卢瑟福散射实验3
简述卢瑟福a粒子散射实验现象和意义

简述卢瑟福a粒子散射实验现象和意义引言:卢瑟福a粒子散射实验是20世纪初物理学家卢瑟福进行的一项重要实验,通过该实验,卢瑟福首次观察到了原子核的存在,从而为原子结构的研究奠定了基础。
本文将对卢瑟福a粒子散射实验的现象和意义进行简述。
一、实验现象:卢瑟福a粒子散射实验的基本现象是,将高速射入金箔的a粒子被金属原子核散射的过程。
实验中观察到以下几个重要现象:1. 大部分a粒子直线穿过金箔:实验结果显示,大部分a粒子直线穿过金箔,没有或只有微小的偏转。
这说明了原子中存在着大量的空白区域,即原子核外的电子云。
2. 少数a粒子发生大角度散射:尽管大部分a粒子直线穿过金箔,但也有少数a粒子发生了大角度的散射。
这表明原子核具有正电荷,能够对a粒子产生明显的排斥作用。
3. 极少数a粒子被完全反向散射:实验结果还显示,少数a粒子甚至被完全反向散射。
这意味着原子核具有非常强大的正电荷,能够对a粒子产生极强的排斥力。
二、实验意义:卢瑟福a粒子散射实验的意义在于:1. 验证了原子核的存在:实验结果表明,大部分a粒子直线穿过金箔,说明原子中存在大量的空白区域,即原子核外的电子云。
而少数a粒子的大角度散射和完全反向散射现象则表明了原子核具有正电荷。
这一实验结果验证了英国物理学家汤普森的“面包糠模型”是错误的,证明了原子核的存在。
2. 揭示了原子结构的重要特征:卢瑟福的实验结果表明,原子核具有非常强大的正电荷,能够对a粒子产生极强的排斥力。
这一发现揭示了原子结构的重要特征,即原子核是原子中质量集中、带正电荷的部分,而电子则分布在原子核外的电子云中。
3. 奠定了量子力学的基础:卢瑟福的实验结果对于量子力学的发展具有重要意义。
实验结果表明,a粒子在金属原子核的作用下会发生散射,而这种散射现象不能用经典物理学的理论解释。
这促使物理学家们提出了新的理论,即量子力学,以描述微观粒子的行为。
4. 推动了原子核物理学的发展:卢瑟福的实验为原子核物理学的研究奠定了基础。
卢瑟福散射实验 (3)

卢瑟福散射实验10系Pb07210247梁月玲实验目的:通过卢瑟福核式模型,说明α粒子散射实验,验证卢瑟福散射理论;并学习应用散射实验研究物质结构的方法。
实验原理:1.α粒子散射理论:(1)库仑散射偏转角公式设原子核的质量为M ,具有正电荷+Ze ,并处于点O ,而质量为m ,能量为E ,电荷为2e 的α粒子以速度ν入射,在原子核的质量比α粒子的质量大得多的情况下,可以认为前者不会被推动,α粒子则受库仑力的作用而改变了运动的方向,偏转θ角.若α粒子原来的速度为ν,b 是原子核离α粒子原运动径的延长线的垂直距离,即入射粒子与原子核无作用时的最小直线距离,称为瞄准距离。
当α粒子进入原子核库仑场时,一部分动能将改变为库仑势能。
设α粒子最初的的动能和角动量分别为E 和L ,由能量和动量守恒定律可知:⎪⎪⎭⎫⎝⎛++⋅=••222202241ϕπεr r m r Ze E L b m mr ==••νϕ2由以上两式可以证明α粒子的路线是双曲线,偏转角θ与瞄准距离b 关系为:ab ctg22=θ, 其中EZe a 0242πε=这就是库仑散射偏转角公式。
(2)卢瑟福散射公式设靶是一个很薄的箔,厚度为t ,面积为s ,则图3.3-1中的dbds π2=,一个α粒子被一个靶原子散射到θ方向、θθd -范围内的几率,也就是α粒子打在环ds 上的概率,即232cos228sin 2a b db ds d s s s θππθθ==若用立体角Ωd 表示, 2sin 4sin cos 222d d d θθθπθπθΩ==则有:θθd s d a sds 2sin1642Ω=若单位时间有n 个α粒子垂直入射到薄箔上,则单位时间内θ方向且在d Ω立体角内测得的α粒子为:2sin 42414220200θπεΩ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⋅=d E Ze t nN s t N s dsn dn因此,2sin 14241)(422200θπεθσ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=Ω=ΩE Ze td nN dnd d 这就是著名的卢瑟福散射公式。
卢瑟福散射_实验报告

一、实验目的1. 验证卢瑟福散射理论,理解原子核式结构模型;2. 掌握实验装置的使用方法,学会数据处理和误差分析;3. 培养科学实验技能和团队协作能力。
二、实验原理卢瑟福散射实验是通过α粒子轰击金箔,观察α粒子在金箔后的散射情况,从而验证原子核式结构模型。
根据卢瑟福散射理论,当α粒子穿过原子时,只有当α粒子与原子核的距离小于某一特定值时,α粒子才会发生散射。
该特定值与原子核的半径有关,即r = (ke^2)/(p^2),其中k为库仑常数,e为电子电荷,p为α粒子的动量。
三、实验仪器与材料1. 实验仪器:卢瑟福散射实验装置、α粒子源、金箔、计数器、显微镜、计算机等;2. 实验材料:金箔、α粒子源、电源、真空泵等。
四、实验步骤1. 安装实验装置,确保所有仪器连接正确;2. 将金箔固定在实验装置上,调整显微镜位置,使其与金箔垂直;3. 打开α粒子源,调整电流,使α粒子流稳定;4. 打开计数器,记录α粒子在金箔后的散射情况;5. 调整显微镜位置,观察不同角度的散射情况,记录散射角度及计数;6. 重复步骤4和5,记录多组数据;7. 关闭α粒子源,关闭电源,整理实验器材。
五、实验数据与处理1. 记录实验数据,包括散射角度、计数等;2. 利用计算机软件处理数据,计算散射角度与计数的关系;3. 对比实验数据与理论计算值,分析误差来源。
六、实验结果与分析1. 实验结果显示,绝大多数α粒子穿过金箔后仍沿原来的方向前进,偏转角度很小;2. 少数α粒子发生了较大的偏转,偏转角度超过90度;3. 极少数α粒子的偏转角度超过180度,甚至被反弹回来。
根据实验结果,可以得出以下结论:1. 原子内部存在一个带正电的核,核的半径远小于原子半径;2. 原子核的质量远大于电子的质量;3. 原子核的正电荷集中在原子内部,电子围绕原子核运动。
七、误差分析1. α粒子源电流不稳定,导致α粒子流不稳定;2. 金箔厚度不均匀,导致α粒子散射角度不准确;3. 实验装置存在一定误差,如显微镜的读数误差等;4. 数据处理过程中存在舍入误差。
卢瑟福的α粒子散射实验观察和结论

卢瑟福的α粒子散射实验观察和结论卢瑟福的α粒子散射实验观察和结论导言卢瑟福的α粒子散射实验是物理学史上具有里程碑意义的实验之一。
通过此实验,卢瑟福成功地证实了原子结构的基本概念,并揭示了原子核的存在。
本文将探讨卢瑟福的α粒子散射实验的观察结果和结论,并分享我对此实验的观点和理解。
1. 实验背景卢瑟福的α粒子散射实验于1911年进行,当时科学界对原子结构的理解还较为模糊。
卢瑟福希望通过实验来验证当时流行的“杜尔文模型”,即认为原子是由带正电的球体(原子核)和带负电的电子云组成的。
他选择使用α粒子(带有两个负电荷的氦离子)作为入射粒子,通过散射角度的观察来揭示原子的内部结构。
2. 实验过程卢瑟福将一束经过加速的α粒子照射到薄金属箔上,并在周围布置了一个荧光屏。
通过观察荧光屏上出现的散射点和角度,卢瑟福记录下了大量实验数据。
3. 实验观察结果卢瑟福的实验观察结果出人意料,与当时的预期相去甚远:(1) 大多数α粒子出射角度很小,接近与入射方向一致;(2) 一小部分α粒子发生明显的偏转,出射角度远离入射方向;(3) 极少数α粒子甚至发生180度的反向散射,返回入射方向。
4. 实验结论基于上述观察结果,卢瑟福得出了以下结论:(1) 原子具有较大的空隙,大部分α粒子可以直接穿过原子而不发生散射;(2) 原子中存在带正电的原子核,同时带负电的电子云位于其周围;(3) 发生明显偏转的α粒子与正电荷较大的原子核发生了相互作用;(4) 散射角度与入射粒子的能量和散射物质的原子核正电荷有关。
5. 对实验的观点和理解卢瑟福的α粒子散射实验提供了直接证据,证明了历史上首次提出的原子核模型。
此模型认为原子核位于原子的中心,其中带有正电荷,并且占据了大部分原子的质量。
这个实验打破了当时流行的汤姆孙模型,即认为原子是由均匀分布的正负电荷所组成。
对于实验的观察结果,我认为其中最令人震惊的是极少数α粒子的180度反向散射。
这意味着原子核的大小远远小于原子的整体大小,同时具有较大的正电荷。
卢瑟福散射实验

实 验 报 告实验题目:卢瑟福散射实验实验目的:通过卢瑟福核式模型,说明α粒子散射实验,验证卢瑟福散射理论;并学习应用散射实验研究物质结构的方法。
实验原理:见预习报告。
数据处理:1.确定物理0°的位置。
在不同角度下,2s 内计数,结果如下:由上述数据可知2°处为物理0°。
按RESET 清零。
2.测量散射α粒子数。
测量数据及数据处理如下表:P的平均值为:4968.051==∑=i iPP标准差1123.04)(511=-=∑=-i i n P P σA 类不确定度:050.051123.051==-n Au σP=0.95时782.t p=,故139.0050.078.2=⨯==A p u t u因此14.050.0±=P ,P=0.95。
作)2/(sin 1~4θN曲线如下图:102030405060708090100N /100s1/[sin 4(θ/2)]N~1/[sin 4(θ/2)]曲线Linear Regression for Data7_B:Y = A + B * X Parameter Value Error------------------------------------------------------------A 6.80125 4.40716B 0.37696 0.03644------------------------------------------------------------ R SD N P------------------------------------------------------------ 0.98627 5.6309550.00193------------------------------------------------------------由上图可以看出,实验测得的5个点基本在一条直线上,斜率0.37696,因此可以认为P 近似为常数。
α粒子散射实验 实验报告

α粒子散射实验实验报告一.实验目的1.初步了解近代物理中有关粒子探测技术和相关电子学系统的结构,熟悉半导体探测器的使用方法;2.实验验证卢瑟福散射的微分散射截面公式二.实验原理1.瞄准距离与散射角的关系视α粒子和电子均为点电荷,假设两者间作用力只有静电斥力,如图1,散射角θ,瞄准距离b ,α粒子质量为m ,入射速度为0v ,则:(1)(2)2.卢瑟福微分散射截面公式设有截面为S 的α粒子束射到厚度为t 的靶上,靶的原子数密度为n ,则α粒子散射到θ方向单位立体角内每个原子的有效散射截面为:2222244001121()() 1.296()4sin (/2)sin (/2)d Ze Z d mv E σπεθθ==Ω (3) 设实验中探测器的灵敏面积对靶所张的立体角为Δ,在某段时间内射2co t2b D θ=00πε到靶上的粒子总数为T ,则观察到的粒子数为:(4)三.实验仪器粒子源 真空室 探测器与计数系统 真空泵 四.实验数据及处理1.原始数据及处理表1 探测到的粒子数count 与散射角的关系Angle/° Angle /rad count1 count2 count3 count4 count5 N=count average count median -10-0.175 668 687 634 683 719 678 683 -9 -0.157 806 790 738 824 776 787 790 -8 -0.140 875 919 924 923 904 909 919 -7 -0.122 1020 1002 960 1032 999 1003 1002 -6 -0.105 1069 1092 1100 1075 1058 1079 1075 -5 -0.087 1149 1188 1201 1115 1149 1160 1149 -4 -0.070 1173 1148 1164 1196 1171 1170 1171 -3 -0.052 1190 1225 1225 1236 1237 1223 1225 -2 -0.035 1222 1256 1288 1283 1225 1255 1256 -1 -0.017 1295 1284 1292 1296 1278 1289 1292 0 0.000 1310 1290 1281 1264 1355 1300 1290 1 0.017 1275 1264 1299 1231 1253 1264 1264 2 0.035 1283 1188 1220 1274 1250 1243 1250 3 0.052 1248 1236 1211 1201 1257 1231 1236 4 0.070 1107 1134 1083 1116 1132 1114 1116 5 0.087 1184 1103 1150 1105 1132 1135 1132 6 0.105 939 919 932 894 934 924 932 7 0.122 811 882 757 853 837 828 837 8 0.140 723 697 729 715 715 716 715 9 0.157 612 622 627 615 610 617 615 10 0.175 514 501 541 517 501 515 514 11 0.192 382 381 412 381 405 392 382 12 0.209 277 279 310 335 294 299 294 13 0.227 250 225 227 228 163 219 227 14 0.244 164 176 160 168 179 169 168 15 0.262 148 108 127 116 135 127 127 16 0.279 85 82 65 72 78 76 78 17 0.297 40 43 33 34 45 39 40 18 0.314 40 43 33 34 45 39 40 19 0.332 31 29 28 29 22 28 29 200.349 20 25 20 14 24 21 2001()()4sin (/2)Ze nt N Tmv πεθ∆Ω=25 0.436 13 10 4 8 10 9 10 30 0.524 1 3 4 2 5 3 3 35 0.611 0 1 2 1 0 1 1 40 0.698 1 1 0 1 3 1 1 45 0.785 0 1 0 0 0 0 0 50 0.873 0 0 0 0 0 0 02.曲线拟合根据表1,做出探测器探测到的粒子数N 的平均值与散射角θ的关系; 再按照修正拟合公式(6)式进行曲线拟合,如图2所示。
卢瑟福散射

3系08级 姓名:方一 日期:6月6日 PB08206045实验题目: 卢瑟福散射 实验目的: 通过卢瑟福核式模型,说明α粒子散射实验,验证卢瑟福散射理论;并学习应用散射实验研究物质结构的方法。
实验原理:现从卢瑟福核式模型出发,先求α粒子散射中的偏转角公式,再求α粒子散射公式。
1.α粒子散射理论 (1)库仑散射偏转角公式设原子核的质量为M ,具有正电荷+Ze ,并处于点O ,而质量为m ,能量为E ,电荷为2e 的α粒子以速度ν入射,在原子核的质量比α粒子的质量大得多的情况下,可以认为前者不会被推动,α粒子则受库仑力的作用而改变了运动的方向,偏转θ角,如图3.3-1所示。
图中ν是α粒子原来的速度,b 是原子核离α粒子原运动径的延长线的垂直距离,即入射粒子与原子核无作用时的最小直线距离,称为瞄准距离。
图3.3-1 α粒子在原子核的库仑场中路径的偏转当α粒子进入原子核库仑场时,一部分动能将改变为库仑势能。
设α粒子最初的的动能和角动量分别为E 和L ,由能量和动量守恒定律可知:⎪⎪⎭⎫⎝⎛++⋅=∙∙222202241ϕπεr r m r Ze E (1) L b m mr ==∙∙νϕ2 (2)由(1)式和(2)式可以证明α粒子的路线是双曲线,偏转角θ与瞄准距离b 有如下关系:22242Ze Ebctgπεθ= (3) 设E Ze a 0242πε=,则a b ctg 22=θ (4)这就是库仑散射偏转角公式。
(2)卢瑟福散射公式在上述库仑散射偏转公式中有一个实验中无法测量的参数b ,因此必须设法寻找一个可测量的量代替参数b 的测量。
事实上,某个α粒子与原子散射的瞄准距离可大,可小,但是大量α粒子散射都具有一定的统计规律。
由散射公式(4)可见,θ与b 有对应关系,b 大,θ就小,如图3.3-2所示。
那些瞄准距离在b 到db b +之间的α粒子,经散射后必定向θ到θθd -之间的角度散出。
因此,凡通过图中所示以b 为内半径,以db b +为外半径的那个环形ds 的α粒子,必定散射到角θ到θθd -之间的一个空间圆锥体内。
卢瑟福散射公式的实验验证

卢瑟福散射公式的实验验证
一、实验简介
卢瑟福散射公式(Rutherford scattering formula)是1911年英国
科学家阿尔弗雷德·卢瑟福提出的,它是用来解释热核反应的微观动力学
模型,根据该公式,当重粒子(如α粒子)抵达质量集中的区域(原子核)时,其有几率发生Scattering过程,进而使得粒子的方向改变。
为
了验证卢瑟福散射公式,本实验采用重粒子(铯粒子),在特定的重粒子
浓度下,观察重粒子运动的方向,检测是否与卢瑟福散射公式所预期相同。
二、实验环境及设备
本实验使用半导体α质量分析仪设备,它是一种能够通过测定散射
冲击中核的质量来测量粒子能量的装备。
本实验使用的核物质是6种称为“原子核供体”的晶体,用化学方法制备成椭圆形状的晶体,晶体表面由
一层石英薄膜覆盖,用作放射性核反应探测器。
晶体板两端设有灯,用来
提供实验散射图形的阴影效果。
三、实验实施
1.首先在实验室中放入所需的晶体和灯,将晶体板放在室内的两端,
并在晶体板的表面上以固定间距制作放射线路径,以便观察粒子在穿过该
晶体板的过程中的变化情况。
2.然后向晶体板注入适量的铯粒子,将晶体板放置在射线源(用于发
射α粒子的装置)上方,调节粒子浓度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
卢瑟福散射实验
PB04210277 刘善峰
实验目的:通过卢瑟福核式模型,说明α粒子散射实验,验证卢瑟福散射理论;
并学习应用散射实验研究物质结构的方法。
实验原理: α粒子散射理论
(1)库仑散射偏转角公式
设原子核的质量为M ,具有正电荷+Ze ,并处于点O ,而质量为m ,能量为E ,电荷为2e 的α粒子以速度ν入射,
当α粒子进入原子核库仑场时,一部分动能将改变为库仑势能。
设α粒子最初的的动能和角动量分别为E 和L ,由能量和动量守恒定律可知:
⎪⎪⎭
⎫
⎝⎛++⋅=••222202241
ϕπεr r m r Ze E (1) L b m mr ==•
•
νϕ2 (2)
由(1)式和(2)式可以证明α粒子的路线是双曲线,偏转角θ与瞄准距离b 有如下关系:
2
2242
Ze
Eb
ctg
πεθ
= (3) 设E Ze a 02
42πε=,则a b ctg 22=θ (4)
设靶是一个很薄的箔,厚度为t ,面积为s ,则图3.3-1中的db ds π2=,一个α粒子被一个靶原子散射到θ方向、θθd -范围内的几率,也就是α粒子打在
环ds 上的概率,即
θ
θ
θ
ππd s a s db b s ds 2
sin 82cos 223
2== (5)
若用立体角Ωd 表示, 由于
θ
θ
θ
πθ
θ
πd d d 2
cos 2
sin
42
sin 2==Ω
则
有θθ
d s d a s
ds 2
sin
1642Ω=
(6)
为求得实际的散射的α粒子数,以便与实验进行比较,还必须考虑靶上的原子数和入射的α粒子数。
由于薄箔有许多原子核,每一个原子核对应一个这样的环,若各个原子核互不遮挡,设单位体积内原子数为0N ,则体积st 内原子数为st N 0,α粒子打在这些环上的散射角均为θ,因此一个α粒子打在薄箔上,散射到θ方向且在Ωd 内的概率为
s t N s
ds
⋅0。
若单位时间有n 个α粒子垂直入射到薄箔上,则单位时间内θ方向且在Ωd 立体角内测得的α粒子为:
2
sin 424142
20200θπεΩ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭
⎫ ⎝⎛=⋅=d E Ze t nN s t N s ds
n dn (7) 经常使用的是微分散射截面公式,微分散射截面
Ω
⋅=Ωtd N n dn d d 01
)(θσ
其物理意义为,单位面积内垂直入射一个粒子(n=1)时,被这个面积内一个靶原子(10=t N )散射到θ角附近单位立体角内的概率。
因此,
2
sin 14241)(4
2
22
00θπεθσ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭
⎫ ⎝⎛=Ω=ΩE Ze td nN dn
d d (8) 这就是著名的卢瑟福散射公式。
代入各常数值,以E 代表入射α粒子的能量,得到公式:
()
2sin 12296.142
θσ⎪⎭⎫
⎝⎛=ΩE Z d d (9)
其中,Ω
d d σ
的单位为sr mb /,E 的单位为Mev 。
卢瑟福理论的实验验证方法
为验证卢瑟福散射公式成立,即验证原子核式结构成立,实验中所用的核心 仪器为探测器。
设探测器的灵敏度面对靶所张的立体角为∆Ω,由卢瑟福散射公式可知在某段时间间隔内所观察到的α粒子总数N 应是:
T nt m Ze N 2/sin 4142
2
022
0θνπε
∆Ω⎪⎪⎭
⎫
⎝
⎛⎪⎪⎭
⎫ ⎝
⎛= (10) 式中N 为该时间T 内射到靶上的α粒子总数。
由于式中N 、∆Ω、θ等都是可测的,所以(10)式可和实验数据进行比较。
由该式可见,在θ方面上∆Ω内所观
察到的α粒子数N 与散射靶的核电荷Z 、α粒子动能2
021νm 及散射角θ等因素
都有关。
实验数据:
角度:30 35 40 45 50 55 时间:200 400 600 1000 2000 3000
No: 257 236 184 149 171 183 实验内容:
将实验数据代入公式,并进行曲线拟合,得:
50
100
150
200
250
300
B
A
28
30
32
34
36
38
40
42
44
46
48
50
52
54
56
0.5
0.60.70.80.91.0
1.11.2B
A。