数学人教A版必修一练习:第二章 2.1 2.1.2 第1课时 指数函数图象及其性质 Word版含解析

合集下载

高中数学必修一第二章2.1.2指数函数及其性质习题(含答案)

高中数学必修一第二章2.1.2指数函数及其性质习题(含答案)

2.1.2 指数函数及其性质知识清单1.指数函数的概念一般地,______________________叫做指数函数,其中x 是自变量,函数的定义域是____.2.指数函数y =a x (a >0,且a ≠1)的图象和性质a >1 0<a<1图象定义域 R 值域 (0,+∞)性 质 过定点过点______,即x =____时,y =____函数值 的变化 当x >0时,______; 当x <0时,________ 当x >0时,________; 当x <0时,________单调性是R 上的________是R 上的________基础练习一、填空题1.下列以x 为自变量的函数中,是指数函数的是______.(填序号)①y =(-4)x ;②y =πx ;③y =-4x ;④y =a x +2(a >0且a ≠1). 2.函数f (x )=(a 2-3a +3)a x 是指数函数,则a 的值为________. 3.函数y =a |x |(a >1)的图象是________.(填序号)4.已知f (x )为R 上的奇函数,当x <0时,f (x )=3x,那么f (2)=________.5.如图是指数函数 ①y =a x ; ②y =b x ; ③y =c x ;④y =d x 的图象,则a 、b 、c 、d 与1的大小关系是________.6.函数y =(12)x -2的图象必过第________象限.7.函数f (x )=a x 的图象经过点(2,4),则f (-3)的值为____.8.若函数y =a x -(b -1)(a >0,a ≠1)的图象不经过第二象限,则a ,b 需满足的条件为________.9.函数y =8-23-x (x ≥0)的值域是________. 二、解答题10.比较下列各组数中两个值的大小:(1)0.2-1.5和0.2-1.7; (2)1314⎛⎫⎪⎝⎭和2314⎛⎫⎪⎝⎭; (3)2-1.5和30.2.11.2000年10月18日,美国某城市的日报以醒目标题刊登了一条消息:“市政委员会今天宣布:本市垃圾的体积达到50 000 m 3”,副标题是:“垃圾的体积每三年增加一倍”.如果把3年作为垃圾体积加倍的周期,请你完成下面关于垃圾的体积V (m 3)与垃圾体积的加倍的周期.(1) (2)根据报纸所述的信息,你估计3年前垃圾的体积是多少? (3)如果n =-2,这时的n ,V 表示什么信息?(4)写出n 与V 的函数关系式,并画出函数图象(横轴取n 轴). (5)曲线可能与横轴相交吗?为什么?12.定义运算a ⊕b =⎩⎪⎨⎪⎧a (a ≤b )b (a >b ),则函数f (x )=1⊕2x 的图象是________.(填序号)13.定义在区间(0,+∞)上的函数f (x )满足对任意的实数x ,y 都有f (x y )=yf (x ). (1)求f (1)的值;(2)若f (12)>0,解不等式f (ax )>0.(其中字母a 为常数).能力提升一、填空题1.设P ={y |y =x 2,x ∈R },Q ={y |y =2x ,x ∈R },则P 、Q 的关系为________. 2.函数y =16-4x 的值域是________.3.函数y =a 在[0,1]上的最大值与最小值的和为3,则函数y =2ax -1在[0,1]上的最大值是________.4.若函数f (x )=3x +3-x 与g (x )=3x -3-x 的定义域均为R ,则下列命题正确的是________.(填序号)①f (x )与g (x )均为偶函数;②f (x )为偶函数,g (x )为奇函数; ③f (x )与g (x )均为奇函数;④f (x )为奇函数,g (x )为偶函数.5.函数y =f (x )的图象与函数g (x )=e x +2的图象关于原点对称,则f (x )的解析式为________. 6.已知a =1335-⎛⎫ ⎪⎝⎭,b =1235-⎛⎫⎪⎝⎭,c =1243-⎛⎫ ⎪⎝⎭,则a ,b ,c 三个数的大小关系是________.7.春天来了,某池塘中的荷花枝繁叶茂,已知每一天新长出荷叶覆盖水面面积是前一天的2倍,若荷叶20天可以完全长满池塘水面,当荷叶刚好覆盖水面面积一半时,荷叶已生长了________天.8.已知函数f (x )是定义在R 上的奇函数,当x >0时,f (x )=1-2-x ,则不等式f (x )<-12的解集是________.9.函数y =2212x x-+⎛⎫ ⎪⎝⎭的单调递增区间是________.二、解答题10.(1)设f (x )=2u ,u =g (x ),g (x )是R 上的单调增函数,试判断f (x )的单调性; (2)求函数y =2212x x --的单调区间.11.函数f (x )=4x -2x +1+3的定义域为[-12,12].(1)设t =2x ,求t 的取值范围; (2)求函数f (x )的值域.12.函数y =2x -x 2的图象大致是________.(填序号)13.已知函数f (x )=2x-12x +1.(1)求f [f (0)+4]的值;(2)求证:f (x )在R 上是增函数;(3)解不等式:0<f (x -2)<1517.知识清单1.函数y =a x (a >0,且a ≠1) R 2.(0,1) 0 1 y >1 0<y <1 0<y <1 y >1 增函数 减函数 基础练习 1.②解析 ①中-4<0,不满足指数函数底数的要求,③中因有负号,也不是指数函数,④中的函数可化为y =a 2·a x ,a x 的系数不是1,故也不是指数函数. 2.2解析 由题意得⎩⎪⎨⎪⎧a 2-3a +3=1,a >0且a ≠1,解得a =2. 3.②解析 该函数是偶函数.可先画出x ≥0时,y =a x 的图象,然后沿y 轴翻折过去,便得到x <0时的函数图象.4.-19解析 当x >0时,-x <0,∴f (-x )=3-x ,即-f (x )=(13)x ,∴f (x )=-(13)x .因此有f (2)=-(13)2=-19.5.b <a <1<d <c解析 作直线x =1与四个指数函数图象交点的坐标分别为(1,a )、(1,b )、(1,c )、(1,d ),由图象可知纵坐标的大小关系. 6.二、三、四解析 函数y =(12)x 的图象上所有的点向下平移2个单位,就得到函数y =(12)x -2的图象,所以观察y =(12)x -2的图象可知.7.18解析 由题意a 2=4,∴a =2.f (-3)=2-3=18.8.a >1,b ≥2解析 函数y =a x -(b -1)的图象可以看作由函数y =a x 的图象沿y 轴平移|b -1|个单位得到.若0<a <1,不管y =a x 的图象沿y 轴怎样平移,得到的图象始终经过第二象限;当a >1时,由于y =a x 的图象必过定点(0,1),当y =a x 的图象沿y 轴向下平移1个单位后,得到的图象不经过第二象限.由b -1≥1,得b ≥2.因此,a ,b 必满足条件a >1,b ≥2. 9.[0,8)解析 y =8-23-x =8-23·2-x =8-8·(12)x=8[1-(12)x ].∵x ≥0,∴0<(12)x ≤1,∴-1≤-(12)x <0,从而有0≤1-(12)x <1,因此0≤y <8.10.解 (1)考察函数y =0.2x . 因为0<0.2<1,所以函数y =0.2x 在实数集R 上是单调减函数.又因为-1.5>-1.7,所以0.2-1.5<0.2-1.7.(2)考察函数y =(14)x .因为0<14<1,所以函数y =(14)x 在实数集R 上是单调减函数.又因为13<23,所以1314⎛⎫ ⎪⎝⎭>2314⎛⎫ ⎪⎝⎭1.(3)2-1.5<20,即2-1.5<1;30<30.2,即1<30.2,所以2-1.5<30.2.11.解 (1)由于垃圾的体积每3年增加1倍,24年后即8个周期后,该市垃圾的体积是50 000×28=12 800 000(m 3).(2)根据报纸所述的信息,估计3年前垃圾的体积是50 000×2-1=25 000(m 3).(3)如果n =-2,这时的n 表示6年前,V 表示6年前垃圾的体积. (4)n 与V 的函数关系式是V =50 000×2n ,图象如图所示.(5)因为对任意的整数n,2n >0,所以V =50 000×2n >0,因此曲线不可能与横轴相交. 12.①解析 由题意f (x )=1⊕2x=⎩⎪⎨⎪⎧1, x ≥0;2x , x <0.13.解 (1)令x =1,y =2,可知f (1)=2f (1),故f (1)=0.(2)设0<x 1<x 2,∴存在s ,t 使得x 1=(12)s ,x 2=(12)t ,且s >t ,又f (12)>0,∴f (x 1)-f (x 2)=f [(12)s ]-f [(12)t ]=sf (12)-tf (12)=(s -t )f (12)>0,∴f (x 1)>f (x 2).故f (x )在(0,+∞)上是减函数. 又∵f (ax )>0,x >0,f (1)=0, ∴0<ax <1,当a =0时,x ∈∅,当a >0时,0<x <1a ,当a <0时,1a<x <0,不合题意.故x ∈∅.综上:a ≤0时,x ∈∅;a >0时,不等式解集为{x |0<x <1a}.能力提升 1.Q P解析 因为P ={y |y ≥0},Q ={y |y >0},所以Q P . 2.[0,4)解析 ∵4x >0,∴0≤16-4x <16, ∴16-4x ∈[0,4). 3.3解析 函数y =a x 在[0,1]上是单调的,最大值与最小值都在端点处取到,故有a 0+a 1=3,解得a =2,因此函数y =2ax -1=4x -1在[0,1]上是单调递增函数,当x =1时,y max =3. 4.②解析 f (-x )=3-x +3x =f (x ),g (-x )=3-x -3x =-g (x ).5.f (x )=-e -x -2解析 ∵y =f (x )的图象与g (x )=e x +2的图象关于原点对称,∴f (x )=-g (-x )=-(e -x +2)=-e -x -2. 6.c <a <b解析 ∵y =(35)x 是减函数,-13>-12,∴b >a >1.又0<c <1,∴c <a <b . 7.19解析 假设第一天荷叶覆盖水面面积为1,则荷叶覆盖水面面积y 与生长时间的函数关系为y =2x -1,当x =20时,长满水面,所以生长19天时,荷叶布满水面一半. 8.(-∞,-1)解析 ∵f (x )是定义在R 上的奇函数, ∴f (0)=0.当x <0时,f (x )=-f (-x )=-(1-2x )=2x -1.当x >0时,由1-2-x <-12,(12)x >32,得x ∈∅;当x =0时,f (0)=0<-12不成立;当x <0时,由2x -1<-12,2x <2-1,得x <-1.综上可知x ∈(-∞,-1). 9.[1,+∞)解析 利用复合函数同增异减的判断方法去判断.令u =-x 2+2x ,则y =(12)u 在u ∈R 上为减函数,问题转化为求u =-x 2+2x 的单调递减区间,即为x ∈[1,+∞).10.解 (1)设x 1<x 2,则g (x 1)<g (x 2).又由y =2u 的增减性得()12g x<()22g x ,即f (x 1)<f (x 2), 所以f (x )为R 上的增函数.(2)令u =x 2-2x -1=(x -1)2-2, 则u 在区间[1,+∞)上为增函数.根据(1)可知y =2212x x --在[1,+∞)上为增函数. 同理可得函数y 在(-∞,1]上为单调减函数.即函数y 的增区间为[1,+∞),减区间为(-∞,1].11.解 (1)∵t =2x 在x ∈[-12,12]上单调递增,∴t ∈[22,2].(2)函数可化为:f (x )=g (t )=t 2-2t +3,g (t )在[22,1]上递减,在[1,2]上递增,比较得g (22)<g (2). ∴f (x )min =g (1)=2, f (x )max =g (2)=5-2 2.∴函数的值域为[2,5-22]. 12.①解析 当x →-∞时,2x →0,所以y =2x -x 2→-∞, 所以排除③、④.当x =3时,y =-1,所以排除②.13.(1)解 ∵f (0)=20-120+1=0,∴f [f (0)+4]=f (0+4)=f (4)=24-124+1=1517.(2)证明 设x 1,x 2∈R 且x 1<x 2, 则22x>12x>0,22x-12x>0,∴f (x 2)-f (x 1)=212121212121x x x x ---++ =()()()21212222121x x x x -++>0,即f (x 1)<f (x 2),所以f (x )在R 上是增函数.(3)解 由0<f (x -2)<1517得f (0)<f (x -2)<f (4),又f (x )在R 上是增函数,∴0<x -2<4,即2<x <6,所以不等式的解集是{x |2<x <6}.。

(人教a版)数学必修一课时训练:2.1.2(第1课时)指数函数的图象及性质(含答案)

(人教a版)数学必修一课时训练:2.1.2(第1课时)指数函数的图象及性质(含答案)

温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。

关闭Word文档返回原板块。

课时提升卷(十六)指数函数的图象及性质(45分钟 100分)一、选择题(每小题6分,共30分)1.若函数y=(2a-3)x是指数函数,则a的取值范围是( )A.a>B.a>,且a≠2C.a<D.a≠22.指数函数y=f(x)的图象经过点(-2,),那么f(4)·f(2)等于( )A.8B.16C.32D.643.(2013·黄冈高一检测)已知集合M={y|y=-x2+2,x∈R},集合M)∩N=( )N={y|y=2x,0≤x≤2},则(RA.[1,2]B.(2,4]C.[1,2)D.[2,4)4.当x>0时,指数函数f(x)=(a-1)x<1恒成立,则实数a的取值范围是( )A.a>2B.1<a<2C.a>1D.a∈R5.(2012·四川高考)函数y=a x-(a>0,a≠1)的图象可能是( )二、填空题(每小题8分,共24分)6.已知函数f(x)=则f(2)+f(-2)= .7.(2012·山东高考改编)若函数f(x)=a x(a>0,a≠1)在[-1,2]上的最大值为4,最小值为m,且函数g(x)=(1-4m)x2在[0,+∞)上是增函数,则a= .8.(2013·长沙高一检测)关于下列说法:(1)若函数y=2x的定义域是{x|x≤0},则它的值域是{y|y≤1}.(2)若函数y=的定义域是{x|x≥2},则它的值域是{y|y≤}.(3)若函数y=2x的值域是{y|0<y≤4},则它的定义域一定是{x|0<x≤2}.其中不正确的说法的序号是.三、解答题(9题,10题14分,11题18分)9.已知函数f(x)=a x+b(a>0,且a≠1).若f(x)的图象如图所示,求a,b 的值.10.(2013·长春高一检测)已知函数f(x)=a x-1(x≥0)的图象经过点(2,),其中a>0且a≠1.(1)求a的值.(2)求函数y=f(x)(x≥0)的值域.11.(能力挑战题)已知函数y=a x(a>0且a≠1)在[1,2]上的最大值与最小值之和为20,记f(x)=.(1)求a的值.(2)证明f(x)+f(1-x)=1.(3)求f()+f()+f()+…+f()的值.答案解析1.【解析】选B.由题意得2a-3>0,且2a-3≠1,所以a>,且a≠2.2.【解析】选D.设f(x)=a x(a>0且a≠1),由已知得=a-2,a2=4,所以a=2,于是f(x)=2x,所以f(4)·f(2)=24·22=26=64.3.【解析】选B.由题可知M=(-∞,2],N=[1,4],∴R M=(2,+∞),(RM)∩N=(2,4].【变式备选】若集合M={y|y=2-x},P={y|y=},则M∩P等于( ) A.{y|y>1} B.{y|y≥1}C.{y|y>0}D.{y|y≥0}【解析】选C.y=2-x的值域为{y|y>0},y=的值域为{y|y≥0},因此,其交集为{y|y>0}.故选C.4.【解题指南】结合指数函数的图象,若x>0时,(a-1)x<1恒成立,则必有0<a-1<1,进而求解.【解析】选B.∵x>0时,(a-1)x<1恒成立,∴0<a-1<1,∴1<a<2.5.【解析】选D.当a>1时,y=a x-在R上为增函数,且与y轴的交点为(0,1-),又0<1-<1,故排除A,B.当0<a<1时,y=a x-在R上为减函数,且与y轴的交点为(0,1-),又1-<0,故选D.6.【解析】f(2)+f(-2)=22+3-2=.答案:【举一反三】若对于本题中的函数f(x),有f(a)=16,试求a的值.【解析】当a≤1时,f(a)=3a≤3<16,故a>1,此时有f(a)=2a=16,所以a=4.7.【解析】当a>1时,有a2=4,a-1=m,此时a=2,m=,此时g(x)=-x2在[0,+∞)上是减函数,不合题意.若0<a<1,则a-1=4,a2=m,故a=,m=,检验知符合题意.答案:8.【解题指南】解答本题一方面要注意利用函数的单调性由定义域求值域,由值域求定义域;另一方面要注意结合函数的图象,弄清楚函数值与自变量的关系.【解析】(1)不正确.由x≤0得0<2x≤20=1,值域是{y|0<y≤1}.(2)不正确.由x≥2得0<≤,值域是{y|0<y≤}.(3)不正确.由2x≤4=22得x≤2,所以若函数y=2x的值域是{y|0<y≤4},则它的定义域一定是{x|x≤2}.答案:(1)(2)(3)9.【解析】由图象得,点(2,0),(0,-2)在函数f(x)的图象上,所以解得10.【解析】(1)∵函数f(x)=a x-1(x≥0)的图象经过点(2,),∴=a2-1,∴a=.(2)由(1)知f(x)=()x-1=2·()x,∵x≥0,∴0<()x≤()0=1,∴0<2·()x≤2,∴函数y=f(x)(x≥0)的值域为(0,2].11.【解析】(1)函数y=a x(a>0且a≠1)在[1,2]上的最大值与最小值之和为20,∴a+a2=20,得a=4或a=-5(舍去).(2)由(1)知f(x)=,∴f(x)+f(1-x)=+=+=+=+=1.(3)由(2)知f()+f()=1,f()+f()=1,…,f()+f()=1,∴f()+f()+f()+…+f()=++…+=1+1+…+1=1 006.关闭Word文档返回原板块。

人教A版高中数学必修一第二章2.1.2指数函数的图像及性质 1.2-第2课时

人教A版高中数学必修一第二章2.1.2指数函数的图像及性质 1.2-第2课时
栏目 导引
第二章 基本初等函数(Ⅰ)
因为 t=-x2+2x=-(x-1)2+1≤1, 所以 y=23t(t≤1),所以 y≥23. 所以这个函数的值域为y|y≥23, 所以原函数的值域为y|y≥23.
栏目 导引
第二章 基本初等函数(Ⅰ)
函数 y=af(x)(a>0,a≠1)的单调性的处理方法 (1)关于指数型函数 y=af(x)(a>0,且 a≠1)的单调性由两点决定, 一是底数 a>1 还是 0<a<1;二是 f(x)的单调性,它由两个函数
栏目 导引
第二章 基本初等函数(Ⅰ)
3.函数 y=121-x的单调递增区间为(
)
A.(-∞,+∞)
B.(0,+∞)
C.(1,+∞)
D.(0,1)
解析:选 A.定义域为 R.设 u=1-x,则 y=12u.
因为 u=1-x 在 R 上为减函数,
又因为 y=12u在(-∞,+∞)上为减函数,
栏目 导引
第二章 基本初等函数(Ⅰ)
(2)重视数学语言的规范和准确 对于函数的单调性、奇偶性的表述要注意语言的规范性、准确 性.如本例中证明函数 f(x)在 R 上是单调增函数,必须严格按 照增函数的定义证明,同时要特别注意与 0 的比较.
栏目 导引
第二章 基本初等函数(Ⅰ)
1.下列判断正确的是( A.2.52.5>2.53 C.π2<π 2
栏目 导引
第二章 基本初等函数(Ⅰ)
比较幂值大小的三种类型及处理方法源自栏目 导引第二章 基本初等函数(Ⅰ)
1.试比较下列各组数的大小: (1)20.3,12-0.4,80.2; (2)1.30.3,0.82,-343.
栏目 导引
第二章 基本初等函数(Ⅰ)

高中数学必修一2.1.2.1指数函数的图像及性质

高中数学必修一2.1.2.1指数函数的图像及性质

归纳 指数函数在底数 0 a 1及
情况下的图象和性质:
0 a 1
y=ax
y
(0<a<1)
图 象
(0,1)
y=1 y=1
0
x
a 1这两种
a 1
y
y=ax
(a>1)
(0,1)
0
x
定义域:
R
性 值域:
(0,+∞)
质 (1)过定点(0,1),即x=0时,y=1
(2)在R上是减函数 (3)在R上是增函数
24
2x
问题 引入
问题2、《庄子·天下篇》中写道:“一尺 之棰,日取其半,万世不竭。”请你写出 截取x次后,木棰剩余量y关于x的函数关 系式?
研究
截取ห้องสมุดไป่ตู้
次数
1次
2次
3次
4次
x次
y (1)x(x N*) 2
木棰 剩余
1尺 1尺 1尺 1 尺
2
4
8
16
(1)x尺 2
提炼
y 2x
y (1)x
4.当x>0时, 0<y<1;当x<0 时, y>1.
5.既不是奇函数也不是偶函数.
求定点,先令指数为0,再 计算x,y的值
4 某种细菌在培养过程中,每 20分钟分裂一次(一个分裂成 两个),经过3小时这种细菌 由一个分裂成__5_1_2__个
y 2x(x N*)
作业:活页作业十五(P27)
1
x
即a3 , 解得a 3 , 于是f ( x) 3 .
所以,f
(0)
0
1,f
(1)

高一数学人教A版必修1课后训练:2.1指数函数-指数函数的图象及其性质 Word版含解析

高一数学人教A版必修1课后训练:2.1指数函数-指数函数的图象及其性质 Word版含解析

课后训练千里之行 始于足下1.下列式子一定是指数函数的是( ).A .形如y =a x 的函数B .y =22x +1C .y =(|m |+2)-xD .y =x 22.函数()f x 的定义域是( ).A .(-∞,0]B .[0,+∞)C .(-∞,0)D .(-∞,+∞)3.已知对不同的a 值,函数f (x )=2+a x -1(a >0,且a ≠1)的图象恒过定点P ,则P 点的坐标是( ).A .(0,3)B .(0,2)C .(1,3)D .(1,2)4.已知函数f (x )=a x 在(0,2)内的值域是2(,1)a ,则函数y =f (x )的图象是( ).5.函数223()x x f x a m +-=+(a >1)恒过定点(1,10),则m =________.6.当x >0时,函数f (x )=(a 2-1)x 的值总大于1,则实数a 的取值范围是________.7.求函数22811()3x x y --+= (-3≤x ≤1)的值域.8.已知函数f (x )=a x -1(x ≥0)的图象经过点1(2,)2,其中a >0且a ≠1. (1)求a 的值;(2)求函数y =f (x )(x ≥0)的值域.百尺竿头 更进一步设4()42xx f x =+,若0<a <1,试求f (a )+f (1-a )的值,进一步求 1231000()()()()1001100110011001f f f f +++⋅⋅⋅+的值. 答案与解析1.答案:C解析:根据指数函数的定义求解.2.答案:A解析:要使函数有意义,则1-2x ≥0,即2x ≤1,∴x ≤0.3.答案:C解析:令x -1=0,得x =1,此时y =2+1=3,∴图象恒过定点(1,3).4.答案:A解析:∵f (x )=a x 在(0,2)内的值域是2(,1)a ,∴f (x )在(0,2)内单调递减,∴0<a <1,∴选A.5.答案:9解析:由题可知a 0+m =10,即1+m =10,得m =9.6.答案:a a ><解析:∵x >0时,f (x )=(a 2-1)x 的值总大于1,∴a 2-1>1,∴a 2>2,即a ,故a a ><.7.解:令t =-2x 2-8x +1, 则1()3t y =,又t =-2x 2-8x +1=-2(x 2+4x )+1=-2(x +2)2+9,∵-3≤x ≤1,∴当x =-2时,t max =9,当x =1时,t min =-9,故-9≤t ≤9,∴9911()()33y -≤≤,即3-9≤y ≤39, 故所求函数的值域为993,3-⎡⎤⎣⎦.8.解:(1)函数图象过点1(2,)2, 所以2112a-=, 则12a =. (2)11()()2x f x -=(x ≥0),由x ≥0,得x -1≥-1, 于是11110()()222x --<≤-. 所以函数的值域为(0,2].百尺竿头 更进一步 解:11444442()(1)14242422444242a a a a a a a a a a f a f a --+-=+=+=+=+++⨯+++. 观察式子,不难发现11000299939981100110011001100110011001+=+=+=⋅⋅⋅=.从而1231000()()()()500 1001100110011001f f f f+++⋅⋅⋅+=.。

高中数学第二章基本初等函数(Ⅰ)2.1指数函数2.1.2第1课时指数函数的图象及性质课件新人教A版必修1

高中数学第二章基本初等函数(Ⅰ)2.1指数函数2.1.2第1课时指数函数的图象及性质课件新人教A版必修1
由图象可知值域是(0,1],递增区间是(-∞,0],递减区间 是[0,+∞).
与指数函数有关的定义域、值域问题
求下列函数的定义域与值域:
(1)y=
;(2)y=23-|x|.
思路点拨:
指数函数y=axa>0, 且a≠1的定义域是R
―→
函数y=afxa>0,且a≠1 与fx的定义域相同
―→
值域
解:(1)由xx+ -11≥0,得 x≤-1 或 x>1.
已知指数函数f(x)的图象过点(3,8),则f(6)=________. 解析:设f(x)=ax(a>0,且a≠1). ∵函数f(x)的图象过点(3,8). ∴8=a3,∴a=2. ∴f(x)=2x. ∴f(6)=26=64. 答案:64
2.指数函数的图象和性质 a>1
图象图象
如图是指数函数:①y=ax,②y=bx,③y=cx,④ y=dx的图象,则a,b,c,d与1的大小关系是( )
A.a<b<1<c<d B.b<a<1<d<c C.1<a<b<c<d D.a<b<1<d<c
思路点拨:
解析:方法一:在①②中底数大于零且小于 1,在 y 轴右 边,底数越小,图象向下越靠近 x 轴,故有 b<a,在③④中底 数大于 1,在 y 轴右边,底数越大,图象向上越靠近 y 轴,故 有 d<c.故选 B.
1.指数函数的图象一定在x轴的上方.( ) 2.当a>1时,对于任意x∈R总有ax>1.( ) 3.函数f(x)=2-x在R上是增函数.( ) 答案:1.√ 2.× 3.×
指数函数的概念
函数y=(a2-3a+3)ax是指数函数,求a的值. 思路点拨: ax的系数为1 ―→ a为常数,a>0且a≠1 ―→ 不等式组 解:∵y=(a2-3a+3)ax 是指数函数, ∴aa>2-03且a+a≠3=1,1, 解得aa= >10或 且2a,≠1. ∴a=2.

数学新课标人教A版必修1教学课件:2.1.2.1 第1课时 指数函数的图象及性质

数学新课标人教A版必修1教学课件:2.1.2.1 第1课时 指数函数的图象及性质
数由小变大.(2)指数函数的底数与图象间的关系可 概括记忆为:在第一象限内,底数自下而上依次增 大.
必修1 第二章 基本初等函数(I)
栏目导引 第二十二页,编辑于星期日:十一点 三十五分。
3.如图所示是指数函数的图象,已
知 a 的值取 2,43,130,15,则相应曲线 C1,C2,
C3,C4 的 a 依次为( )
必修1 第二章 基本初等函数(I)
栏目导引 第四页,编辑于星期日:十一点 三十五分。
1.指数函数的概念 函数y=ax(a>0,且a≠1,x∈R)叫做指数函数,其中 x为自变量. 2.指数函数的图象和性质
a>1
0<a<1
图象
必修1 第二章 基本初等函数(I)
栏目导引 第五页,编辑于星期日:十一点 三十五分。
栏目导引 第三页,编辑于星期日:十一点 三十五分。
(4)当a=0时,n取__零__或__负__数__没有意义. 如果y=f(x)在D上是增函数,则对任意x1, x2∈D且x1<x2,有f(x1)<(填“>”、“<”或 “=”)f(x2),y=f(x)的图象从左至右逐渐__上__升 (填“上升”或“下降”).
(4)∵-233<0,4313>430=1,3412<340=1, ∴-233<3412<4313.12 分
必修1 第二章 基本初等函数(I)
栏目导引 第二十八页,编辑于星期日:十一点 三十五分。
[题后感悟] 比较幂的大小的常用方法: (1)对于底数相同,指数不同的两个幂的大小比 较,可以利用指数函数的单调性来判断.(2)对 于底数不同,指数相同的两个幂的大小比较, 可以利用指数函数图象的变化规律来判断.(3)

高一数学(2.1.2-1指数函数的概念与图象)

高一数学(2.1.2-1指数函数的概念与图象)
例2 已知函数 f (x) ax (a 0且a 1) 的图象过
点(3,),求 f (0), f (1), f (3) 的值.
例3 求下列函数的定义域:
1
(1) y 5 x1 ;(2) y 2x4 .
理论迁移
例4 比较下列各题中两个值的大小 (1) 1.72.5 与1.73 ; (2) 0.8-0.1与0.8-0.2 ; (3) 1.70.3与0.93.1
例5 若指数函数y=(2a-1)x是减函数, 求实数a的取值范围.
练习: P58练习:2,3. P59习题2.1A组:5,6.
作业:《名师导航》 P32知识演练:1、2、3、4. P33达标练习:1、2、3、4
、5、6、7.
y
的图象:
1
0
x
思考3:函数图象的升降情况如何?由此说明 什么性质?
思考4:图象在y轴左、右两侧的分布情况如何 ?由此说明函数值有那些变化?
思考5:若a>b>1,则函数 y ax与 y bx 的
图象的相对位置关系如何?
y ax
y
y bx
1
0
x
知识探究(四):函数 y ax (0 a 1) 的性质
思考5:设a>0,a≠1,若am=an,则m与n的大 小关系如何?若am>an ,则m与n的大小关系 如何?
理论迁移
例1 判断下列函数是否为指数函数?
(1) y x3 ; (2) y (a2 1)x;(3) y 2x;1 x
(4) y 5x ; (5) y 32 ; (6) y 4x 1
y ax (a 1)
y
y ax (0 a 1)
y
1
0
x
1
0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

[课时作业]
[A 组 基础巩固]
1.下列以x 为自变量的函数中,是指数函数的是( )
A .y =(-4)x
B.y =λx (λ>1) C .y =-4x D .y =a x +2(a >0且a ≠1)
解析:A 中底数不满足大于0且不等于1;C 中系数不是1;D 中指数不是独立的x ;只有选项B 满足指数函数定义.
答案:B
2.函数f (x )=a x -b 的图象如图所示,其中a ,b 为常数,则下列
结论正确的是( )
A .a >1,b <0
B .a >1,b >0
C . 0<a <1,b >0
D .0<a <1,b <0
解析:从曲线的变化趋势,可以得到函数f (x )为减函数,从而有0<a <1;从曲线位置看,是由函数y =a x (0<a <1)的图象向左平移|-b |个单位而得,所以-b >0,即b <0.故选D.
答案:D
3.下列关系中正确的是( )
A.⎝ ⎛⎭⎪⎫1223 <223<⎝ ⎛⎭
⎪⎫1213 B.⎝ ⎛⎭
⎪⎫12 23<⎝ ⎛⎭⎪⎫1213<223 C .22
3<⎝ ⎛⎭⎪⎫1213<⎝ ⎛⎭
⎪⎫1223 D .223
<⎝ ⎛⎭⎪⎫1223<⎝ ⎛⎭
⎪⎫1213 解析:223=⎝ ⎛⎭⎪⎫1223-,∵y =⎝ ⎛⎭
⎪⎫12x 是R 上的减函数, ∴⎝ ⎛⎭⎪⎫1223->⎝ ⎛⎭⎪⎫1213>⎝ ⎛⎭⎪⎫1223,
即223
>⎝ ⎛⎭⎪⎫1213>⎝ ⎛⎭⎪⎫1223. 答案:B
4.函数y =2-|x |的值域是( )
A .(0,1)
B.(0,1] C .(0,+∞) D .R
解析:设t =-|x |,则t ≤0,作出y =2t (t ≤0)的简图,由图象知
0<2t ≤1.
答案:B
5.若⎝ ⎛⎭⎪⎫122a +1<⎝ ⎛⎭
⎪⎫123-2a ,则实数a 的取值范围是( ) A .(1,+∞)
B.⎝ ⎛⎭⎪⎫12,+∞ C .(-∞,1) D .⎝ ⎛⎭
⎪⎫-∞,12 解析:∵y =(12)x 是减函数,∴原不等式等价于2a +1>3-2a ,即4a >2, ∴a >12.
答案:B
6.设函数f (x )=⎩⎪⎨⎪⎧ x ,x ≥0 ⎝ ⎛⎭⎪⎫12x ,x <0,则f [f (-4)]=________.
解析:依题意,知f (-4)=⎝ ⎛⎭⎪⎫12-4=16, f (16)=16=4,∴f [f (-4)]=f (16)=4.
答案:4
7.已知(a 2+a +2)x >(a 2+a +2)1-x ,则x 的取值范围是________.
解析:∵a 2+a +2=(a +12)2+74>1,
∴y =(a 2+a +2)x 为R 上的增函数.
∴x >1-x .即x >12.。

相关文档
最新文档