七年级数学上册第四章《图形认识初步》全章复习与巩固(提高)知识讲解新人教版

合集下载

人教版数学七年级上册第四章《图形的初步认识》经典复习课件(共39张PPT)

人教版数学七年级上册第四章《图形的初步认识》经典复习课件(共39张PPT)
图形的初步认识复习
广水市实验中学 刘正
请写出框中数字处的内容: ①_两__点__确__定__一__条__直__线__; ②_两__点__之__间__线__段__最__短__; ③_从__一__个__角__的__顶__点__出__发__,__把__这__个__角__分__成__两__个__相__等__的__角__的__射__线__,__ _叫__做__这__个__角__的__平__分__线__; ④_如__果__两__个__角__的__和__等__于__9_0_°__(_直__角__)_,__就__说__这__两__个__角__互__为__余__角__;
考点 1 立体图形与平面图形 【知识点睛】 1.区别:立体图形的各部分不都在同一平面内;平面图形的各 部分都在同一平面内. 2.联系:立体图形可以展开成平面图形,平面图形可以旋转成 立体图形. 3.考点:(1)从不同方向看立体图形.(2)立体图形的平面展开 图.
【例1】(2012·成都中考)如图所示的几何体是由4个相同的小 正方体组成的.从正面看到的是( )
联系:立体图形可以展开成平面图形,平面图形可以旋转成立体图形.
从一个角的顶点出【发思,把路这个点角分拨成两】个相考等虑的角从的射上线,下两层,左右两侧分别看到的小正方体
联系:(1)都可以用两个点的大写字母表示,直线是用任意两点字母,没有先后顺序;
数. 根据平角的定义可得,∠1+90°+∠2=180°,所以∠1+∠2=90°.
【解析】(1)5 22 (2)
考点 2 直线、射线、线段 【知识点睛】 1.直线、射线、线段的区别和联系: 区别:(1)端点个数不同:直线没有端点,射线一个端点,线 段两个端点.
(2)延伸方向不同,直线向两方延伸,射线向一个方向延伸, 线段无延伸. 联系:(1)都可以用两个点的大写字母表示,直线是用任意两 点字母,没有先后顺序;射线是用一个端点字母和任一点字母, 端点字母在前;线段只能用两端点字母,没有先后顺序.(2)线 段可以度量,直线和射线不可度量.

人教版七年级上册数学第四章知识点总结与复习课件

人教版七年级上册数学第四章知识点总结与复习课件

应用格式:
C是线段AB的中点,
AC =BC =1/2AB AB =2AC =2BC
A
C
B
5.有关线段的基本事实 两点之间线段最短
三、角 1.角的定义 (1)有公共端点的两条射线组成的图形,叫做角 (2)角也可以看做由一条射线绕着它的端点旋转所形成的 图形
2.角的度量 度、分、秒的互化 1°=60′,1′=60″ 1″=(1/60)′,1′=(1/60)°
A'
D
C
F
N
M
B'
A
E
B
解:由折纸过程可知, EM平分∠BEB' , EN平分∠AEA'.
所以有∠MEB'=1/2∠BEB',∠NEA'=1/2∠AEA'. 因 ∠BEB'+∠AEA'=180°,
所以有∠NEM=∠NEA'+∠MEB' =1/2∠AEA'+1/2∠BEB' =1/2(∠AEA'+∠BEB') =90°.
M A N C
∵ON是∠AOC的平分线,OM是∠BOC的平分线,
∴∠COM=1/2∠BOC=1/2×140°=70°,
∠CON=1/2∠AOC=1/2×50°=25°,
∴∠MON=∠COM-∠CON=70°-25°=45°;
(2)当∠AOC=α时, ∠MON等于多少度? B
(2)∠BOC=∠AOB+∠AOC=90°+α,
人教版七年级数学上 教学课件
第四章 图形初步认识
知识点总结与复习
要点梳理
考点讲练
当堂练习
课堂小结
要点梳理
一、几何图形 1.立体图形与平面图形 (1)立体图形的各部分不都在同一平面内,如

人教版初一上册第四章几何初步复习讲义

人教版初一上册第四章几何初步复习讲义

人教版初一上册第四章几何初步复习讲义1.看法一些复杂的几何体的平面展开图及三视图,初步培育空间观念和几何直观;2.掌握直线、射线、线段、角这些基本图形的概念、性质、表示方法和画法;3.初步学会运用图形与几何的知识解释生活中的现象及处置复杂的实践效果;4.逐渐掌握学过的几何图形的表示方法,能依据语句画出相应的图形,会用语句描画复杂的图形.知识梳理二、知识梳理+经典例题要点一、几何图形1.几何体的构成元素及关系几何体是由点、线、面构成的.点动成线,线与线相交成点;线动成面,面与面相交成线;面动成体,体是由面组成.2.几何图形的分类要点诠释:在给几何体分类时,不同的分类规范有不同的分类结果.3.平面图形与平面图形的相互转化〔1〕从不同方向看:主〔正〕视图---------从正面看几何体的三视图〔左、右〕视图-----从左〔右〕边看仰望图---------------从下面看要点诠释:①会判别复杂物体〔直棱柱、圆柱、圆锥、球〕的三视图.②能依据三视图描画基本几何体或实物原型.【例】如下图的几何体是由4个相反的小正方体组成的.从正面看到的是( )跟踪练习1.如下图的几何体从正面看到的是( )2.用4个小立方块搭成如下图的几何体,从左面看到的是( )〔2〕平面图形的平面展开图:把平面图形按一定的方式展开就会失掉平面图形,把平面图形按一定的途径停止折叠就会失掉相应的平面图形,经过展开与折叠能把平面图形战争面图形无机地结合起来.要点诠释:①对一些罕见平面图形的展开图要十分熟习,例如正方体的 11种展开图,三棱柱,圆柱等的展开图;②不同的几何体展成不同的平面图形,同一几何体沿不同的棱剪开,可失掉不同的平面图形,那么扫除阻碍的方法就是:联络实物,展开想象,树立〝模型〞,全体设想,入手实际.【例】一个几何体的展开图如下图,这个几何体是( )A.三棱柱B.三棱锥C.四棱柱D.四棱锥跟踪练习1.如图给定的是纸盒的外表面,下面能由它折叠而成的是( )2.小明为往年将要参与中考的好友小李制造了一个(如图)正方体礼品盒,六面上各有一字,连起来就是〝预祝中考成功〞,其中〝预〞的对面是〝中〞,〝成〞的对面是〝功〞,那么它的平面展开图能够是( )3.李强同窗用棱长为1的正方体在桌面上堆成如下图的图形,然后把显露的外表都染成白色,那么外表被他染成白色的面积为( )A.37B.33C.24D.217.5个棱长为1的正方体组成如图的几何体.(1)该几何体的体积是_______(立方单位),外表积是_____(平方单位).(2)画出该几何体从正面和左面看到的平面图形.要点二、直线、射线、线段1.直线,射线与线段的区别与联络2. 基本性质(1)直线的性质:两点确定一条直线.(2)线段的性质:两点之间,线段最短.要点诠释:①本知识点可用来解释很多生活中的现象. 如:要在墙上固定一个木条,只需两个钉子就可以了,由于假设把木条看作一条直线,那么两点可确定一条直线. ②衔接两点间的线段的长度,叫做两点的距离. 3.画一条线段等于线段〔1〕度量法:可用直尺先量出线段的长度,再画一条等于这个长度的线段. 〔2〕用尺规作图法:用圆规在射线AC 上截取AB=a,如以下图: 4.线段的比拟与运算 〔1〕线段的比拟:比拟两条线段的长短,常用两种方法,一种是度量法;一种是叠合法.〔2〕线段的和与差:如以下图,有AB+BC=AC ,或AC=a+b ;AD=AB-BD 。

最新人教版七年级数学上册课件第四章几何图形初步复习(共42张PPT)课件ppt

最新人教版七年级数学上册课件第四章几何图形初步复习(共42张PPT)课件ppt
解:原式=(48°+ 67°)+(39′+ 31′)+(25″+43″)
(2)减法
= 115°70′68″
=115°71′8″ =116°11′8″
90°-78°19′24″ 解:原式=89°60′ -78°19′24″
= 89°59′60″ -78°19′24″
=(89° -78°)+(59′- 19′)+(60″ - 24″) =11°+40′+36″
例如:点B是线段AC的中点
...
则有: AB=BC= AC
ABC
AC=2AB=2BC
(3)线段的三等分点
把一条线段分成三条相等线段的两个点,叫做这条线
段的三等分点。
....
AB=BC=CBC=3CD
(4)画一条线段等于已知线段
用尺规作图法
(5)两点的距离与线段的区别 两点的距离是指连接两点间的线段的长度,是一个数量; 而线段本身是图形.
直线上两个点和它们之间的部分叫做线段,这两个点
叫做线段的端点。 在日常生活中,一根拉紧的绳子、一根竹竿、人行
横道线都给我们以线段的形象。
把线段向一方无限延伸所形成的图形叫做射线。 把线段向两方无限延伸所形成的图形叫做直线。
4.线段的大小和比较
度量法
(1)线段的长短比较 叠合法
(2)线段的中点
把一条线段分成两条相等线段的点,叫做这条线段的中 点。
BO C
线段AB 、线 射线OC、 段BA、线段a 射线l
l
l
AB
直线AB、直
线BA、直线l
延伸性 端点个数 作图叙述

2 连接AB
沿OC方向 向两方无限

数学人教版七年级上册第四章 图形认识初步单元复习教案(第一课时)

数学人教版七年级上册第四章 图形认识初步单元复习教案(第一课时)

第四章图形认识初步单元复习教案(第一课时)教学目标:1.知识与技能直观认识立体图形,掌握平面图形的基本知识;画出简单立体图形的三视图及平面展开图,根据三视图画出一些简单的实物图;2.过程与方法经历相关内容的归纳、总结,巩固对图形的直观认识,了解图形的分割和组合,探索学习空间与图形的方法;通过实验、操作,提高对图形的认识和动手能力.3.情感、态度与价值观在探索知识之间的相互联系及应用的过程中,体验推理的意义,获取学习的经验.教学重点:立体图形与平面图形的互相转化,及一些重要的概念、性质等.解决方法:通过观察、测量、折叠、模型制作与团队合作等活动,发展空间观念.教学难点:建立和发展空间观念;对图形的认识与运用.解决办法:通过实践操作;加强对图形的认识与运用.教学方法:引导式.教具准备:投影仪.教学过程设计:例2 如图,从正面看A、B、C、D四个立体图形,分别得到a、b、c、d四个平面图形,把上下两行相对应立体图形与平面图形用线连接起来.作业:1.圆锥是由个面围成,其中个平面,个曲面.2.如图中的几何体有个面,面面相交成线.3.把一块学生用的三角板以一条直角边为轴旋转一周形成的图形是.4.薄薄的硬币在桌面上转动时,看上去像球,这说明了_________.5.六棱柱有个顶点,个面.七棱锥有个顶点,个面.6.圆柱的侧面是,侧面展开图是.7.下列平面图形中不能围成正方体的是()A. B. C. D.8.如图是正方体的平面展开图,每一个面标有一个汉字,与“和”相对的面上的字是()A.构B.建C.郑D.州9、如图是由一些相同的小正方体构成的立体图形的三种视图.那么构成这个立体图形的小正方体有()A. 4个B. 5个C. 6 个D. 7个主视图左视图俯视图10、如图,是一个由若干个相同的小正方体组成的几何体的主视图和俯视图,则能组成这个几何体的小正方体的个数最少是________个.州郑谐和建构主视图 左视图 112221111121主视图 俯视图11、用4个棱长为1的正方体搭成一个几何体模型,其主视图与左视图如图所示,则该立方体的俯视图不可能...是: ( )主视图 左视图 A . B . C . D .12、 如图是由大小相同的小正方体组成的简单几何体的主视图和左视图那么组成这个几何体的小正方体的个数最多为________个.13、已知下图为一几何体的三视图:(1)写出这个几何体的名称;(2)任意画出它的一种表面展开图;(3)若主视图的长为8cm ,俯视图中圆的半径为3cm ,求这个几何体的表面积和体积.(π取3)俯视图:圆左视图:长方形主视图:长方形答案:1、两、一、一;2、3,曲;3. 圆锥;4. 面动成体;5. 12,8,8,8;6. 曲面,长方形;7、A ;8、D ;9、B ;10、9;11、D ;12、7; 13、(1)圆柱 (2)略 (3)表面积2198cm ,体积3216cm。

人教版七年级上册(新)第四章 《几何图形初步》复习课件(17张PPT) (共17张PPT)

人教版七年级上册(新)第四章 《几何图形初步》复习课件(17张PPT) (共17张PPT)
第四章 《图形认识初步》复习
• 复习目标:
• 1、知识与技能:整体把握本章知识框架, 掌握平面图形的基本知识。 复习

2、过程与方法:经历相关内容的归纳、总 结,巩固对图形的直观认识,探索学习空间 与图形的方法;通过操作,提高对图形的认 识和动手能力 3、情感态度价值观:在探索知识之间的相 互联系及应用过程中,体验推理的意义,获取 学习的经验
运用 总结
思考

一、知识框架(整体把握,系统归纳)
1.从不同的方向看立体图形 立体图形 2.立体图形的展开图 转化为平面图形 转化为平面图形
几何图形 两点确定一条直线
1.直线、射线 线段
平面图形
两点之间,线段最短
角的度量 2.角 角的大小比较 余角和补角 等角的余角相等 角的平分线 等角的补角相等
5、如图所示,回答下列问题。
(1)图中有几条直线?
答:一条直线 AD
(2)图中有几条射线?
答:共8条射线
(3)图中有几条线段? 如果在一条直线上有n个点呢 答:共6条线段 ; n(n-1) ÷2
6、计算:
(1)计算:①27°42′30″+ 73°56′45″ ②63°36′-36.36°。
①解:27°42′30″+ 73°56′45″ = 100°98′75″ = 101°39′15″ ②解: 63°36′-36.36° = 63°36′- 36°21′36 ″ = 63°35′60 ″- 36°21′36 ″ = 27°14′24 ″
32°
45° 77° 62°23′ x°
85 ° 58 ° 45 ° 13 ° 27 ° 37 ′ 90 ° — x°
175 ° 148 ° 135 ° 103 ° 117°37 ′ 180°—x°

新人教版七年级数学上第四章《图形的初步认识》复习课件详解


角的特殊关系
1、∠1与∠2互余,∠1是∠2的余角, ∠2是∠1的余角. ∠1+∠2=90 ° 2、∠1与∠2互补,∠1是∠2的补角, ∠2是∠1的补角. ∠1+∠2=180 ° 1)两个角成对出现 2)只考虑数量关系,与位置无关. 结论: 同角(等角)的余角(补角)相等
注意!
方位角:
1、方位角是以正南、正北方向 为基准,描述物体的运动方向。 2、北偏东45 °通常叫做东北方 西 向,北偏西45 °通常叫做西北 方向,南偏东45 °通常叫做东 南方向,南偏西45 °通常叫做 西南方向。 3、方位角在航行、测绘等实际 生活中的应用十分广泛。
线段
a
射线
l
O C
直线
l
A B 直线AB、直 线BA、直线l
向两方无限 延伸
线段AB 、线 射线OC、 段BA、线段a 射线l
无 沿OC方向 延伸
2 连接AB
1 以点O为端点 作射线OC
0 过A、B两点 作直线AB
下面的知识点你掌握了吗?
知识点1:线段 (1)线段的概念:它是直线的一部分,它的长度 是有限的,它有两个端点. (2)线段的表示方法:可用它的两个端点的大 写字母或用一个小写字母来表示. (3)线段的画法:可用直尺先量出线段的长度, 再画一条等于这个长度的线段.
3.用一个钉子把一根细木条钉在木 板上,用手拔木条,木条能转动,这表 明 ___________ ; 用两个钉子 过一点有无数条直线 把 细木条钉在木板上 , 就能固定细木条 , 两点确定一条直线 这说明________________。
B
·
A
·
5.有关线段的计算问题
(1)如图,A、B、C、D是直线l上顺次四点,且 线段AC=5,BD=4,则线段AB-CD=_____.

人教新课标初一数学第四章图形的初步认识知识点总结

(2)常见图形视图的画法(见下方右图)
【拓展】正方体的十一种展开图分类研究(重点掌握)
(1)六个面分三行有序排列,且第一行2个,中间一行3个,第三行1个
(2)六个面分三行有序排列,且,中间一行4个,两侧各有1个面
(3)六个面分三行有序排列,且每行都有2个面(下方左图)
(4)六个面分两行有序排列,且每行都有3个面(下方右图)
4.1.2点、线、面、体
知识点归纳
一、点、线、面、体
几何图形是由点、线、面、体组成的。

点、线、面、体经过运动变化,就组合成
各种各样的几何图形,形成丰富多彩的图形世界。

面与面相交的地方形成线,线与线相交的地方形成点,点是构成图形的基本元素。

点动成线,线动成面,面动成体。

1、点:在几何体中,线与线相交的地方是点。

它是组成图形的最基本的元素,一切图形都是由点组成的。

2、线:面与面相交的地方形成线。

点动成线,线分为直线和曲线两种。

3、面:包围着体的是面。

有平面和曲面之分。

要得到一个与几何体有关的平面,常采用:①展开;②从不同的方向看,即视图。

4、体:几何体简称体。

由面围成的,也可以看成由平面平移而成或看成由平面绕某一直线旋转而成。

二、几何图形的组成
几何图形是由点、线、面、体组成的;如:三角形由3条边和3个顶点组成,弓形由一条圆弧曲线和一条弦以及两个交点组成,长方体由6个面、12条棱以及8个顶点组成,圆柱由两个圆面作底面及一个曲面组成,相交部分的两个圆是两条直线。

三、几种常见立体图形的画法(见下页)。

数学:第四章《图形认识初步》基础知识复习资料(人教版七年级上)

数学:第四章《图形认识初步》基础知识复习资料(人教版七年级上)一、多姿多彩的图形∵∴°′″∠1.把的各种图形统称为几何图形。

几何图形包括立体图形和平面图形。

各部分不都在同一平面内的图形是图形;如各部分都在同一平面内的图形是图形。

如▲会画出同一个物体从不同方向(正面、上面、侧面)看得的平面图形(视图).▲知道并会画出常见几何体的表面展开图.2.点、线、面、体组成几何图形,点是构成图形的基本元素。

点、线、面、体之间有如图所示的联系:▲知道由常见平面图形经过旋转所得的几何体的形状。

画出下列几何体的三视图正面看上面看左面看二、直线、射线、线段1.直线公理:经过两点有一条直线,一条直线。

简述为: .·两条不同的直线有一个时,就称两条直线相交,这个公共点叫它们的。

·射线和线段都是直线的一部分。

2.直线、射线、线段的记法【如下表示】3.线段的中点:把一条线段分成相等的两条线段的点,叫做线段的中点。

名称表示法作法叙述端点直线直线AB(BA)(字母无序)过A点或B点作直线AB 无端点射线射线AB(字母有序)以A为端点作射线AB 一个线段线段AB(BA)(字母无序)连接AB 两个·如图,点M 是线段AB 的中点,则有AM=MB=21AB 或 2AM=2MB=AB 用符号语言表示就是: 因为 点M 是线段AB 的中点 所以 AM=MB=21( 或 AM=2 =AB) 类似的,把线段分成相等的三条线段的点,叫线段的三等分点。

把线段分成相等的n 条线段的点,叫线段的n 等分点。

4.线段公理:两点的所有连线中,线段最短。

简述为: 之间, 最短。

·两点之间的距离的定义:连接两点之间的 ,叫做这两点的距离。

▲会结合图形比较线段的大小;会画线段的“和”“差”图。

▲会根据几何作图语句画出符合条件的图形,会用几何语句描述一个图形。

1.写出图中所有线段的大小关系,“和”及“差”。

人教版新课标数学七年级上_第4章图形的认识初步复习课件(人教版)



A
角度的加减: 1.同种形式相加减; 2.度加(减)度;分加(减)分; 秒加(减)秒 3.超60进一;减一成60
1 度量法
2 叠合法
∠ABC<∠DEF ∠ABC=∠DEF
∠ABC>∠DEF
角的平分线
1、定义:一条射线把一个角分成两个相等 的角, 这条射线叫做这个角的平分线.
2、几何语言表达:
A
∵ OC是∠AOB的平分线
方位角:
1、方位角是以正南、正北方向 为基准,描述物体的运动方向。
2、北偏东45 °通常叫做东北方 西
向,北偏西45 °通常叫做西北 方向,南偏东45 °通常叫做东 南方向,南偏西45 °通常叫做 西南方向。 3、方位角在航行、测绘等实际 生活中的应用十分广泛。

O 60°

练习、在右图中画出表示下列方向的射线: (1)北偏西30 °(2)北偏东50 ° (3)西南方向
九年义务教育新人教版七年级数学
第四章
(复习课)
按柱、锥、球划分
(1) (2) 是一类,是柱体 (3)(4)是锥体 (5)是球体
圆柱
柱体
三棱柱
棱柱
四棱柱 五棱柱
六棱柱
圆锥
锥体
三棱锥
棱锥
四棱锥 五棱锥
六棱锥
4.1 画立体图形
▪ 观察 ▪ 立体图
三视图
正视图 左(右)视图
俯视图
例:画出以下立体图形的三视立体图形图
a B
··
1 度量法 2 叠合法
用尺规法作一条线段等于已知线段。
3 线段中点的定义和简单作法。



A
C
B
AC CB 1 AB
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《图形认识初步》全章复习与巩固(提高)知识讲解【学习目标】1.认识一些简单的几何体的平面展开图及三视图,初步培养空间观念和几何直观;2.掌握直线、射线、线段、角这些基本图形的概念、性质、表示方法和画法;3.初步学会应用图形与几何的知识解释生活中的现象及解决简单的实际问题;4.逐步掌握学过的几何图形的表示方法,能根据语句画出相应的图形,会用语句描述简单的图形.【高清课堂:图形认识初步章节复习 399079 本章知识结构】【知识网络】【要点梳理】要点一、多姿多彩的图形1.几何图形的分类要点诠释:在给几何体分类时,不同的分类标准有不同的分类结果. 2.立体图形与平面图形的相互转化立体图形:棱柱、棱锥、圆柱、圆锥、球等.⎧⎨⎩平面图形:三角形、四边形、圆等.几何图形⎧⎨⎩(1)立体图形的平面展开图:把立体图形按一定的方式展开就会得到平面图形,把平面图形按一定的途径进行折叠就会得到相应的立体图形,通过展开与折叠能把立体图形和平面图形有机地结合起来. 要点诠释:①对一些常见立体图形的展开图要非常熟悉,例如正方体的 11种展开图,三棱柱,圆柱等的展开图;②不同的几何体展成不同的平面图形,同一几何体沿不同的棱剪开,可得到不同的平面图形,那么排除障碍的方法就是:联系实物,展开想象,建立“模型”,整体构想,动手实践. (2)从不同方向看:主(正)视图---------从正面看 几何体的三视图 (左、右)视图-----从左(右)边看 俯视图---------------从上面看要点诠释:①会判断简单物体(直棱柱、圆柱、圆锥、球)的三视图. ②能根据三视图描述基本几何体或实物原型. (3)几何体的构成元素及关系几何体是由点、线 、面构成的.点动成线,线与线相交成点;线动成面,面与面相交成线;面动成体,体是由面组成. 要点二、直线、射线、线段1. 直线,射线与线段的区别与联系2. 基本性质(1)直线的性质:两点确定一条直线. (2)线段的性质:两点之间,线段最短. 要点诠释:①本知识点可用来解释很多生活中的现象. 如:要在墙上固定一个木条,只要两个钉子就可以了,因为如果把木条看作一条直线,那么两点可确定一条直线。

②连接两点间的线段的长度,叫做两点的距离. 3.画一条线段等于已知线段(1)度量法:可用直尺先量出线段的长度,再画一条等于这个长度的线段. (2)用尺规作图法:用圆规在射线AC 上截取AB=a,如下图:4.线段的比较与运算 (1)线段的比较:比较两条线段的长短,常用两种方法,一种是度量法;一种是叠合法. (2)线段的和与差:如下图,有AB+BC=AC ,或AC=a+b ;AD=AB-BD 。

(3)线段的中点:把一条线段分成两条相等线段的点,叫做线段的中点.如下图,有:12AM MB AB ==要点诠释:①线段中点的等价表述:如上图,点M 在线段上,且有12AM AB =,则点M 为线段AB 的中点.②除线段的中点(即二等分点)外,类似的还有线段的三等分点、四等分点等.如下图,点M,N,P 均为线段AB 的四等分点.PNMBAAB PB NP MN AM 41==== 要点三、角 1.角的度量(1)角的定义:有公共端点的两条射线组成的图形叫做角,这个公共端点是角的顶点,这两条射线是角的两条边;此外,角也可以看作由一条射线绕着它的端点旋转而形成的图形. (2)角的表示方法:角通常有三种表示方法:一是用三个大写英文字母表示,二是用角的顶点的一个大写英文字母表示,三是用一个小写希腊字母或一个数字表示.例如下图:CBbba MBA要点诠释:①角的两种定义是从不同角度对角进行的定义;②当一个角的顶点有多个角的时候,不能用顶点的一个大写字母来表示. (3)角度制及角度的换算1周角=360°,1平角=180°,1°=60′,1′=60″,以度、分、秒为单位的角的度量制,叫做角度制. 要点诠释:①度、分、秒的换算是60进制,与时间中的小时分钟秒的换算相同.②度分秒之间的转化方法:由度化为度分秒的形式(即从高级单位向低级单位转化)时用乘法逐级进行;由度分秒的形式化成度(即低级单位向高级单位转化)时用除法逐级进行. ③同种形式相加减:度加(减)度,分加(减)分,秒加(减)秒;超60进一,减一 成60. (4)角的分类(5)画一个角等于已知角(1)借助三角尺能画出15°的倍数的角,在0~180°之间共能画出11个角. (2)借助量角器能画出给定度数的角. (3)用尺规作图法. 2.角的比较与运算(1)角的比较方法: ①度量法;②叠合法. (2)角的平分线:从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线,例如:如下图,因为OC 是∠AOB 的平分线,所以∠1=∠2=12∠AOB ,或∠AOB=2∠1=2∠2. 类似地,还有角的三等分线等.∠β 锐角 直角 钝角 平角 周角 范围0<∠β<90°∠β=90°90°<∠β<180°∠β=180°∠β=360°3.角的互余互补关系余角补角(1)若∠1+∠2=90°,则∠1与∠2互为余角.其中∠1是∠2的余角,∠2是∠1的余角. (2)若∠1+∠2=180°,则∠1与∠2互为补角.其中∠1是∠2的补角,∠2是∠1的补角.(3)结论: 同角(或等角)的余角相等;同角(或等角)的补角相等要点诠释:①余角(或补角)是两个角的关系,是成对出现的,单独一个角不能称其为余角(或补角).②一个角的余角(或补角)可以不止一个,但是它们的度数是相同的,③只考虑数量关系,与位置无关.④“等角是相等的几个角”,而“同角是同一个角”4.方位角以正北、正南方向为基准,描述物体运动的方向,这种表示方向的角叫做方位角.要点诠释:(1)方位角还可以看成是将正北或正南的射线旋转一定角度而形成的.所以在应用中一要确定其始边是正北还是正南.二要确定其旋转方向是向东还是向西,三要确定旋转角度的大小.(2)北偏东45 °通常叫做东北方向,北偏西45 °通常叫做西北方向,南偏东45 °通常叫做东南方向,南偏西45 °通常叫做西南方向.(3)方位角在航行、测绘等实际生活中的应用十分广泛.【典型例题】类型一、概念或性质的理解1.下列判断错误的有( )①延长射线OA;②直线比射线长,射线比线段长;③如果线段PA=PB,则点P是线段AB的中点;④连接两点间的线段,叫做两点间的距离.A.0个 B.2个 C.3个 D.4个【答案】D【解析】①由于射线向一方无限延伸,因此,不能延长射线;②由于直线向两方无限延伸,射线向一方无限延伸,因此它们都是不能度量的,所以它们不存在相等或不相等的关系,而线段是可以度量的,可以比较线段的长短;③线段PA=PB,只有当点P在线段AB上时,才是线段AB的中点,否则就不是;④两点间的距离是表示大小的量,而线段是图形,二者的本质属性不同.【点评】本题考查的是基本概念,要抓住概念间的本质区别.举一反三:【变式】下列说法正确的个数有( )①若∠1+∠2+∠3=90°,则∠1,∠2,∠3互余.②互补的两个角一定是一个锐角和一个钝角.③因为钝角没有余角,所以,只有当角为锐角时,“一个角的补角比这个角的余角大”这个说法才正确.A.0个 B.1个 C.2个 D.3个【答案】B 提示:③正确类型二、立体图形与平面图形的相互转化1. 展开与折叠问题2.如图所示,它们的平面展开图是由5个大小相同的正方形组成,其中沿正方形的边不能折成无盖小方盒的是( ).【思路点拨】解题时勿忘记四棱柱的特征及正方体展开图的各种情形.【答案】B【解析】图形B无论怎样折叠都有一个侧面重合,这样就缺少一个侧面,所以图形B不能折成无盖小方盒.【点评】解题时勿忘记四棱柱的特征及正方体展开图的各种情形.举一反三:【变式】已知O为圆锥的顶点,M为圆锥底面圆上一点,点P在OM上.一只蜗牛从P点出发,绕圆锥侧面爬行,回到P点时,所爬过的最短路线的痕迹如图所示.若沿OM将圆锥侧面剪开并展平,所得侧面展开图(如图)是( ).【答案】D2.从不同方向看3. (河北)将正方体骰子(相对面上的点数分别为1和6,2和5,3和4)放置于水平桌面上,如图1所示.在图2中,将骰子向右翻滚90°,然后在桌面上按逆时针方向旋转90°,则完成一次变换.若骰子的初始位置为图1所示的状态,那么按上述规则连续完成10次变换后,骰子朝上一面的点数是( ).A.6 B.5 C.3 D.2【答案】B【解析】第一次变换:将骰子向右翻滚90°,正面向上的应当是5,右面的是3,正面是1,再在桌面上按逆时针方向旋转90°,面向上的应当是5,右面的是1,正面是4;第二次变换:将骰子向右翻滚90°,正面向上的应当是6,右面的是5,正面是4,再在桌面上按逆时针方向旋转90°,面向上的应当是6,右面的是4,正面是2;第三次变换:将骰子向右翻滚90°,正面向上的应当是3,右面的是6,正面是2,再在桌面上按逆时针方向旋转90°,正面向上的应当是3,右面的是2,正面是1,就回到了初始状态.所以每完成三次变换即可回到原来的位置,所以第十次变换后的状态与第一次变换后的状态相同,所以朝上一面的点数是5.【点评】先找到规律再从上面看便得答案.举一反三:【变式1】(南昌)沿圆柱体上底面直径截去一部分后的物体如图所示,它的俯视图是( ).【答案】D【高清课堂:图形认识初步章节复习399079 多姿多彩的图形例2】【变式2】如图,是由一些完全相同的小立方块搭成的几何体的三种视图,那么搭成这个几何体所用的小立方块的个数是()A. 5个B. 6个C. 7个D. 8个【答案】D类型三.互余互补的有关计算4. (安徽芜湖)如图所示的4×4正方形网格中,∠1+∠2+∠3+∠4+∠5+∠6+∠7等于( )A.330° B.315° C.310° D.320°【答案】B【解析】通过网格的特征首先确定∠4=45°.由图形可知:∠l与∠7互余,∠2与∠6互余,∠3与∠5互余,所以∠l+∠2+∠3+∠4+∠5+∠6+∠7=90°+90°+90°+45°=315°.【点评】互余的两个角只与数量有关,而与位置无关.举一反三:【变式】如图所示,AB和CD都是直线,∠AOE=90°,∠3=∠FOD,∠1=27°20′,求∠2,∠3.【答案】解:因为∠AOE=90°,所以∠2=90°-∠1=90°-27°20′=62°40′.又∠AOD=180°-∠1=152°40′,∠3=∠FOD.所以∠3=12∠AOD=76°20′.答:∠2为62°40′,∠3为76°20′.类型四.方向角5. (山东潍坊)用A、B、C分别表示学校、小明家、小红家,已知学校在小明家的南偏东25°,小红家在小明家正东,小红家在学校北偏东35°,则∠ACB等于( )A.35° B.55° C.60° D.84°【思路点拨】这是生活中有关方位角问题,解决这类问题,只要分清方向,正确地画出图形,问题便会迎刃而解.【答案】B【解析】根据题意画出图形如下:∵∠ACB与35°互余,∴∠ACB=90°-35°=55°【点评】解决有关方位角问题,只要分清方向,正确地画出图形,问题便迎刃而解.举一反三:【变式】(张家界模拟)考点办公室设在校园中心O点,带队老师休息室A位于O点的北偏东45°,某考室B位于O点南偏东60°,请在图(1)中画出射线OA、OB,并计算∠AOB的度数.【答案】解:如图(2),以O 为顶点,正北方向线为始边向东旋转45°,得OA ;以O 为顶点,正南方向线为始边向东旋转60°,得OB ,则∠AOB =180°-(45°+60°)=75°.类型五.利用数学思想方法解决有关线段或角的计算 1.方程的思想方法6. 如图所示,B 、C 是线段AD 上的两点,且32CD AB =,AC =35cm ,BD =44cm ,求线段AD 的长.【答案与解析】解:设AB =x cm ,则3cm 2CD x =(35)cm BC x =-或3(44)cm 2x -于是列方程,得335442x x -=-解得:x =18,即AB =18(cm) 所以BC =35-x =35-18=17(cm)33182722CD x ==⨯=(cm) 所以AD =AB+BC+CD =18+17+27=62(cm)【点评】根据题中的线段关系,巧设未知数,列方程求解. 2.分类的思想方法7. 同一直线上有A 、B 、C 、D 四点,已知AD =59DB ,AC =95CB ,且CD =4cm ,求AB 的长.【思路点拨】先根据题意画出图形,再从图上直观的看出各线段的关系及大小. 【答案与解析】 解:利用条件中的AD =59DB ,AC =95CB ,设DB =9x ,CB =5y , 则AD =5x ,AC =9y ,分类讨论:(1)当点D,C均在线段AB上时,如图所示:∵ AB=AD+DB=14x,AB=AC+CB=14y,∴ x=y∵ CD=AC-AD=9y-5x=4x=4,∴ x=1,∴ AB=14x=14(cm).(2)当点D,C均不在线段AB上时,如图所示:方法同上,解得87AB=(cm).(3)如图所示,当点D在线段AB上而点C不在线段AB上时,方法同上,解得11253AB=(cm).(4)如图所示,当点C在线段AB上而点D不在线段AB上时,方法同上,解得11253AB=(cm).综上可得:AB的长为14cm,87cm,11253cm.【点评】解决没有图形的题目时,一要注意满足条件下的图形的多样性;二要注意解决的方法,注意设量法在图形中的体现,使比较复杂的问题得以顺利的解决,在正确答案中,(3)与(4)的答案虽然相同,但作为图形上的差别应了解.类型六.钟表上的角8. 如图所示,时钟的时针由3点整的位置(顺时针方向)转过多少度时,与分针第一次重合.【答案与解析】解:设时针转过的度数为x时,与分针第一次重合,依题意有12x=90+x解得9011 x=答:时针转过9011⎛⎫⎪⎝⎭°时,与分针第一次重合.【点评】在相同时间里,分针转过的度数是时针的12倍,此外此问题可以转化为追及问题来解决.。

相关文档
最新文档