铝合金热力学性能

铝合金热力学性能
铝合金热力学性能

铝合金热学性能

2xxx合金

热学性能

电学性能

热处理对7075铝合金组织和性能的影响

热处理对7075铝合金组织和性能的影响 摘要:对7075铝合金进行了固溶和单级时效处理,研究了单级时效对铝合金组织和性能的影响,结果表明铝合金经单级时效后纤维组织消失,在晶界处生成第二相粒子。铝合金显微硬度的峰值时效温度为120℃,时间为16h,硬度为220HV。120℃/24h时效后合金的峰值强度为680.5MPa。本研究中主要阐述热处理对7075铝合金组织和性能的影响。 关键词:热处理;7075铝合金;组织性能 引言 近些年来,铝合金的发展历程先后经历了由单一的追求高强度到追求高强耐腐蚀,再到追求高强高韧耐腐蚀性能,又到高强高韧耐腐蚀抗疲劳,最终到现在的追求高淬透性高综合性能五个发展阶段。然后发展方向却集中在以满足高强高韧铝合金的航空航天领域以及适用于各种使用条件的民用铝合金领域。当前对于铝合金强韧化以及耐蚀性的研究已经成为了重中之重,相信随着综合性能的提高,铝合金在国民经济发展中的运用将更加广泛。 1、7xxx系铝合金概述 7xxx铝合金是以Al-Zn-Mg和Al-Zn-Mg-Cu合金为主的一种超高强度铝合金,它是超高系列铝合金的最主要代表,Fe和Si是7xxx铝合金的主要有害杂质。较2xxx高强度铝合金在强度和硬度方面高出许多。属于热处理可强化的合金。该系铝合金具有强度高、密度小、易加工、焊接性能良好等优良特点,并且一般耐蚀性较好,因此在航空航天工业、车辆、建筑、桥梁、工兵装备及大型压力容器方面得到了广泛的应用。现阶段7xxx铝合金的研究主要集中在通过调节合金化元素和优化热处理工艺来得到高强高韧耐腐蚀的综合性能[1]。这也是本文的研究方向的出发点。该系代表合金如7005、7050、7075等。 2、试验材料与方法 试验材料为7075铝合金,将铝合金(尺寸为20mmX20mmX160mm)在盐浴中进行固溶处理,处理工艺为480℃/2h铝合金固溶处理后在试验箱中进行单级时效处理,时效温度分别为100,120,150℃,时效时间为0-48h。 将试样按国标GB/T228-2010用线切割加工成拉伸试样,用酒精超声清洗去除表面油污,在MT810万能试验机上进行拉伸强度测试,取5个试样的平均值;采用

第二章均匀物质的热力学性质教案

热力学与统计物理课程教案 第二章均匀物质的热力学性质

2.1 内能、焓、自由能和吉布斯函数的全微分 1、全微分形式、、、G F H U 在第一章我们根据热力学的基本规律引出了三个基本的热力学函数,物态方程、内能和熵,并导出了热力学基本方程:PdV TdS dU -=①。即U 作为V S 、函数的全微分表达式。 焓的定义:PV U H +=,可得:VdP TdS dH += ②,即H 作为P S 、函数的全微分表达式。 自由能:TS U F -=,求微分并代入①式可得:PdV SdT dF --= ③ 吉布斯函数:PdV TS U G +-=,求微分并代入①可得:VdP SdT dG +-=④ 2、麦氏关系的推导 U 作为V S 、的函数:()V S U U ,=,其全微分为:dV V U dS S U dU S V ??? ????+??? ????= 与(1)式比较,得:V S U T ??? ????=,S V U P ??? ????-=, 求二次偏导数并交换次序,得:V S S P V T V S U ??? ????-=??? ????=???2⑤, 类似地,由焓的全微分表达式②可得: P S H T ??? ????=,S P H V ??? ????=,P S S V P T P S H ??? ????=??? ????=???2⑥, 由自由能的全微分表达式可得: V T F S ??? ????=-,T V F P ??? ????=-,V T T P V S V T F ??? ????=??? ????=???2⑦ 由吉布斯函数的全微分表达式可得: P T G S ??? ????=-,T P G V ??? ????=,P T T V P S P T G ??? ????-=??? ????=???2⑧。 ⑤-⑧四式给出了V P T S ,,,这四个量的偏导数之间的关系。 2.2 麦氏关系的简单应用

均匀化退火对6056铝合金组织与性能的影响

均匀化退火对6056铝合金组织与性能的影响 宁波科诺铝业有限责任公司,董培纯邱建平李博 摘要:采用热分析技术、扫描电子显微镜、拉伸试验研究均匀化退火处理对于6056铝合金微观组织和力学性能的影响。结果表明:6056铝合金铸态组织存在严重的枝晶偏析及明显的非平衡共晶组织,经过540℃×12 h 均匀化退火处理后,枝晶偏析和非平衡共晶组织明显消除,其强度降低、塑性大幅度提高。 关键词:均匀化退火;微观组织;力学性能 The effect of homogenizing annealing on microstructure and properties of 6056 aluminum alloy (Ningbo KENO Aluminum Co.,Ltd,Ningbo 315033,China) Abstract:The influence of homogenizing annealing on microstructure and properties of 6056 aluminum alloy is investigated by heat analysis technology,scan electrical microscope and tensile test. The results show that severe dendritic-segregation and unequilibrium phases exist in its as-cast structure,After 540℃×12h homogenizing annealing treatment,dendrite segregation and unequilibrium eutectic phases eliminate . The strength decrease and the ductility increase obviously. Keywords:Homogenization annealing;Microstructure;Mechanical properties 引言 6056铝合金是广泛应用于汽车和航空领域的一种Al-Mg-Si-Cu合金,其强度比6061铝合金高15%,可焊性、耐腐蚀性能和切削加工性能均优于7075和2024铝合金[1,2]。6056铝合金成分复杂,在半连续铸造过程中,铸锭组织会不同程度地偏离平衡状态,产生严重的枝晶偏析,形成大量的非平衡凝固共晶组织,因此,6056铝合金铸锭必须进行均匀化退火处理,以消除枝晶偏析,同时使合金中非平衡凝固共晶组织溶入基体,最大限度地减少基体中残留的结晶相,提高合金的塑性[3,4]。 均匀化退火处理是6056铝合金获得理想工艺性能和力学性能的关键环节之一。目前国内对于6065铝合金的均匀化退火处理的研究还不充分,本文通过研究均匀化退火对6065铝合金微观组织和性能的影响,为6056铝合金的生产提供试验指导。 试验材料与试验方法 按照表1所示的6056铝合金成分进行配料,使用中频感应炉熔炼,精炼后采用半连续铸造的方法铸成Φ85 mm的铸棒。在铸棒上取样,采用DSC进行热分析试验,得到铸棒中低熔点共晶组织的熔化温度,以确定均匀化退火温度,DSC试验的升温速率5 ℃/min,从室温加热到600 ℃。截取Φ85×100 mm的铸棒进行均匀化退火,均匀化退火温度为540 ℃,保温时间分别是6 h、12 h。从铸态和均匀化退火后的铸棒上切取金相试样,经机械研磨和抛光后,在2 ml HF、3 ml HCl、5 mlHNO3、250 mlH2O 腐蚀液中腐蚀10 s,用清水冲洗干净,然后用酒精擦净吹干,制得的试样采用扫描电子显微镜观察微观组织形貌。将铸态及均

材料热力学计算及其在合金制备中的应用

材料热力学计算 及其在纳米材料中的应用 一导论 材料热力学对于材料科学的研究和发展有着重要的意义。相图在材料工程中有重要的应用价值,它和合金体系中各相的热力学参数是材料设计和制备的重要依据之一。从理论上来说,热力学和相图之间的联系不存在任何障碍。但从历史上看,两者却是沿着各自的方向独立发展。传统上,相图主要是用热分析、金相分析和X射线结构分析等实验方法测定,并没有用到热力学知识,也没有完全将热力学用来解决生产实际问题。而热力学则主要是对相平衡进行理论分析,提出不同状态下平衡过程的方向和限度,其实验数据主要是热化学性质的测定。直至近年来,由于在溶液模型、数值方法和计算机软件等方面取得较大的进展,这才使得人门能够将热力学应用到相图中来。热力学和相图的计算机耦合形成了CALPHAD(computer CALculations of Phase Diagram)技术。CALPHAD技术主要是依据热力学原理和基本关系计算物质体系的平衡性质。一个物质体系的热力学特征函数确定,这个物质体系的全部热力学性质都可计算出来,其中包括相图。这就是CALPHAD技术中的相平衡计算部分。 二CALPHAD技术的发展 现今CALPHAD方法的内涵已由相图和热化学的计算机耦合拓展至宏观热力学计算与量子化学第一性原理计算相结合、宏观热力学计算与动力学模拟相结合、建立新一代计算软件和多功能数据库(multi-function database),其科学内容十分丰富,已成为材料科学比较成熟的重要分支., CALPHAD可以按照常规方法进行复杂的相平衡计算,而且还是建立在合理的物理基础之上。已经有大量可以在PC上运行的软件来进行复杂计算,例如FACT[5]、MTDATA[6]、Lukas Program[7]、Ther-mo-Calc[8]、ChemSage等[9]已在全球通用;建立了许多相图热力学数据库,如SGTE纯物质数据库、溶液数据库等。这些软件运行时不需要大量的专门技术,并且在不断地升级以采用更精确的热力学模型和算法更新现有的数据库,在很多情况下可以预测多元合金的相平衡,并与实验结果接近。目前,新一代的软件也在不断地开发完善之中,例如WinPhad[10]和PANDAT等[11]。因此,CALPHAD成为了一个成熟的科学分支,事实上,已经进入了其发展的另一个阶段,强调的是扩展其应用范围的集中要求。

工艺参数对3003铝合金组织与 性能的影响

Material Sciences 材料科学, 2018, 8(5), 603-608 Published Online May 2018 in Hans. https://www.360docs.net/doc/7a15010805.html,/journal/ms https://https://www.360docs.net/doc/7a15010805.html,/10.12677/ms.2018.85071 Effect of Process Parameters on Microstructure and Properties of 3003 Aluminum Alloy Yitan Wang1, Qingsong Dai1,2, Ping Fu1, Mingwei Zhao1 1Guangxi Liuzhou Yinhai Aluminum Co., Ltd., Liuzhou Guangxi 2School of Materials Science and Engineering, Central South University, Changsha Hunan Received: May 4th, 2018; accepted: May 20th, 2018; published: May 29th, 2018 Abstract Taking 3003 aluminum alloy as the research object, the effects of cold rolling rate and annealing temperature on the microstructure and properties of the sheet were studied. The results show that the work hardening of 3003 alloy sheet is significant. With the increasing of cold rolling de-formation, the tensile strength and yield strength of alloy plates increase gradually, while the elongation decreases. And during the annealing of the finished product, recovery and recrystalli-zation occur within the alloy. As the annealing temperature increases, the tensile strength and yield strength gradually decrease, and the elongation gradually increases. Keywords 3003 Aluminum Alloy, Cold Rolling Deformation, Annealing Temperature, Microstructure and Properties 工艺参数对3003铝合金组织与 性能的影响 王绎潭1,戴青松1,2,付平1,赵明伟1 1广西柳州银海铝业股份有限公司,广西柳州 2中南大学材料科学与工程学院,湖南长沙 收稿日期:2018年5月4日;录用日期:2018年5月20日;发布日期:2018年5月29日

材料热力学练习三:各种热力学性质的计算

新型材料设计及其热力学与动力学 The excess Gibbs energies of bcc solid solution of (Fe,Cr) and fcc solid solution of (Fe,Cr) is represented by the following expressions: G ex(bcc)/J=x Cr x Fe (25104-11.7152T); G ex(fcc)/J=x Cr x Fe (13108-31.823T+2.748T log e T) For the bcc phase, please do the following calculations using one calculator. (a) Calculate the partial Gibbs energy expressions for Fe and Cr (b) Plot the integral and partial Gibbs energies as a function of composition at 873 K (c) Plot the activities (a Cr and a Fe) as a function of composition at 873K (d) What are the Henry’s law constants for Fe and Cr? For the fcc phase, please do the calculations (a) to (b) by using your own code 翻译: BCC(Fe,Cr)固溶体的过剩吉布斯自由能和fcc固溶体(Fe,Cr)的吉布斯自由能表达式如下: G ex(bcc)/J=x Cr x Fe (25104-11.7152T); G ex(fcc)/J=x Cr x Fe (13108-31.823T+2.748T ln T) G ex/J 对于体心立方相,请使用计算器做下面的计算。 (a)计算Fe和Cr的局部吉布斯能量表达式; (b)画出873K时局部吉布斯自由能和整体吉布斯自由能的复合函数图。 (c)画出873K时Fe和Cr反应的活度图。 (d)F e和Cr亨利定律常数是什么? 对于fcc,请用你自己的符号计算a和b。

水的热力学性质介绍

物质常用状态参数:温度、压力、比体积(密度)、内能、焓、熵。(只需知道其中两参数)比容和比体积概念完全相同。建议合并。单位质量的物质所占有的容积称为比容,用符号"V" 表示。其数值是密度的倒数。 比热容(specific heat capacity)又称比热容量,简称比热(specific heat),是单位质量的某种物质,在温度升高时吸收的热量与它的质量和升高的温度乘积之比。比热容是表示物质热性质的物理量。通常用符号c表示。比热容与物质的状态和物质的种类有关。 三相点是指在热力学里,可使一种物质三相(气相,液相,固相)共存的一个温度和压力的数值。举例来说,水的三相点在0.01℃(273.16K)及611.73Pa 出现;而汞的三相点在?38.8344℃及0.2MPa出现。 临界点:随着压力的增高,饱和水线与干饱和蒸汽线逐渐接近,当压力增加到某一数值时,二线相交即为临界点。临界点的各状态参数称为临界参数,对水蒸汽来说:其临界压力为22.11999035MPa,临界温度为:374.15℃,临界比容0.003147m3/kg。 超临界流体是处于临界温度和临界压力以上,介于气体和液体之间的流体。由于它兼有气体和液体的双重特性,即密度接近液体,粘度又与气体相似,扩散系数为液体的10~100倍,因而具有很强的溶解能力和良好的流动、输运性质。 当一事物到达相变前一刻时我们称它临界了,而临界时的值则称为临界点。 临界点状态:饱和水或饱和蒸汽或湿蒸汽 在临界点,增加压强变为超临界状态;增加温度变为过热蒸汽状态。 为什么在高压下,低温水也处于超临界?(如23MP,200℃下水状态为超临界?)应该是软件编写错误。 超临界技术: 通常情况下,水以蒸汽、液态和冰三种常见的状态存在,且是极性溶剂,可以溶解包括盐在内的大多数电解质,对气体和大多数有机物则微溶或不溶。液态水的密度几乎不随压力升高而改变。但是如果将水的温度和压力升高到临界点 (Tc=374.3℃,Pc=22.1MPa)以上,水的性质发生了极大变化,其密度、介电常数、黏度、扩散系数、热导率和溶解性等都不同于普通水。水的存在状态如图:

几种热力学模拟软件比较

Thermo-Calc 概述:(原产地:瑞典)热力学计算软件的开拓者,软件开发历史比较悠久,因此软件功能比较完善和强大,所涉及的领域比较广泛,包括冶金、金属合金、陶瓷、熔岩、硬质合金、粉末冶金、无几物等等,产品主要包括TCC、TCW、DICTRA、二次开发工具和数据库。 软件功能:1、热力学——相图、热力学性能、凝固模拟、液相面、热液作用、变质、岩石形成、沉淀、风化过程的演变、腐蚀、循环、重熔、烧结、煅烧、燃烧中的物质形成、CVD 图、薄膜的形成、CVM 计算,化学有序 - 无序等等。2、动力学(DICTRA)——扩散模拟,如合金均匀化、渗碳、脱碳、渗氮、奥氏体/铁素体相变、珠光体长大、微观偏析、硬质合金的烧结等等。 数据库:TC的数据库比较多,甚至可以说杂来形容,呵呵,TC自己做的最好的数据库应该是Fe,当然现在也有像Ni等等的自己开发的数据库,但是大部分数据库都是利用第三方的,如有色金属(Al、Mg、Ti等)是英国ThermoTech的。当然TC的同盟战线非常广,所以相应可用的数据库也就非常多,包括众多无几物数据库、陶瓷数据库、硬质合金数据库、核材料数据库等等。 优势:软件功能强大、用户群较大方便交流、软件扩展性能好、灵活性强、适用范围广。 缺点:操作界面不是很友好,很难上手,动力学(扩散)数据目前不是很全,计算引擎技术滞后(主要表现在初始值方面)。 适用范围:适合于科学研究,尤其是理论研究,从行上来讲非常适合黑色金属行业,当然陶瓷、化工等行业也是首选(因为其他没有软件有这方面的数据库和功能)。

Pandat 概述:(原产地:美国,全是中国人开发,呵呵)热力学计算软件的后起者,或者说新秀吧,呵呵!主要是抓住竞争对手界面不友好和需要计算初值的弱点发展起来的,目前主要是在金属材料也就是合金行业中发展,产品包括Pandat、PanEngine和数据库。 软件功能:相图计算、热力学性能、凝固模拟、液相投影面、相图优化以及动力学二次开发(注意二次开发要在C++环境中进行)等。 数据库:Pandat的数据库主要的优势还在于有色金属方面,尤其是Mg和Al的数据应该是全球最优秀的,除此之外还有自己开发的Ti、Fe、Ni、Zr等,以及日本的Cu和Solder数据库。 优势:界面非常友好,容易上手不要很多的计算机知识,计算引擎先进(其实就是算法比较好),可二次开发。 缺点:功能不是很完善,适用面比较窄(暂时只能用于金属行业) 适用范围:适合于科学研究,工程应用,但目前只推荐用于金属行业。 另外推出了Demo版,对于二元体系是完全免费的,因此推荐大家下载使用,当然可用于发表文章。 这里可以下载: JMatPro 概述:(原产地:英国,和ThermoTech是一家,主要是做数据库的),定位非常新颖,主要

快速凝固铝合金的组织与性能

快速凝固铝合金的组织与性能摘要:速凝固技术;过去对凝固过程的模拟只考虑在熔融状态下的热传导和凝固过程中潜热的释放,很少考虑金属熔体在型腔内必然存在的流动以及金属熔 体在凝固过程中存在的流动,目前,快速凝固技术作为一种研制新型合金材料的 技术一开始研究合金在凝固时的各种组织形态的变化以及如何控制才能到符合 实际生活,生产要求的合金着重研究高的温度梯度和快的凝固速度的快速凝固技术正在走向逐步完善阶段。 快速凝固原理及凝固组织:快速凝固是指通过对合金熔体的快速冷却(≥104-106k/s)或非均质形核备遏制,是合金在很大过冷度下,发生高生长速率(≥1-100cm/s)凝固。由于凝固过程的快冷,起始形核过冷度大,生长速率高是古冶界面偏离平衡,因而呈现出一系列于常规合金不同的组织和结构特征,加快冷却速度和凝固速率所应起的组织及结构特征可以近似用表来表示。 本实验利用真空系统下的金属熔液快速凝固装置,获得高真空后,充入一定压力的惰性气体,熔炼铝合金在熔融状态下以细直径金属液柱方式喷射到铜模具中,液流发生横向铺展并在纯铜模具中快速凝固。由于整个过程的浇注时间在很大程度上被分散、延迟,热耗散可以快速、充分进行,从而可获得层状铝合金。关键词:铜模具;射流沉积;亚稳块体材料;层状复合材料 The Study on the Aluminum Alloy by Rapid Solidification Based on Reciprocate Motion Cooling Model Abstract:Rapid solidification is the way to get the non-steady state metal by the rapid cooling much more fast than the cooling rate for the equilibrium materials, and amorphous, nano-crystalline and some limiting structural or functional materials can be obtained. In this work, jet solidification in the cooling model with the computer controlled reciprocating motion protected under vacuum or inert gas was used to obtain the layer Al alloys. After the Al alloy was molten in a quartz tube, the alloy liquid was jet out of

高压高温下Re 2 N的弹性和热力学性能

Trans. Nonferrous Met. Soc. China 23(2013) 3714?3721 Elastic and thermodynamic properties of Re2N at high pressure and high temperature Mei-guang ZHANG1, Hai-yan YAN2, Qun WEI3, Duo-hui HUANG4 1. Department of Physics and information Technology, Baoji University of Arts and Sciences, Baoji 721016, China; 2. College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, China; 3. School of Physics and Optoelectronic Engineering, Xidian University, Xi’an 710071, China; 4. Computational Physics Key Laboratory of Sichuan Province, Yibin University, Yibin 644007, China Received 24 September 2012; accepted 14 April 2013 Abstract: First principles calculations are preformed to systematically investigate the elastic and thermodynamic properties of Re2N at high pressure and high temperature. The Re2N exhibits a clear elastic anisotropy and the elastic constants C11 and C33vary rapidly in comparison with the variations in C12, C13 and C44 at high pressure. In addition, bulk modulus B, elastic modulus E, and shear modulus G as a function of crystal orientations for Re2N are also investigated for the first time. The tensile directional dependences of the elastic modulus obey the following trend: [0001][1211][1010][1011] E E E E >>>. The shear moduli of Re2N within the (0001) basal plane are the smallest and greatly reduce the resistance of against large shear deformations. Based on the quasi-harmonic Debye model, the dependences of Debye temperature, Grüneisen parameter, heat capacity and thermal expansion coefficient on the temperature and pressure are explored in the whole pressure range from 0 to 50 GPa and temperature range from 0 to 1600 K. Key words: Re2N; transition metal nitrides; elastic properties; thermodynamic properties 1 Introduction Transition metal nitrides are of great interest in both fundamental science and technological applications because of their unusual physical and chemical properties [1?3]. Traditional applications have taken advantage of the hard and refractory nature of many early transition metal nitrides, such as TiN, CrN and HfN. In contrast, not too much success has been achieved in exploring the late transition metal nitrides, especially for platinum group and noble metals nitrides. Until recently, a significant progress in synthesis of the dinitrides of Pt, Ir, Os, and Pd has been made at extreme conditions (approximately 50 GPa and 2000 K) [4?7]. These nitrides have been shown to possess ultrahigh bulk moduli (428 GPa for IrN2) comparable with those of the traditional superhard materials, thus exhibiting interesting mechanical properties. Extensive studies [8?13] are therefore carried out in order to hunt for new potential superhard transition metal nitrides. More recently, FRIEDRICH et al [14] have succeeded in synthesizing two novel rhenium nitrides (Re2N and Re3N) and characterized them using white beam Laue microdiffraction. Both hexagonal phases have very high bulk moduli (> 400 GPa); close to that of c-BN and higher than that of ReB2. Between these two nitrides, the Re2N adopts hexagonal structures with a space group P63/mmc, and the atomic positions are Re (1/3, 2/3, 0.106) and N (1/3, 2/3, 3/4). Following this exciting work, FRIEDRICH et al [15] and DELIGOZ et al [16] investigated the vibrational properties of the hexagonal Re2N. ZHANG et al [17] later have studied the thermodynamic stability and mechanical properties as well as a bond deformation mechanism of Re2N. The structural, electronic, and elastic properties of Re2N have been also investigated at ambient conditions [18?21], and the Re2N was found to be an ultra-incompressible Foundation item: Project (11204007) supported by the National Natural Science Foundation of China; Project (2012JQ1005) supported by Natural Science Basic Research Plan of Shaanxi Province, China; Project (2013JK0638) supported by the Education Committee Natural Science Foundation of Shaanxi Province, China Corresponding author: Mei-guang ZHANG; Tel: +86-917-3364258; E-mail: zhmgbj@https://www.360docs.net/doc/7a15010805.html, DOI:10.1016/S1003-6326(13)62921-0

A356铝合金的组织与性能研究

A356铝合金的组织与性能研究 目录 摘要 (2) Abstract (2) 1 绪论 (1) 1.1 引言 (1) 1.2 铝及其合金概述 (1) 1.3 热处理工艺 (2) 1.4 A356铝合金研究现状 (3) 1.5 主要内容 (4) 2 实验方法及过程 (4) 2.1 合金成分 (4) 2.2 试样制备和热处理方法 (4) 2.2.1 试样切割 (4) 2.2.2 热处理 (5) 2.3 金相观察 (6) 2.3.1 金相试样的制备 (6) 2.3.2 金相观察 (7) 2.4 力学性能的测试 (7) 2.4.1 硬度测试 (7) 2.4.2 拉伸性能测试 (7) 3 实验结果及分析 (8) 3.1 金相组织观察结果 (8) 3.1.1 热处理前的微观组织 (8) 3.1.2 热处理后的微观组织 (10) 3.2 力学性能分析 (11) 3.2.1 表面硬度 (11) 3.2.2 拉伸性能 (14) 4 结论 (15) 致谢 (16) 参考文献 (17) 百色学院本科毕业论文(设计)诚信保证书 (19)

{TC “摘要”l 1 }摘要:对A356铝合金分别进行金相观察和力学试验,研究其微观组织及性能,同时探讨热处理方式对A356铝合金组织与性能的影响,结果发现枝状晶比较粗大,分布松散,表面硬度、抗拉强度和屈服强度都较低,塑性较好。经一定热处理后,粗大共晶硅熔断形成分布均匀、趋于球化的细小颗粒,除了塑性有所降低外,其他力学性能都有了显著提高。最佳热处理工艺为(560℃+6h)固溶+(180℃+4h)人工时效。 关键词:A356铝合金;固溶处理;时效处理;力学性能;微观组织 Research on Microstructure and Properties of A356 Aluminum Alloy {TC “Abstract”l 1 }Abstract:The microstructures and properties of A356 aluminum alloy were investigated by means of optical metallography and tensile test. Meanwhile, the effects of heat treatment on microstructure were analyzed. The results show that the more coarse dendrites are evenly distributed, the lower hardness, tensile strength, yield strength and the greater plastic are obtained. The coarse dendrites are broken off, uniform distribution and granular after heat treatment. The mechanical properties have significantly improved except for ductility. The optimized solution treatment for 6 hours at 560℃ and aging treatment for 4 hours at 180℃ are recommended. Key words:A356 aluminum alloy; Solid solution treatment; Aging treatment; Mechanical properties; microstructure

气体热力学性质表

一、制冷用图形符号(JB/T7965-95) 1 主题内容与适用范围 本标准规定了制冷用阀门及管路附件、制冷机组、辅助设备、控制元件等的图形符号。 本标准适用于绘制制冷系统的流程图、示意图和编制相应的技术文件。 2 引用标准 GB4270 热工图形符号和文字代号 GB4457.4 机械制图图线 GB4458.5 机械制图尺寸注法 GB1114 采暖、通风与空气调节制图标准 3 一般规定 3.1 本标准中的图形符号一般用粗实线绘制,线宽b应符号GB4457.4的规定,对管路、管件、阀及控制元件等,允许用细实线(线宽为b/3)绘制。在同一图样上,图形符号的各类线型宽度应分别保持一致。 3.2 文字代号应按直体书写,笔划宽度约为文字高度的1/10。 3.3 图形符号允许由一基本符号与其他符号组合,图形符号的位置允许转动。 3.4 绘制图形符号时,可按本标准所示图例,按比例适当放大或缩小。 3.5 在不违反本标准的前提下,各单位可作出补充规定。 4 介质代号 介质代号见表1。 表 1 5 图形符号 5.1 管道 管道的图形符号见表2。 5.2 管接头 管接头的图形符号见表4。 5.3 管路弯头及三通 管路弯头及三通的图形符号见表5。 表 2 表 3 表 4 表 5 (续表) 5.4 阀门 阀门的图形符号见表6。 5.5 控制元件和测量用表

控制零件和测量用表的图形符号见表7。 5.6 管路附件 管路附件的图形符号见表8。 5.7 动力机械 动力机械的图形符号见表9。 5.8 辅助设备 辅助设备的图形符号见表10。 5.9 制冷机组 制冷机组的图形符号见表11。 5.10 空调系统 空调系统的符号应符合GBJ 114的规定。 表 6 (续表) 表 7 (续表) 表 8 (续表) 表 9 (续表) 表 10 (续表) 表 11 二、制冷空调电气技术资料 表2-1 电气技术中项目种类的字母代码表 (续表) 注:因为一个项目可能有几种名称,故可能有几个字母代码,使用时应选较确切的代码。表2-2 我国电气设备常用文字符号新旧对照表 (续表)

合金热力学及其应用

合金热力学及其应用 铁碳相图 铁碳相图是研究钢铁凝固过程、固态相变、组织和性能的基础,本节主要讨论铁碳体系中的基本热力学关系及第三组元对铁碳相图的影响。 4.5.1 铁碳二元相图[17] 铁碳二元相图有一个显著特点,即在同一相图中包含了稳定系(高碳相为石墨)和介稳定系(高碳相为渗碳体)两个不同的转变。图(4.13)为最新发表的铁碳二元相图,其中碳在稳定系及介稳定系条件下在铁中的溶解度可由(4.47)式至(4.53)式表示。

对于稳定系,即平衡高碳相为石墨,在1152-2000℃范围内,碳在铁液中的溶解度为 式中t──温度(℃) 或 式中X Cmax──以摩尔分数表示的碳在铁液中的溶解度 T──绝对温度(K)

对于奥氏体 对于铁素体 对于介稳定系,即平衡高碳相为渗碳体,则碳在铁液中的溶解度为对于奥氏体 对于铁素体 式(4.47)至式(4.53)可用来计算碳在铁中各相中的溶解度。 4.5.2 合金元素对铁碳相图的影响 1、硅对铁碳相图的影响及Fe-C-Si三元相图 硅对铁碳相图有显著影响。图4.14为不同含硅量时的铁碳相图, 该图表明,随含硅量的增加,共晶点和共析点左移,而共晶转变和共析转

变温度升高,转变温度区间增大。尤其值得注意的是,硅的增加将使铁液按稳定系转变趋势增大,即更有利于石墨的析出,并使铁素体区增大,奥氏体区减小。 2、锰对铁碳相图的影响及Fe-C-Mn三元相图 锰对铁碳相图的影响如图4.15所示。该图表明, 锰对共晶转变温度影响很小,每增加1%的锰,共晶转变温度仅增加大约3℃。锰使共析转变温度降低,使共析转变温度区间显著增大,奥氏体区明显减小,使共

合金热力学综述

Al—Mg—Mn—Zr—Er合金组元相互作用与相变热力学研究 摘要 合金热力学性质是生产应用的理论研究基础,是材料显微结构和性能差异的因素之一,具有重要的理论意义和实际价值。因此有必要借助于理论计算来预测合金的热力学性质。但目前对稀土多元合金的热力学实验数据测定有限,尤其是三元及多元合金系统的热力学数据比较缺乏,因此有必要借助于理论计算来预测合金的热力学性质,合金的生成焓是重要的热力学数据之一。 稀土元素指的是在元素周期表中镧系的15 位元素再加上钪钇等元素,他们比较特殊,除尺寸因素之外,还具有特殊的原子和离子状态的电子组态,它们在自然界中可以共存。在五系铝合金中添加稀土元素Er 和过渡元素Zr 后具有独特的物理和化学性质,合金的组织与性能均有明显的的改善,这就与其合金元素的相互作用有关。 关键词:合金热力学稀土元素Al—Mg—Mn—Zr—Er合金

1 稀土元素在铝合金中的作用 1.1稀土元素的基本性质和结构特点 稀土元素指的是在元素周期表中镧系的15 位元素再加上钪钇等元素,他们比较特殊,除尺寸因素之外,还具有特殊的原子和离子状态的电子组态,它们在自然界中可以共存。Gschneidner 和Calderwood[1]给出了稀土金属的高温晶体结构和点阵常数,298K 及以下温度的晶体结构和相关的性质,稀土金属的相转变温度以及熔点温度,稀土金属的沸点及潜热等数据。 除钪以外的稀土元素按其物理化学性质的微小差别和稀土矿物的形成特点以及分离工艺的要求,把他们分成轻稀土和重稀土两类。以钆为界,钆以前的镧、铈、镨、钕、钷, 钐和铕7 个元素为轻稀土或铈组稀土元素;钆和钆以后的铽、镝、钬、铒、铥、镱、镥和钇等9 个元素为重稀土或钇组稀土元素。因为钇的原子半径在重稀土元素范围内,化学性质又和重稀土元素相似,且在自然界常常与重稀土共生共存,所以归为重稀土。 稀土元素位于周期表中第三副族(IIIB 族),而且镧及其后面的14 种元素(57~71 号)位于周期表中的同一族系,这15 种元素性质相似。同属于IIIB 族的钇(39号)的原子半径接近于镧,而且钇位于镧系元素离子半径递减顺序的中间位置, 因而钇和镧系元素的化学性质非常近似。稀土元素所处的这种特殊周期表位置使它们的许多性质(如电子能级,离子半径等)只呈现微小而近乎连续的变化。 稀土元素的最外两层的电子组态基本相似,主量子数小的4f 电子越过主量子数大的5s5p 电子而先失去。如果5d 轨道上有电子,4f 电子的能级就会大大降低,但此处5d 轨道上没有电子填充。稀土元素是典型的金属元素,在化学反应中表现出典型的金属性质,易失去三个电子,即两个最外层的电子和一个 f 电子,呈正三价,他们的金属性仅次于碱金属和碱土金属,比其他金属元素活泼。稀土能和非金属形成正常价化合物,也能和许多金属元素形成金属间化合物,且形成的金属间化合物种类繁多。 稀土元素具有特殊的性质,添加少量的稀土元素可以极大的影响材料的组织与性能。目前国际上把稀土元素誉为新技术革命的战略元素、高技术的生长点、

相关文档
最新文档