数学人教版七年级上册相交线
人教版七年级数学上册《相交线与平行线》知识点归纳(五四制)

人教版七年级数学上册《相交线与平行线》知识点归纳(五四制)第十二章相交线与平行线相交线与平行线一:相交线(1)相交线的定义两条直线交于一点,我们称这两条直线相交.相对的,我们称这两条直线为相交线.(2)两条相交线在形成的角中有特殊的数量关系和位置关系的有对顶角和邻补角两类.(3)在同一平面内,两条直线的位置关系有两种:平行和相交(重合除外)相交:如图所示,直线AB与直线CD相交于点O,其中以O为顶点共有4个角: 1,2,3,4对顶角与邻补角(1)对顶角:有一个公共顶点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种位置关系的两个角,互为对顶角.(2)邻补角:只有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角,互为邻补角.(3)对顶角的性质:对顶角相等.(4)邻补角的性质:邻补角互补,即和为180°.(5)邻补角、对顶角成对出现,在相交直线中,一个角的邻补角有两个.邻补角、对顶角都是相对与两个角而言,是指的两个角的一种位置关系.它们都是在两直线相交的前提下形成的邻补角:其中1和2有一条公共边,且他们的另一边互为反向延长线。
像1和2这样的角我们称他们互为邻补角;对顶角:1和3有一个公共的顶点O,并且1的两边分别是3两边的反向延长线,具有这种位置关系的两个角,互为对顶角;1和2互补,2和3互补,因为同角的补角相等,所以1=3。
所以对顶角相等二:垂线(1)垂线的定义当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足.(2)垂线的性质过一点有且只有一条直线与已知直线垂直.注意:“有且只有”中,“有”指“存在”,“只有”指“唯一”“过一点”的点在直线上或直线外都可以.如图所示,图中ABCD,垂足为O。
垂直的两条直线共形成四个直角,每个直角都是90。
垂线段最短(1)垂线段:从直线外一点引一条直线的垂线,这点和垂足之间的线段叫做垂线段.(2)垂线段的性质:垂线段最短.正确理解此性质,垂线段最短,指的是从直线外一点到这条直线所作的垂线段最短.它是相对于这点与直线上其他各点的连线而言.(3)实际问题中涉及线路最短问题时,其理论依据应从“两点之间,线段最短”和“垂线段最短”这两个中去选择.点到直线的距离(1)点到直线的距离:直线外一点到直线的垂线段的长度,叫做点到直线的距离.(2)点到直线的距离是一个长度,而不是一个图形,也就是垂线段的长度,而不是垂线段.它只能量出或求出,而不能说画出,画出的是垂线段这个图形.三、平行线在同一平面内,两条直线的位置关系有两种:平行和相交(重合除外).(1)平行线的定义:在同一平面内,不相交的两条直线叫平行线.记作:a∥b;读作:直线a平行于直线b.(2)同一平面内,两条直线的位置关系:平行或相交,对于这一知识的理解过程中要注意:①前提是在同一平面内;②对于线段或射线来说,指的是它们所在的直线.如图,直线a与直线b平行,记作a//b平行线公理及推论(1)平行公理:经过直线外一点,有且只有一条直线与这条直线平行.(2)平行公理中要准确理解“有且只有”的含义.从作图的角度说,它是“能但只能画出一条”的意思.(3)推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.(4)平行公理的推论可以看做是平行线的一种判定方法,在解题中要注意该结论在证明直线平行时应用.四、平行线的性质同位角、内错角同旁内角同一个平面中的三条直线关系三条直线在一个平面中的位置关系有4中情况:有一个交点,有两个交点,有三个交点,没有交点(1)有一个交点:三条直线相交于同一个点,如图所示,以交点为顶点形成各个角,可以用角的相关知识解决(2)有两个交点:(这种情况必然是两条直线平行,被第三条直线所截。
人教版七年级数学教案:5.1.1相交线

1.分组讨论:学生们将分成若干小组,每组讨论一个与相交线相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示相交线的基本原理。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“相交线在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
-在解决实际问题时,学生可能不知道如何将问题简化为相交线的模型,如测量两条墙面的交线是否垂直。
-对于空间想象能力较差的学生,需要提供更多的实物模型或动态图示来帮助他们理解相交线在三维空间中的关系。
在教学过程中,教师应针对上述重点和难点,采用直观演示、实际操作、问题驱动等教学方法,帮助学生深入理解相交线的概念和性质,并能够灵活运用到实际问题中。同时,通过分层作业和个别辅导,针对不同学生的难点进行有针对性的指导,确保每个学生都能透彻理解本节课的核心知识。
人教版七年级数学教案:5.1.1相交线
一、教学内容
本节课选自人教版七年级数学第五章第一节“相交线”,主要包括以下内容:同一平面内两直线的位置关系,特别是相交线的性质和判定方法。具体内容包括:
1.了解同一平面内两直线的位置关系,掌握相交线的定义。
2.掌握垂直的定义,了解垂直线段的性质。
3.学习相交线形成的四个角,特别是邻补角的定义及性质。
4.掌握如何通过画图和计算来判断两条直线是否垂直。
二、核心素养目标
本节课的核心素养目标旨在培养学生以下能力:
1.空间观念:通过探究相交线的性质,使学生能够理解平面内直线的位置关系,培养其空间想象力和直觉思维能力。
七年级数学相交线

返回
测试
一、判断(每题10分) 1、有公共顶点且相等的两个角是对顶角。( × ) 2、两条直线相交,有两组对顶角。 (√ ) 3、两条直线相交所构成的四个角中有一个角是直角, 那么其余的三个角也是直角。 (√ ) 二、选择(每题10分) 1、如右图直线AB、CD交于点O,OE为射线,那么(C ) A。∠AOC和∠BOE是对顶角; B。∠COE和∠AOD是对顶角; D A C。∠BOC和∠AOD是对顶角; O D。∠AOE和∠DOE是对顶角。 2、如右图中直线AB、CD交于O, C E B OE是∠BOC的平分线且∠BOE=50度, C )度 那么∠AOE=( (A)80;(B)100;(C)130(D)150。 下 页
第二章 相交线、平行线
如上图中是一段铁路桥梁的侧面图,其中有些线如:AB和 CD是相交的,有些线如:MN和PQ是平行的。相交线和平行线都 有许多重要性质,并且在生产和生活中有广泛应用。我们将在前一 章的基础上,进一步研究直线间的位置关系,同时还要介绍一些有 关推理证明的常识,为后面的学习做些准备。
第一节
( D) ( 4 )
二、 填空
1、一个角的对顶角有 一 个,邻补角最多有 两 个,而补角 则可以有 无数 个。 2、右图中∠AOC的对顶角是∠DOB D 邻补角是 ∠AOD和∠COB A 3、如图,直线AB、CD相交于O, 1 ∠AOC=80°;∠1=30°;求∠2的度数 2 E 解:∵∠DOB=∠ AOC ,( 对顶角相等 ) C ∠AOC =80°(已知) B ∴∠DOB= 80 °(等量代换) 又∵∠1=30°( 已知 ) ∴∠2=∠ DOB -∠ 1 = 80°- 30° = 50 °
我们知道邻补角是互 补的,那么对顶角有 什么样的关系呢?
人教版七年级上册数学知识点总结

人教版七年级上册数学知识点总结人教版七年级上册数学知识点整式的加减一、代数式1、用运算符号把数或表示数的字母连结而成的式子,叫做代数式。
单独的一个数或字母也是代数式。
2、用数值代替代数式里的字母,按照代数式里的运算关系计算得出的结果,叫做代数式的值。
二、整式1、单项式:(1)由数和字母的乘积组成的代数式叫做单项式。
(2)单项式中的数字因数叫做这个单项式的系数。
(3)一个单项式中,所有字母的指数的和叫做这个单项式的次数。
2、多项式(1)几个单项式的和,叫做多项式。
(2)每个单项式叫做多项式的项。
(3)不含字母的项叫做常数项。
3、升幂排列与降幂排列(1)把多项式按x的指数从大到小的顺序排列,叫做降幂排列。
(2)把多项式按x的指数从小到大的顺序排列,叫做升幂排列。
三、整式的加减1、整式加减的理论根据是:去括号法则,合并同类项法则,以及乘法分配率。
去括号法则:如果括号前是“十”号,把括号和它前面的“+”号去掉,括号里各项都不变符号;如果括号前是“一”号,把括号和它前面的“一”号去掉,括号里各项都改变符号。
2、同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项。
合并同类项:(1)合并同类项的概念:把多项式中的同类项合并成一项叫做合并同类项。
(2)合并同类项的法则:同类项的系数相加,所得结果作为系数,字母和字母的指数不变。
(3)合并同类项步骤:a.准确的找出同类项。
b.逆用分配律,把同类项的系数加在一起(用小括号),字母和字母的指数不变。
c.写出合并后的结果。
(4)在掌握合并同类项时注意:a.如果两个同类项的系数互为相反数,合并同类项后,结果为0.b.不要漏掉不能合并的项。
c.只要不再有同类项,就是结果(可能是单项式,也可能是多项式)。
说明:合并同类项的关键是正确判断同类项。
3、几个整式相加减的一般步骤:(1)列出代数式:用括号把每个整式括起来,再用加减号连接。
(2)按去括号法则去括号。
(3)合并同类项。
七年级数学人教版相交线 第一课时

相交线第一课时祁家湾中学:童学凡教学目标:1、让学生通过学习认识相交线,理解其定义。
2、认识对顶角邻补角。
并会区分补角与邻补角。
3、关于对顶角邻补角的计算解答简单实际问题。
教学重点;相交线的定义,对顶角的大小关系,邻补角与补角区别教学难点;多条直线相交一点对顶角的对数,及角度的计算一、复习准备观察:1、两条直线相交组成几个角?2、将这些角两两相配能得到几对角?讨论:1、每对角中两个角的位置有怎样的关系?2、试根据它们的位置关系将这几对角进行分类两直线相交:分类:∠1和∠2、∠2和∠3、∠3和∠4、∠4和∠1位置关系:1、有公共顶点;2、有一条公共边;3、另一边互为反向延长线。
名称:邻补角二新课探究分类:∠1和∠3、∠2和∠4、位置关系:1、有公共顶点;2、没有公共边;3、两边互为反向延长线。
名称:对顶角有关概念:邻补角:如果两个角有一条公共边,它们的另一边互为反向延长线,那么这两个角互为邻补角。
对顶角:有一个公共顶点一个角的两边是另一个角的两边的反向延长线,那么这两个角互为对顶角。
练习:下面∠1、∠2是对顶角的是:A.(1)B.(2)C.(3)D.(4)练习:下列图中,∠1与∠2是对顶角吗?为什么?(1) (2) (3) (4)否是否否做一做:分别用尺量一量4个交角的度数,各类角的度数有什么关系?答:因为∠1与∠2互补,∠2与∠3互补(邻补角定义),所以∠1=∠3(同角的补角相等),同理∠2=∠4。
两直线相交:分类:1、∠1和∠2、∠2和∠3、∠3和∠4、∠4和∠1位置关系:1、有公共顶;2、有一条公共边;3、另一边互为反向延长线。
名称:邻补角大小关系:邻补角互补分类:∠1和∠3、∠2和∠4、位置关系:1、有公共顶点;2、没有公共边;3、两边互为反向延长线。
名称:对顶角大小关系:对顶角相等课堂练习:1、若∠1与∠2是对顶角,∠1=160,则∠2=______0;若∠3与∠4是邻补角,则∠3+∠4 =______02、若∠1与∠2为对顶角,∠1与∠3互补,则∠2+∠3=180°3、图中是对顶角量角器,你能说出用它测量角的原理吗?答:对顶角相等例1:如图,直线a、b相交。
人教五四学制版七年级上册数学第12章 相交线与平行线含答案

人教五四学制版七年级上册数学第12章相交线与平行线含答案一、单选题(共15题,共计45分)1、如图,已知AE平分∠BAC,BE⊥AE于E,ED∥AC,∠BAE=34°,那么∠BED =()A.134°B.124°C.114°D.104°2、已知坐标平面内的点A(-2,4),如果将平面直角坐标系向左平移3个单位长度,再向上平移2个单位长度,那么平移后点A的坐标是()A.(1,6)B.(-5,6)C.(-5,2)D.(1,2)3、如图,下列各组条件中,能一定得到a//b的是()A.∠1+∠2=180ºB.∠1=∠3C.∠2+∠4=180ºD.∠1=∠44、如图,已知a∥b,小华把三角板的直角顶点放在直线b上.若∠1=40°,则∠2的度数为()A.100°B.110°C.120°D.130°5、在平面直角坐标系中,将点A(﹣2,﹣2)先向右平移6个单位长度再向上平移5个单位长度得到点A',则点A'的坐标是()A.(4,5)B.(4,3)C.(6,3)D.(﹣8,﹣7)6、已知下列命题:①对角线互相平分的四边形是平行四边形;②等腰梯形的对角线相等;③对角线互相垂直的四边形是菱形;④内错角相等。
其中假命题有()A.4个B.3个C.2个D.1个7、如图,AC∥DF,AB∥EF,若∠2=50°,则∠1的大小是()A.60°B.50°C.40°D.30°8、如图,AB⊥EF,CD⊥EF,∠1=∠F=45°,那么与∠FCD相等的角有( )A.1个B.2个C.3个D.4个9、已知,CE平分,交AB于点E,,则的度数为()A. B. C. D.10、在平面直角坐标系中,已知线段MN的两个端点的坐标分别是M(﹣5,2)、N(1,﹣4),将线段MN向上移动3个单位,向左移动2个单位平移后,点M,N的对应坐标为()A.(﹣5,1),(0,﹣5)B.(﹣4,2),(1,﹣3)C.(﹣7,5),(﹣1,﹣1)D.(﹣5,0),(1,﹣5)11、如图,CD是△ABC的角平分线,DE∥BC.若∠A=60°,∠B=80°,则∠CDE 的度数是( )A.20°B.30°C.35°D.40°12、如图,AB//CD,EF与AB、CD分别相交于点E、F,EP⊥EF,且∠BEP=50°,则∠EFD=()A.30°B.40°C.50°D.90°13、如图,下列条件中能判定AB∥CE的是()A.∠B=∠ACEB.∠B=∠ACBC.∠A=∠ECDD.∠A=∠ACE14、如图,将△ABC沿BC边上的中线AD平移到△A'B'C'的位置,已知△ABC的面积为9,阴影部分三角形的面积为4.若AA'=1,则A'D等于()A.2B.3C.D.15、一把直尺和一块三角板(含、角)如图所示摆放,直尺一边与三角板的两直角边分别交于点和点,另一边与三角板的两直角边分别交于点和点,且,那么的大小为()A. B. C. D.二、填空题(共10题,共计30分)16、如图所示,三角形ABC中,∠C=90°,三条边AB,AC,BC中AB>AC,理由:________.又有BC________AB(点B到AC距离,以垂线段最短).17、AB∥CD,∠1=58°,FG平分∠EFD,则∠FGB的度数为________.18、如图,∠1=∠2,∠4=120°,则∠3=________。
人教版七年级上学期数学课件5.1相交线(共21张PPT)

a b
l
(2)两条直线被第三条直线所截.
a b
E A
1 O3 4 6 5 7 8 2
C
B D
F
两直线AB、CD被第三条直线EF所截, 构成8个角,简称“三线八角”. 直线AB、CD是被截直线,EF是截线.
问题3 观察图中的∠1和∠5,它们与截 线及两条被截直线在位置上有什么特点? 你能给它们起个名字吗?
布置作业
E A
1 O3 4 6 5 7 8 2
B
F
总结归纳
1.同位角、内错角、同旁内角 的位置特征及结构特征. 2.识别同位角、内错角、同 旁内角的方法.
1.习题5.1第12题. 2.在下图中,如果直线AB绕着与截线EF 的交 点O 旋转(转动时直线AB不与截线EF重合), ∠1与∠5的同位角关系是否发生改变?两条 被截直线有没有不相交的位置?
错角的图形特征吗?
F
问题6: (1)你能找出图中还有哪几对角构成内错角? (2)两条直线被第三条直线所截构成的八个角中, 共有几对内错角? (1)除了∠3和∠5是内 错角,还有∠4和∠6 也 构成内错角. (2)共有2对 内错角.
角的名称 同位角
位置特征 在两条被截直线 同旁 , 的______ 同侧 在截线的______ 在两条被截直线 之间 , 的______ 两侧 在截线的______ 在两条被截直线 的______, 在截线的_____
角的名称 同位角
位置特征 在两条被截直线 同旁 , 的______ 同侧 在截线的______ 在两条被截直线 之间 , 的______ 两侧 在截线的______
基本图形 图形结构特征 “ F” 形如字母 ___
内错角
“ Z” 形如字母 ___
(基础题)人教五四学制版七年级上册数学第12章 相交线与平行线含答案

人教五四学制版七年级上册数学第12章相交线与平行线含答案一、单选题(共15题,共计45分)1、如图,△ABC为等边三角形,AB=8,AD⊥BC,点E为线段AD上的动点,连接CE,以CE为边作等边△CEF,连接DF,则线段DF的最小值为()A. B.4 C.2 D.无法确定2、如图,将一块含有30°角的直角三角板的两个顶点放在矩形直尺的一组对边上.如果∠2=60°,那么∠1的度数为()A.60°B.50°C.40°D.30°3、如图,a∥b,c与a,b都相交,∠1=50°,则∠2=()A.40°B.50°C.100°D.130°4、在平面直角坐标系xOy中,将一块含有45°角的直角三角板如图放置,直角顶点C的坐标为(1,0),顶点A的坐标为(0,2),顶点B恰好落在第一象限的双曲线上,现将直角三角板沿x轴正方向平移,当顶点A恰好落在该双曲线上时停止运动,则此时点C的对应点C′的坐标为()A.(,0)B.(2,0)C.(,0)D.(3,0)5、同一平面内的四条直线若满足a⊥b,b⊥c,c⊥d,则下列式子成立的是()A.a∥dB.b⊥dC.a⊥dD.b∥c6、如图,一块直角三角尺的一个顶点落在直尺的一边上,若,则的度数为( )A.45°B.C.D.7、如图,AC⊥BC于点C,CD⊥AB于点D,其中长度能表示点到直线(或线段)的距离的线段有()A.1条B.2条C.3条D.5条8、如图,点E是四边形ABCD的边BC延长线上的一点,则下列条件中不能判定AD∥BE的是()A.∠1=∠2B.∠3=∠4C.∠ D=∠5D.∠ B+∠ BAD=180°9、如图所示,下列判断中错误的是()A.因为∠A+∠ADC=180°,所以AB∥CDB.因为AB∥CD,所以∠ABC+∠C=180° C.因为∠1=∠2,所以AD∥BC D.因为AD∥BC,所以∠3=∠410、下列现象属于平移的是()①打气筒活塞的轮复运动,②电梯的上下运动,③钟摆的摆动,④转动的门,⑤汽车在一条笔直的马路上行走.A.③B.②③C.①②④D.①②⑤11、如果线段AB与线段CD没有交点,则()A.线段AB与线段CD一定平行B.线段AB与线段CD一定不平行C.线段AB与线段CD可能平行D.以上说法都不正确12、如图,下列条件中,不能判定直线a平行于直线b的是()A.∠3=∠5B.∠2=∠6C.∠1=∠2D.∠4+∠6=180°13、如果△ABC与△A1B1C1关于y轴对称,已知A(﹣4,6)、B(﹣6,2)、C(2,1),现将△A1B1C1向左平移5个单位,再向下平移3个单位后得到△A2B2C2,则点B2的坐标为()A.(﹣13,﹣1)B.(﹣1,﹣5)C.(1,﹣1)D.(1,5)14、如图,AB∥CD,EF⊥AB于E,EF交CD于F,已知∠1=60°,则∠2=()A.20°B.60°C.30°D.45°15、如图所示,一辆汽车经过一段公路两次拐弯后,和原来的行驶方向相同,也就是拐弯前后的两条路互相平行.第一次拐的角∠B等于142°,第二次拐的角∠C的度数为 ( )A.38°B.142°C.130°D.140°二、填空题(共10题,共计30分)16、如图,直线AB,CD交于点O,OE⊥AB,OD平分∠BOE,则∠AOC=________.17、如图,B处在A处南偏西50°方向,C处在A处的南偏东20°方向,C处在B处的北偏东80°方向,则∠ACB=________.18、如图,CO⊥AB,垂足为O,∠COE﹣∠BOD=4°,∠AOE+∠COD=116°,则∠AOD=________°.19、如图,点A(m,2),B(5,n)在函数y=(k>0,x>0)的图象上,将该函数图象向上平移2个单位长度得到一条新的曲线,点A、B的对应点分别为A′、B′.图中阴影部分的面积为8,则k的值为________ .20、如图,点C在以AB为直径的半圆上,AB=8,∠CBA=30°,点D在线段AB 上运动,点E与点D关于AC对称,DF⊥DE于点D,并交EC的延长线于点F.下列结论:①CE=CF;②线段EF的最小值为2 ;③当AD=2时,EF与半圆相切;④若点F恰好落在上,则AD=2 ;⑤当点D从点A运动到点B 时,线段EF扫过的面积是16 .其中正确结论的序号是________.21、如图,将△ABC沿BC方向平移2cm 得到△DEF,若△ABC的周长为16cm,则四边形ABFD的周长为________.22、如图,a//b,点B在直线b上,且AB⊥BC,∠1=35°,那么∠2=________.23、如图,已知AD∥BC,∠B=32°,BD平分∠ADE,则∠DEC=________.24、将一个直角三角板和一把直尺如图放置,如果∠α=43°,则∠β的度数是________.25、如图,在矩形ABCD中,AD=10,AB=8,点P在AD上,且BP=BC,点M在线段BP上,点N在线段BC的延长线上,且MP=NC,连接MN交线段PC于点F,过点M作ME⊥PC于点E,则EF= ________.三、解答题(共5题,共计25分)26、如图,点D是AB上一点,DF交AC于点E,DE=FE,FC∥AB,AB=6,FC=4,求线段DB的长.27、如图,EF∥AD,AD∥BC,CE平分∠BCF,∠DAC=116°,∠ACF=25°,求∠FEC的度数.28、推理填空:已知:如图AB⊥BC于B,CD⊥BC于C,∠1=∠2,求证:BE∥CF.证明:∵AB⊥BC于B,CO⊥BC于C(已知)∴∠1+∠3=90°,∠2+∠4=90°∴∠1与∠3互余,∠2与∠4互余又∵∠1=∠2(▲)∴▲ = ▲(▲)∴BE∥CF(▲)29、如图,直线AB、CD相交于O点,∠AOC=80°,OE⊥AB,OF平分∠DOB,求∠EOF的度数.30、如图,∠ABC=∠ADC,BF、DE分别平分∠ABC与∠ADC,DE∥FB.求证:AB∥DC.请根据条件进行推理,得出结论,并在括号内注明理由.证明:∵BF、DE分别平分∠ABC与∠ADC,∴ ,.(▲)∵∠ABC=∠ADC,∴▲.∵DE∥FB,∴∠1=∠,(▲),∴∠2=▲.(等量代换),∴AB∥CD.(▲)参考答案一、单选题(共15题,共计45分)1、C2、D3、B5、C6、B7、D8、A9、D10、D11、C12、C13、C14、C15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、三、解答题(共5题,共计25分)26、27、28、29、30、。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教学设计
就是我们今天这堂课要研究的内容:5.1.1相交线(板书)。
二、探究新知
1、取两根木条a 、b ,
将它们钉在一起,并把它们想像成两条直线,就得
到一个相交线模型。
2、小组合作
3、讨论不同的角的位
置关系,得出邻补角、对顶角的定义,并提醒学生注意:对顶角①是两条直
线相交而得;②有一个公
共顶点;③没有公共边,三个条件缺一不可。
4、邻补角、对顶角的大小有什么关系?讨论后得出对顶角的性质:对顶角相等。
教师要鼓励学生运用自己的语言有条理的表达自己的观点,并说明理由。
5、用几何画板展示对顶角与邻补角的性质 6、用数学语言证明“对顶角相等”
观察并思考当转动一木条的位置时,什么也随着发生了变化? (1)、任意画两条相交的直线,
并标出四个角。
(2)、在形成的四个角中,两
两相配共能组成几对角?各对角
存在怎样的位置关系?根据这种
用现实生活中的例子引出两条直线相交所成的角的问题,自然而贴切。