弦定理,根据题意利用余弦定理可求得c的值,进而利用正弦定理即可求得结果.【解答】解:利用余弦定理可得,解得,因此的外接圆半径为.故答案为.16. 【分析】本题考查余弦定理、向量的数量积、正弦定理及二倍角公式,根据题意利用余弦定理、向量的数量积、正弦定理及二倍角公式即可得到结果.【解答】解:对于①.故不能确定三角形为钝角三角形,故①错误;对于②.故②错误;对于③.∵acos A=bcos B,∴ sin A cos A=sin B cos B即sin2A=sin2B,∵△ABC的内角A,B,C,∴2A=2B或2A+2B=π,,acos A=bcos B推出三角形可能是直角三角形故“acos A=bcos B”⇒“△ABC为等腰三角形”是假命题,故③错误;对于④.设三角形三边分别为n-1,n,n+1,则n+1对的角θ为钝角,解得:0<n <4,即n=2,3,当n=2时,三边长为1,2,3,此时1+2=3,不合题意,舍去;当n=3时,三边长为2,3,4,符合题意,即最长边为4,故④正确;因此正确的有④.故答案为④.17. 本题考查同角三角函数之间的关系及两角和与差的三角函数,灵活运用公式是解答本题的关键,培养了学生的综合能力.①根据题意利用两角和与差的三角函数即可求得结果;②根据题意利用同角三角函数之间的关系即可求得结果.18. 本题考查正弦定理及三角形的面积,考查了学生的计算能力,培养了学生分析问题与解决问题的能力.(1)在△ABD中,由正弦定理可得,代入数据即可求值;(2)由三角形面积公式即可求得结果.19. 本题考查同角三角函数之间的关系及两角和与差的三角函数,考查了学生的计算能力,培养了学生分析问题与解决问题的能力.(1)根据题意可得,进而可得,然后利用两角和与差的三角函数即可求得结果;(2)根据题意先求得sinx,然后利用二倍角公式可求得sin2x及cos2x,进而即可求得结果.20. 本题考查二倍角公式、两角和与差的三角函数及正弦函数的图象与性质,考查了学生的计算能力,培养了学生分析问题与解决问题的能力.(1)根据题意利用二倍角公式、两角和与差的三角函数可得,进而即可求得结果;(2)由,得,进而即可求得结果.21. 本题考查了正余弦定理的运用,灵活运用公式是解答本题的关键,培养了学生分析问题与解决问题的能力.在△PAB中,由内角和定理求出∠APB的度数,利用正弦定理求出AP的长即可,在△QAB中,由,利用余弦定理即可求出PQ的长.22. 本题考查函数的恒成立问题,涉及二次函数的最值和分类讨论以及三角函数的运算,培养了学生分析问题与解决问题的能力.(1)令,换元即可得到结果;(2)将问题转化为,的最大值,由二次函数分类讨论即可得到结果;(3)问题转化为函数恒成立问题,然后分类讨论即可得到结果.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
内蒙古赤峰市2016-2017学年高一数学下学期第一次月考试题 文
考试范围:必修5(解三角形,数列);考试时间:120分钟
第I 卷(选择题)
一、选择题(每题5分,共12小题,合计60分)
1.若ABC ∆内角A 、B 、C 所对的边分别为a b c 、、,且222a c b =-,则C ∠=( ) A.3π B. 23π C.4π D. 54
π 2. 已知等差数列{}n a 满足56=28a a +,则其前10项之和为 ( ) A. 140 B. 280 C. 168 D. 56
3.已知数列{}1n a +是以2为公比的等比数列,且11a =,则5a =( )
A .31
B .24
C .21
D .7
4.等比数列{}n a 的前n 项和为n S ,已知9a a 10a S 5123=+=,,则=1a ( )
A .31
B .31-
C .91
D .9
1- 5.已知}{n a 为等差数列,其公差为2-,且7a 是3a 与9a 的等比中项,n S 为}{n a 的前n 项和,
*N n ∈,则10S 的值为( ) A .110-
B .90-
C .90
D .110 6.在ABC ∆中,4B π=,BC 边上的高等于BC 3
1,则=A cos ( ) A.31010 B.1010 C .-1010 D .-31010
7.已知在ABC ∆中,内角C ,B ,A 所对的边分别是c ,b ,a ,若()()A B sin A B sin ++-
A 2sin 3=,且3
C ,7c π==,则ABC ∆的面积是( ) A.334 B.736 C.213 D. 334或736
8. 若{}n a 是等差数列,首项156560,0,0a a a a a >+><,则使前n 项和0n S >成立的最大自然数n 的值是( )
A .6
B .7
C .8
D .10
9.在ABC ∆中,内角C ,B ,A 的对边分别为c ,b ,a .若b 21A cos B sin c C cos B sin a =
+且b a >,则=B ( )
A .π6
B .π3
C .2π3
D .5π6
10. 在ABC ∆中,内角A B C 、、成等差数列,8,5AB BC ==,则ABC ∆的内切圆的面积是( )
A B .3π C .6π D .12π
11.在ABC ∆中,tan A 是以4-为第三项,4为第七项的等差数列的公差,tan B 是以13为第三项, 9为第六项的等比数列的公比,则这个三角形是( )
A .钝角三角形
B .锐角三角形
C .等腰直角三角形
D .以上都不对
12.已知函数()⎩⎨⎧-=为偶数
为奇数n ,n n ,n n f 22,且()()1n f n f a n ++=,则=++++2014321a a a a
( )
A .-2013
B .-2014
C .2013
D .2014
第II 卷(非选择题) 二、填空题(每题5分,共4小题,合计20分)
13.若等比数列{}n a 的各项均为正数,且51291110e 2a a a a =+,则=+++2021a ln a ln a ln .
14.数列{}n a 满足1a 1=,且()*n 1n N n 1n a a ∈+=-+,则数列⎭
⎬⎫⎩⎨⎧n a 1的前10项和为 .
15.如果满足 60ABC =∠,12AC =,k BC =的ABC ∆恰有两个,那么k 的取值范围是 .
16. 在ABC ∆中,边AB 的垂直平分线交边AC 于D ,若,8,73C BC BD π=
==,则ABC ∆的面
积为________.
三、解答题(第17题满分10分,其余每题满分12分,共6小题,合计70分)
17.设数列{}n a 满足:*
n 1n 1N n ,a 3a ,1a ∈==+. (1)求{}n a 的通项公式及前n 项和n S ;
(2)已知{}n b 是等差数列,n T 为其前n 项和,且321321a a a b ,a b ++==,求20T .
18在ABC ∆中,内角C ,B ,A 所对应的边分别为c ,b ,a ,已知sin 2sin a B A .
(Ⅰ)求B ; (Ⅱ)若1cos A 3
=
,求C sin 的值.
19.已知数列{}n a 中各项都大于1,前n 项和为n S ,且满足2632-=+n n n S a a . (1)求数列{}n a 的通项公式; (2)令11+=
n n n a a b ,求数列{}n b 的前n 项和n T ;
20.如图,在ABC ∆中,8AB 3B =π=
,,点D 在BC 边上,2CD =,71ADC cos =∠. (1)求BAD sin ∠;
(2)求AC BD ,的长.
21.在ABC ∆中,角C ,B ,A 所对的边分别为c ,b ,a ,已知 ().0B cos A sin 3A cos C cos =-+
(1)求角B 的大小;
(2)若2
1b =
,求ABC ∆的周长的取值范围。
22.设数列{}n a 的前n 项和为n S ,且4n 4n S 2n +-=. (1)求数列{}n a 的通项公式;
(2)设n n n 2a b =,数列{}n b 的前n 项和为n T ,求证:1T 4
1n <≤.。