空间几何体经典讲义

空间几何体经典讲义
空间几何体经典讲义

2.在一个几何体的三视图中,正视图和俯视图如图所示,则相应的侧视图可以为( ).

注意:

(1)空间几何体的三视图是该几何体在三个两两垂直的平面上的正投影,并不是从三个方向看到的该几何体的侧面表示的图形.

(2)在画三视图时,重叠的线只画一条,能看见的轮廓线和棱用实线表示,挡住的线要画成虚线.

知识点3:空间几何体的直观图

3.已知正三角形ABC的边长为a,那么△ABC的平面直观图△A'B'C'的面积为( ).

A.

3

4

a2 B.

3

8

a2 C.

6

8

a2 D.

6

16

a2

注意:

直接根据水平放置的平面图形的直观图的斜二测画法规则即可得到平面图形的面积是其直观图面积的22倍,这是一个较常用的重要结论.

知识点4:几何体的表面积

4.一个空间几何体的三视图如图所示,则该几何体的表面积为( ).

A.48 B.32+817 C.48+817 D.80

注意:

以三视图为载体考查几何体的表面积,关键是能够对给出的三视图进行恰当的分析,从三视图中发现几何体中各元素间的位置关系及数量关系.

知识点5:几何体的体积

5.某几何体的三视图如图所示,它的体积为( )

A .

B .

C .

D .

注意:

以三视图为载体考查几何体的体积,解题的关键是根据三视图想象原几何体的形状构成,并从三视图中发现几何体中各元素间的位置关系及数量关系,然后在直观图中求解.

知识点6:空间与平面的转化

6.已知在直三棱柱ABCA 1B 1C 1中,底面为直角三角形,∠ACB =90°,AC =6,BC =CC 1=2,P 是BC 1上一动点,如图所示,则CP +PA 1的最小值为________.

注意:

研究几何体表面上两点的最短距离问题,常选择恰当的母线或棱展开,转化为平面上两点间的最短距离问题.

★综合题训练

7.已知某几何体的俯视图是如右图所示的矩形,正视图(或称主视图)是一个底边长为8、高为4的等腰三角形,侧视图(或称左视图)是一个底边长为6、高为4的等腰三角形.

(1)求该几何体的体积V ;(2)求该几何体的侧面积S .

12π45π57π81π

8.如图,已知某几何体的三视图如下(单位:cm).

(1)画出这个几何体的直观图(不要求写画法);

(2)求这个几何体的表面积及体积.

9.如图,多面体ABFEDC的直观图及三视图如图所示,M,N分别为AF,BC的中点.

(1)求证:MN∥平面CDEF;(2)求多面体A—CDEF的体积.

空间几何体 - 简单 - 讲义

空间几何体 知识讲解 一、构成空间几何体的基本元素 1.几何体的概念 概念:只考虑形状与大小,不考虑其它因素的空间部分叫做一个几何体,比如长方体,球体等. 2.构成几何体的基本元素:点、线、面 (1)几何中的点不考虑大小,一般用大写英文字母A B C ,,来命名; (2)几何中的线不考虑粗细,分直线(段)与曲线(段);其中直线是无限延伸的,一般 用一个小写字母a b l ,,或用直线上两个点AB PQ ,表示; 一条直线把平面分成两个部分. (3)几何中的面不考虑厚薄,分平面(部分)和曲面(部分); 其中平面是一个无限延展的,平滑,且无厚度的面,通常用一个平行四边形表示,并把它想象成无限延展的; 平面一般用希腊字母αβγ ,,来命名,或者用表示它的平面四边形的顶点或对角顶点的字 母来命名,如右图中,称平面α,平面ABCD 或平面AC ; 一个平面将空间分成两个部分. 3.用运动的观点理解空间基本图形间的关系 理解:在几何中,可以把线看成点运动的轨迹,点动成线;把面看成线运动的轨迹,线动成面;把几何体看成面运动的轨迹(经过的空间部分),面动成体. 二、多面体的结构特征 1.多面体 D C B A α

1)多面体的定义 由若干个平面多边形所围成的几何体.围成多面体的各个多边形叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点,连结不在同一个面上的两个顶点 的线段叫做多面体的对角线. 2)多面体的分类 按凹凸性分类:把一个多面体的任意一个面延展成平面,如果其余的各面都在这个平面的同一侧,则这样的多面体就叫做凸多面体.否则就叫做凹多面体. 按面数分类:一个多面体至少有四个面.多面体按照它的面数分别叫做四面体、五面体、六面体等等. 3)简单多面体 定义:表面经过连续变形可以变成球体的多面体叫做简单多面体; 欧拉公式:简单多面体的顶点数V 、面数F 和棱数E 有关系2V F E +-=. 4)正多面体 定义:每个面都有相同边数的正多边形,每个顶点都有相同棱数的凸多面体,叫做正多面体; 正多面体只有正四面体、正六面体、正八面体、正十二面体、正二十面体这5种;经过正多面体上各面的中心且垂直于所在面的垂线相交于一点,这点叫做正多面体的中心,且这点到各顶点的距离相等,到各面的距离也相等. 2.棱柱 1)棱柱的定义 由一个平面多边形沿某一确定方向平移形成的空间几何体叫做棱柱.平移起止位置的两个面叫做棱柱的底面,多边形的边平移所形成的面叫做棱柱的侧面;相邻侧面的公共边叫做棱柱的侧棱;过不相邻的两条侧棱所形成的面叫做棱柱的对角面;与底面垂直的直线与两个底面的交点部分的线段或距离称为棱柱的高. 下图中的棱柱,两个底面分别是面ABCD ,A B C D '''',侧面有ABBA '',DCC D ''等四个,侧棱为AA BB CC DD '''',,,,对角面为面ACC A BDD B '''',,A H '为棱柱的高.

空间几何体经典试题

空间几何体 考点一:空间几何体与三视图 1.一个物体的三视图的排列规则 俯视图放在正视图的下面,长度与正视图的长度一样,侧视图放在正视图的右面,高度与正视图的高度一样,宽度与俯视图的宽度一样.即“长对正、高平齐、宽相等”. 2.要熟悉各种基本几何体的三视图.同时要注意画三视图时,能看到的轮廓线画成实线,看不到的轮廓线画成虚线. 例题1.(2016·高考天津卷)将一个长方体沿相邻三个面的对角线截去一个棱锥,得到的几何体的正视图与俯视图如图所示,则该几何体的侧(左)视图为() 例题2.(2015·高考北京卷)某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为() A.1 B.2C.3D.2 练习1.已知某几何体的正视图和侧视图均如图所示,给出下列5个图形: 其中可以作为该几何体的俯视图的图形个数是() A.5B.4 C.3 D.2 练习2.“牟合方盖”是我国古代数学家刘徽在研究球的体积的过程中构造的一个和谐优美的几何体.它由完全相同的四个曲面构成,相对的两个曲面在同一个圆柱的侧面上,好似两个扣合(牟合)在一起的方形伞(方盖).其直观图如图,图中四边形是为体现其直观性所作的辅助线.当其正视图和侧视图完全相同时,它的俯视图可能是()

考点二 空间几何体的表面积与体积 1.求解几何体的表面积或体积 (1)对于规则几何体,可直接利用公式计算. (2)对于不规则几何体,可采用割补法求解;对于某些三棱锥,有时可采用等体积转换法求解. (3)求解旋转体的表面积和体积时,注意圆柱的轴截面是矩形,圆锥的轴截面是等腰三角形,圆台的轴截面是等腰梯形的应用. ★1.求三棱锥的体积时要注意三棱锥的每个面都可以作为底面; 2.在求几何体的表面积和体积时,注意等价转化思想的运用,如用“割补法”把不规则几何体转化为规则几何体、立体几何问题转化为平面几何问题等. 例题3.(2016·高考全国Ⅲ卷)如图所示,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为( ) A .18+365 B .54+185 C .90 D .81 练习3.(2016·高考全国Ⅰ卷)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的 半径.若该几何体的体积是 28π3,则它的表面积是( ) A .17π B .18π C .20π D .28π 练习4.(2016·高考山东卷)一个由半球和四棱锥组成的几何体,其三视图如图所示,则该几何体的体积为( )

空间几何体的结构及视图金题讲义及参考答案

空间几何体的结构及视图金题讲义及 参考答案 考点梳理 一、第一章《空间几何体》的知识结构 本讲知识内容:柱、锥、台、球的结构特征;空间几何体三视图和直观图,能 识别三视图所表示的空间几何体。 二、知识梳理 1.空间几何体的结构特征 (1)棱柱的结构特征 (2)棱锥的结构特征

定义:有一个面是多边形,其余各面都是有一个公共顶点 ....的三角形,由这些面所围成的几何体叫做棱锥。 (3)圆柱的结构特征 定义:以矩形的一边所在的直线为轴旋转,其余三边旋转形成的面所围成的旋转体叫圆柱. (4)圆锥的结构特征 定义:以直角三角形的一条直角边所在的直线为轴旋转,其余两边旋转形成的面所围成的旋转 体叫圆锥. (5)棱台的结构特征 概念:棱锥被平行于棱锥底面的平面所截后,截面和底面之间的部分 (6)圆台的结构特征 定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分

(7)球的结构特征 定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的旋转体,叫球体,简称球. 2.空间几何体的投影和三视图 ? ? ? ? ? 正视图:光线从几何体的前面向后面正投影. 三视图左视图: 光线从几何体的左面向右面正投影. 俯视图:光线从几何体的上面向下面正投影, 规律: (1)正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度; (2)俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度; (3)左视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度. 金题精讲 题一 题面:下列几何体各自的三视图中,有且仅有两个视图相同的是() A.①② B.①③ C.①④ D.②④ 题二

高中数学空间立体几何讲义

第1讲 空间几何体 高考《考试大纲》的要求: ① 认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构. ② 能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述的三视图所表示的立体模型,会用斜二测法画出它们的直观图. ③ 会用平行投影与中心投影两种方法,画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式. ④ 会画某些建筑物的视图与直观图(在不影响图形特征的基础上,尺寸、线条等不作严格要求). ⑤ 了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式). (一)例题选讲: 例1.四面体ABCD 的外接球球心在CD 上,且CD =2,AB =3,在外接球面上两点A 、B 间的球面距离是( ) A . 6π B .3 π C .32π D .65π 例2.如果圆台的母线与底面成60°角,那么这个圆台的侧面积与轴截面面积的比为( ) A .π2 B .π2 3 C .π332 D .π2 1 例3.在正三棱柱ABC —A 1B 1C 1中,侧棱长为2,底面三角形的边长为1,则BC 1与侧面ACC 1A 1所成的角 是 . 例4.如图所示,等腰△ABC 的底边AB =66,高CD =3,点B 是线段BD 上异于点B 、D 的动点.点F 在BC 边上,且EF ⊥AB .现沿EF 将△BEF 折起到△PEF 的位置,使PE ⊥AE .记BE =x ,V (x )表示四棱锥P-ACFE 的体积. (1)求V (x )的表达式; (2)当x 为何值时,V (x )取得最大值? (3)当V (x )取得最大值时,求异面直线AC 与PF 所成角的余弦值。 (二)基础训练: 1.下列几何体各自的三视图中,有且仅有两个视图相同的是( ) A .①② B .①③ C .①④ D .②④ 2.设地球半径为R ,若甲地位于北纬045东经0120,乙地位于南纬度0 75东经0120,则甲、乙两地球面距离为( ) (A )3R (B) 6 R π (C) 56 R π (D) 23R π ①正方形 ②圆锥 ③三棱台 ④正四棱锥

空间几何体的表面积和体积考点讲解及经典例题解析

空间几何体的表面积和体积习题讲解 一.课标要求: 了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式)。 二.命题走向 近些年来在高考中不仅有直接求多面体、旋转体的面积和体积问题,也有已知面积或体积求某些元素的量或元素间的位置关系问题。即使考查空间线面的位置关系问题,也常以几何体为依托.因而要熟练掌握多面体与旋转体的概念、性质以及它们的求积公式.同时也要学会运用等价转化思想,会把组合体求积问题转化为基本几何体的求积问题,会等体积转化求解问题,会把立体问题转化为平面问题求解,会运用“割补法”等求解。 考查形式: (1)用选择、填空题考查本章的基本性质和求积公式; (2)考题可能为:与多面体和旋转体的面积、体积有关的计算问题;与多面体和旋转体中某些元素有关的计算问题; 三.要点精讲 1.多面体的面积和体积公式 表中S表示面积,c'、c分别表示上、下底面周长,h表斜高,h'表示斜高,l表示侧棱长。 2.旋转体的面积和体积公式

表中l 、h 分别表示母线、高,r 表示圆柱、圆锥与球冠的底半径,1r 、2r 分别表示圆台 上、下底面半径,R 表示半径。 四.典例解析 题型1:柱体的体积和表面积 例1.一个长方体全面积是20cm 2,所有棱长的和是24cm ,求长方体的对角线长. 解:设长方体的长、宽、高、对角线长分别为xcm 、ycm 、zcm 、lcm 依题意得:? ??=++=++24)(420)(2z y x zx yz xy )2() 1( 由(2)2得:x 2+y 2+z 2+2xy+2yz+2xz=36(3) 由(3)-(1)得x 2+y 2+z 2=16 即l 2=16 所以l =4(cm)。 点评:涉及棱柱面积问题的题目多以直棱柱为主,而直棱柱中又以正方体、长方体的表面积多被考察。我们平常的学习中要多建立一些重要的几何要素(对角线、内切)与面积、体积之间的关系。 例2.如图1所示,在平行六面体ABCD —A 1B 1C 1D 1中,已知AB=5,AD=4,AA 1=3,AB ⊥AD ,∠A 1AB=∠A 1AD= 3 π。 (1)求证:顶点A 1在底面ABCD 上的射影O 在∠BAD 的平分线上; (2)求这个平行六面体的体积。

空间几何体(讲义及答案)(1)

空间几何体(讲义) >知识点睛 一、空间儿何体的结构特征 棱 特殊的多面体: 柱:斜棱柱、直棱柱、正棱柱、正方体 锥:正棱锥、正四面体 J正四棱柱:底面是正方形的直棱柱 1正方体(正六面体):侧棱长与底边长相等的正四棱柱 j正三棱锥:底面是正三角形,顶点在底面的射影是底面中心 I正四面体:侧棱长与底边长相等的正三棱锥

正棱柱 A B 正方体 S B S 直棱柱 正四面体 正三棱锥 2.简单组合体

3.球 (1)球的截面性质: ①经过球心的截面截得的圆叫做球的大圆,不过球心的截面 截得的圆叫做球的小圆; ②球心和截得的小圆圆心的连线垂直于截面. (2)位置关系: ①外接球:多面体的各个顶点都在球面上; ②内切球:多面体的各个面都与球相 切.二、空间儿何体的表面积与体积 J 空间儿何体的表面积(也称全面积)(底面周长为C) S|畀柱= -------------- ;S閱锥= S惆台=7t(r'-+r+/-7 + rZ). 2空间儿何体的体积 DL 川/厂 T---- I ]少 1、■ I r --- A B C

心= -------------- ;%= ----------------- ; (底面积为S,高为/I) 八棱长为小 V =V =1(S'+ 辰+S)/7(上下底面积分别为S』,高为")?梭台恻台3 3球的表面积与体积 S 球= ____________' V球= ______________ ?

有一个底面为多边形,其余各面都是 有一个公共顶点的三 角形,由这些 面所W 成的儿何体是棱锥 用一个平面去截棱锥,棱锥底面与截面之间的部分是棱台 棱柱的侧 面都是平行四边形,而底面不是平行四边形 棱柱的侧棱都相等,侧面都是全等的平行四边形 3.下列命题: ① 底面是等边三角形,侧面都是等腰三角形的三棱锥是正三 棱锥; ② 所有棱长都相等的直棱柱是正棱柱; ③ 若一个四棱柱有两个侧面垂直于底面,则该四棱柱为直四 棱柱; ④ 所有棱长都相等的正三棱锥是正四面体; ⑤ 一个棱锥可以有两个侧面和底面垂 直.其中正确的有() A. 1个 B. 2个 C. 3个 D. 4个 >精讲精练 1.下列说法中,正确的是( A B C. D 2.如图所示的儿何体中是棱柱的有( C. 3个 D. ③ A ?1个 B ?2个 ? ④

空间几何体经典习题

正视图 俯视图 侧视图 空间几何体(经典习题) 一、选择题: 1、半径为R 的半圆卷成一个圆锥,则它的体积为() A 3R B 3R C 3R D 3R 2、一个正方体的顶点都在球面上,它的棱长为2cm ,则球的表面积是( ) A.28cm π B.212cm π C.216cm π D.220cm π 3、圆台的一个底面周长是另一个底面周长的3倍,母线长为3,圆台的侧面积为84π,则 圆台较小底面的半径为() A .7B.6C.5D.3 4、棱台上、下底面面积之比为1:9,则棱台的中截面分棱台成两部分的体积之比是() A .1:7B.2:7C.7:19D.5:16 5、一简单组合体的三视图及尺寸如图示(单位:cm )则该组合 体的体积为() A.720003cm B.640003cm C.560003cm D.440003cm 6、如图是某几何体的三视图,其中正视图是腰长为2的 等腰三角形,俯视图是半径为1的半圆,则该几何体的 体积是() A .3 B .12π C . 3D .6

A B D C E F 2 2 2 正视侧视 1 1 俯视 俯视图 2 2 正(主)视图 2 2 2 侧(左)视图 2 2 2 7、如图,在多面体ABCDEF 中,已知平面ABCD 是边长为3的正方形,//EF AB ,32 EF =,且EF 与平面ABCD 的距离为2,则该多面体的体积为() A .92 B.5 C.6D. 15 2 8、一个棱锥的三视图如图,则该棱锥的体积是() A.34B.3 8C.4D.8 9、如图是一个空间几何体的三视图,则该几何体的侧面积为() A.43 B.43 第8题第9题 10、如图为一平面图形的直观图,则此平面图形可能是选项中的( ) 11、棱长为1的正方体上,分别用过共顶点的三条棱中点的平面截该正方体,则截去8 个三棱锥后 ,剩下的凸多面体的体积是() A 、23B 、76C 、45D 、56 12、在一个盛满水的三棱锥容器,不久发现三条侧棱上各有一个小洞D 、E 、F ,且知 SD :DA=SE :EB=CF :FS=2:1,若仍用这个容器盛水,则最多可盛原来水的() A 、 2923B 、2719C 、3130D 、27 23 13、一空间几何体的三视图如图所示则该几何体的体积为(). A.223π+ B.423π+ C.232π+ D.23 4π+ 2 2 侧(左)视 2 2 2 正(主) 俯视

52知识讲解_空间几何体结构及其三视图(提高)

空间几何体结构及其三视图 编稿:孙永钊审稿: 【考纲要求】 (1)认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构. (2)能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述三视图表示的立体模型,会用材料(如纸板)制作模型,并会用斜二测法画出它们的直观图. (3)通过观察用平行投影与中心投影这两种方法画出的视图与直观图,了解空间图形的不同表示形式. (4)了解球、棱柱、棱锥、台的表面积和体积的计算公式. 【知识网络】 【考点梳理】 考点一、空间几何体的结构及其三视图和直观图 1、多面体的结构特征 (1)棱柱(以三棱柱为例) 如图:平面ABC与平面A1B1C1间的关系是平行,ΔABC与 ΔA1B1C1的关系是全等。 各侧棱之间的关系是:A1A∥B1B∥C1C,且A1A=B1B=C1C。 (2)棱锥(以四棱锥为例) 如图:一个面是四边形,四个侧面是有一个公共顶点的三 角形。

(3)棱台 棱台可以由棱锥截得,其方法是用平行于棱锥底面的平面截棱锥,截面和底面之间的部分为棱台。 2、旋转体的结构特征 旋转体都可以由平面图形旋转得到,画出旋转出下列几何体的平面图形及旋转轴。 3、空间几何体的三视图 空间几何体的三视图是用正投影得到,在这种投影下,与投影面平行的平面图形留下的影子与平面图形的开关和大小是完全相同的,三视图包括正视图、侧视图、俯视图。 4、空间几何体的直观图

空间几何体的直观图常用斜二测画法来画,其规则是: (1)原图形中x轴、y轴、z轴两两垂直,直观图中,x’轴、y’轴的夹角为45o(或135o),z’轴与x’轴和y’轴所在平面垂直; (2)原图形中平行于坐标轴的线段,直观图中仍平行。平行于x轴和z轴的线段长度在直观图不变,平行于y轴的线段长度在直观图中减半。 5、平行投影与中心投影 平行投影的投影线互相平行,而中心投影的投影线相交于一点。 要点诠释:空间几何体的三视图和直观图在观察角度和投影效果上的区别是:(1)观察角度:三视图是从三个不同位置观察几何体而画出的图形;直观图是从某一点观察几何体而画出的图形;(2)投影效果:三视图是正投影下的平面图形,直观图是在平行投影下画出的空间图形。 考点二、空间几何体的表面积和体积 1、旋转体的表面积 名称图形表面积 圆柱S=2πr(r+l) 圆锥S=πr(r+l)

空间几何体的结构的教学设计

人教版必修2“空间几何体的结构(一)”的教学设计 一、设计思想 立体几何初步是几何学的重要组成部分,也是新课程改动较大的内容之一.《空间几何体的结构》是新课程立体几何部分的起始课程,是立体几何课程的重要内容,根据新课程的要求,这一部分的教学,就是加强几何直观的教学,适当进行思辨论证,引入合情推理.基于这样的要求,《空间几何体的结构》一课的设计,笔者以培养学生的几何直观能力,抽象概括,合情推理能力,空间想象能力为指导思想,运用建构主义教学原理,用观察实物抽象出空间图形----用文字描述空间图形-----用数学语言定义空间图形这三部曲来构建课堂主框架.每一个概念的得出都与实物相结合,让学生经历观察、归纳、分类、抽象、概括这一过程.整个设计从增强学生参与数学学习的意愿入手,在学生明确学习任务的基础上,在有序列地解决问题中展开学习,运用激活、展示、应用、和整合策略,以师、生、文本三者间的多维对话为手段,最终达到提高学生参与数学学习能力的目标,取得教学的实效性.过程中让学生体验有关的数学思想,提高学生自主学习、分析问题和解决问题的能力,培养学生合作学习的意识. 二、教材分析 本节课《空间几何体的结构》选自普通高中课程标准实验教科书《数学》人教A版必修2第一章的第一节,课标对空间几何体的结构的教学要求为:认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构,发展几何直观能力.教材首先让学生观察现实世界中实物的图片,引导学生将观察到的实物进行归纳、分类、抽象、概括,得出柱体、锥体、台体的结构特征,在此基础上给出由它们组合而成的简单几何体的结构特征.《省学科教学指导意见》将这一节内容安排为两课时,笔者的设计的是第一课时,本节内容在义务教育数学课程“空间与图形”已有所涉及,但要求不同,素材更为丰富,即区别在于学习的深度和概括程度.笔者认为教学时,不能认为这部分的要求是降低了,讲课时一带而过,要领会新课标的意图,加强几何直观的训练,在引导学生直观感受空间几何体结构特征的同时,学会类比,学会推理,学会说理. 三、学情分析 学生在义务教育阶段学习“空间与图形”时,已经认识了一些具体的棱柱(如正方体、长方体等),对圆柱、圆锥和球的认识也比较具体,能从具体的物体抽象出相应的几何体模型,但没有学习柱体、锥体的定义,只停留在“看”的层面.本节课对它们的研究的更为深入,给出了它们的结构特征.同时,还学习了棱台的有关知识,比义务教育阶段数学课程“空间与图形”部分呈现的组合体多,复杂程度也加大.学生在学习本课时,通过观察实物抽象出空间图形是容易的,但要上升到用数学语言定义空间图形就比较困难.所以笔者让学生在课前先做一些柱体、锥体、台体的模型,教学过程中,每一个空间图形的定义,都通过学生观察他们自己所做的模型,结合教师、教材提供的图片,再讨论得出.

空间立体几何高考知识点总结与经典题目

空间立体几何 知识点归纳: 1. 空间几何体的类型 (1)多面体:由若干个平面多边形围成的几何体,如棱柱、棱锥、棱台。 (2)旋转体:把一个平面图形绕它所在的平面内的一条定直线旋转形成了封闭几何体。 如圆柱、圆锥、圆台。 2. 一些特殊的空间几何体 直棱柱:侧棱垂直底面的棱柱。正棱柱:底面多边形是正多边形的直棱柱。 正棱锥:底面是正多边形且所有侧棱相等的棱锥。 正四面体:所有棱都相等的四棱锥。 3. 空间几何体的表面积公式 棱柱、棱锥的表面积:各个面面积之和 _ 2 圆柱的表面积:S =2 rl 2 r2圆锥的表面积:S =理「I ?二r 2 2 圆台的表面积:S =理rl 7 r?二RI ?二R 球的表面积:s= 4 R2 4 ?空间几何体的体积公式 1 柱体的体积:V = S底 h 锥体的体积:v = - S底h 3底 1 ---------- 、, 4 3 台体的体积:V = —( S上?S上S T S下)h 球体的体积:V R 3 '3 5.空间几何体的三视图 正视图:光线从几何体的前面向后面正投影,得到的投影图。 侧视图:光线从几何体的左边向右边正投影,得到的投影图。 俯视图:光线从几何体的上面向右边正投影,得到的投影图。 画三视图的原则: 长对正、宽相等、高平齐。即正视图和俯视图一样长,侧视图和俯视图一样宽,侧视图和正视图一样高。 6 .空间中点、直线、平面之间的位置关系 (1) 直线与直线的位置关系:相交;平行;异面。

(2)直线与平面的位置关系:直线与平面平行;直线与平面相交;直线在平面内。 (3)平面与平面的位置关系:平行;相交。 7. 空间中点、直线、平面的位置关系的判断 (1)线线平行的判断: ①平行公理:平行于同一直线的两直线平行。 ②线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相 交,那么这条直线和交线平行。 ③面面平行的性质定理:如果两个平行平面同时和第三个平面相交,那么它们的交线平行。 ④线面垂直的性质定理:垂直于同一平面的两直线平行。 (2)线线垂直的判断: ①线面垂直的定义:若一直线垂直于一平面,这条直线垂直于平面内所有直线。 ②线线垂直的定义:若两直线所成角为,则两直线垂直 ③一条直线和两条平行直线中的一条垂直,也必垂直平行线中的另一条。 (3)线面平行的判断: ①线面平行的判定定理:如果平面外的一条直线和平面内的一条直线平行,那么这条直线和这个平 面平行。 ②面面平行的性质定理:两个平面平行,其中一个平面内的直线必平行于另一个平面。 (4)线面垂直的判断: ①线面垂直的判定定理:如果一直线和平面内的两相交直线垂直,这条直线就垂直于这 个平面。 ②如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于这个平面。 ③一直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面。 ④如果两个平面垂直,那么在一个平面内垂直于交线的直线必垂直于另一个 (5)面面平行的判断:

必修2第1讲空间几何体培训讲义无答案.doc

第一章空间几何体 空间几何体 一、空间几何体的结构 (-)多面体与旋转体:多面体:棱柱、棱锥、棱台; 旋转体:圆柱、圆锥、圆台、球; 另一种分类方式:①柱体:棱柱、圆柱; %1椎体:棱锥、圆锥; %1台体:棱台、圆台; %1球 简单组合体:一种是由简单几何体拼接而成,一种是由简单几何体截去或挖去一部分而成。 (二)柱、锥、台、球的结构特征 1.棱柱:①直棱柱斜棱柱正棱柱②三棱柱、四棱柱、五棱柱、六棱柱等等。 棱柱的性质:①两底面是对应边平行的全等多边形; %1侧面、对角面都是平行四边形; %1侧棱平行且相等; %1平行于底面的截面是与底面全等的多边形。 2.棱锥:三棱锥、四棱锥、五棱锥、六棱锥等等 (1)棱锥的性质:①侧面、对角面都是三角形; %1平行于底面的截面与底面相似,其相似比等于顶点到截面E巨 离与的比的方* (2)正棱锥的性质:①正棱锥各侧棱都相等,各侧面都是全等的等腰三角形。 %1正棱锥的高,斜高和斜高在底面上的射影组成一个直角三 角形,正棱锥的高,侧棱,侧棱在底面内的射影也组成一 个直角三角形。 %1正棱锥的侧棱与底面所成的角都相等。 %1正棱锥的侧面与底面所成的二面角都相等。 3.圆柱与圆锥:圆柱的轴圆柱的底面圆柱的侧面圆柱侧面的母线 4.棱台与圆台:统称为台体 (1)棱台的性质:两底面所在平面互相平行;两底面是对应边互相平行的相似多边形;侧面是梯形;侧棱的延长线相交于一点. (2)圆台的性质:两底面是两个半径不同的圆;轴截面是等腰梯形;任意两条母线的延氏线交于一点;母线长都相等.

5.球:球体球的半径球的直径.球心

O—A 二、空间几何体的三视图和直观图 1.中心投影平行投影正投影 2.三视图的画法:长对正、高平齐、宽相等。 3.直观图:斜二测画法,直观图中斜坐标系尤力项,两轴夹角为45。; %1原来与x轴平行的线段仍然与x平行且长度不变; %1原来与y轴平行的线段仍然与y平行,长度为原来的一半。 三、空间几何体的表面积和体积 1.柱体、锥体、台体表面积求法:利用展开图 2.柱体、锥体、台体表面积体积公式,球体的表面积体积公式: 几何体表面积相关公式体积公式 棱柱S全=2S底+ S侧,其中S侧=/侧枝长&直截面周长V = S\h 棱锥S全=,底+ S侧V = —SDh3 棱台s全=s上底+ S下底+ S侧 v =L(s‘+ Js’s +s)/z 圆柱 S全=2、r1 + 2/r rl (r:底面半径,1:母线长=方:高) V = sh =兀广h 圆锥 S 全=7T r 2 + 7T r 1 (r:底面半径,7:母线长) V = —sh = —7rr2h 3 3 圆台 S全=勿(,"+尸2+,,/+〃) (r:下底半径,广上底半径,7:母线长) V = -($ '+ Js 'S + S)h 3球体S球面=4勿A?4正视图(从前向后)反映了物体上下高度、左右长度的关系; 侧视图(从左向右)反映了物体左右长度、前后宽度的关 系; 俯视图(从上向下)反映了物体上下高度、前后宽度的关系。 i MX 大 I

§8.1 空间几何体的结构及其三视图和直观图

§8.1空间几何体的结构及其三视图和直观 图 1.多面体的结构特征 (1)棱柱的上下底面________,侧棱都________且____________,上底面和下底面是 ________的多边形. (2)棱锥的底面是任意多边形,侧面是有一个____________的三角形. (3)棱台可由________________________的平面截棱锥得到,其上下底面的两个多边 形________. 2.旋转体的结构特征 (1)圆柱可以由矩形绕其________________旋转得到. (2)圆锥可以由直角三角形绕其________________________________旋转得到. (3)圆台可以由直角梯形绕直角腰所在直线或等腰梯形绕上下底中点的连线旋转得 到,也可由______________________的平面截圆锥得到. (4)球可以由半圆或圆绕其________旋转得到. 3.空间几何体的三视图 空间几何体的三视图是用__________得到,这种投影下与投影面平行的平面图形留下的影子与平面图形的形状和大小是____________的,三视图包括____________、__________、________. 4.空间几何体的直观图 画空间几何体的直观图常用________画法,基本步骤是: (1)在已知图形中取互相垂直的x轴、y轴,两轴相交于点O,画直观图时,把它们画

成对应的x′轴、y′轴,两轴相交于点O′,且使∠x′O′y′=__________. (2)已知图形中平行于x轴、y轴的线段,在直观图中分别平行于____________. (3)已知图形中平行于x轴的线段,在直观图中长度____________,平行于y轴的线段,长度变为______________. (4)在已知图形中过O点作z轴垂直于xOy平面,在直观图中对应的z′轴也垂直于x′O′y′平面,已知图形中平行于z轴的线段,在直观图中仍平行于z′轴且长度________. [难点正本疑点清源] 1.画空间几何体的三视图的两个步骤 第一步,确定三个视图的形状;第二步,将这三个视图摆放在平面上.在绘制三视图时,分界线和可见轮廓线都用实线画出,被遮挡的部分的轮廓线用虚线表示出来,即“眼见为实、不见为虚”. 2.三视图与空间几何体中的几何量的关系 空间几何体的数量关系也体现在三视图中,正视图和侧视图的“高平齐”,正视图和俯视图的“长对正”,侧视图和俯视图的“宽相等”.其中,正视图、侧视图的高就是空间几何体的高,正视图、俯视图中的长就是空间几何体的最大长度,侧视图、俯视图中的宽就是空间几何体的最大宽度.要尽量按照这个规则画空间几何体的三视图. 1.利用斜二测画法得到的以下结论,正确的是__________.(写出所有正确的序号) ①三角形的直观图是三角形;②平行四边形的直观图是平行四边形;③正方形的直观 图是正方形;④圆的直观图是椭圆;⑤菱形的直观图是菱形. 2.如果圆锥的侧面展开图是半圆,那么这个圆锥的顶角(圆锥轴截面中两条母线的夹角) 是________. 3.一个几何体的正视图为一个三角形,则这个几何体可能是下列几何体中的________(填入所有可能的几何体前的编号). ①三棱锥;②四棱锥;③三棱柱;④四棱柱;⑤圆锥; ⑥圆柱. 4.以下命题: ①直角三角形绕一边所在直线旋转得到的旋转体是圆锥; ②夹在圆柱的两个平行截面间的几何体还是圆柱; ③圆锥截去一个小圆锥后剩余部分是圆台; ④棱锥截去一个小棱锥后剩余部分是棱台. 其中正确的命题序号是________.

空间几何体的三视图经典例题

空间几何体的三视图经典例题

————————————————————————————————作者:————————————————————————————————日期: ?

一、教学目标 1. 巩固空间几何体的结构及其三视图和直观图 二、上课内容 1、回顾上节课内容 2、空间几何体的结构及其三视图和直观图知识点回顾 3、经典例题讲解 4、课堂练习 三、课后作业 见课后练习 一、上节课知识点回顾 1.奇偶性 1)定义:如果对于函数f(x)定义域内的任意x都有f(-x)=-f(x),则称f(x)为奇函数;如果对于函数f(x)定义域内的任意x都有f(-x)=f(x),则称f(x)为偶函数。 如果函数f(x)不具有上述性质,则f(x)不具有奇偶性.如果函数同时具有上述两条性质,则f(x)既是奇函数,又是偶函数。 2)利用定义判断函数奇偶性的格式步骤:

\o\ac(○,1) 首先确定函数的定义域,并判断其定义域是否关于原点对称;○2确定f(-x)与f(x)的关系;○3作出相应结论: 若f(-x)=f(x) 或f(-x)-f(x) =0,则f(x)是偶函数;若f(-x)=-f(x)或f(-x)+f(x)= 0,则f(x)是奇函数 3)简单性质: ①图象的对称性质:一个函数是奇函数的充要条件是它的图象关于原点对称;一个函数是偶函数的充要条件是它的图象关于y轴对称; 2.单调性 1)定义:一般地,设函数y=f(x)的定义域为I,?如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1f(x2)),那么就说f(x)在区间D上是增函数(减函数); 2)如果函数y=f(x)在某个区间上是增函数或是减函数,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做y=f(x)的单调区间。 3)设复合函数y= f[g(x)],其中u=g(x) , A是y=f[g(x)]定义域的某个区间,B 是映射g:x→u=g(x) 的象集: ①若u=g(x) 在A上是增(或减)函数,y=f(u)在B上也是增(或减)函数,则函数y= f[g(x)]在A上是增函数; ②若u=g(x)在A上是增(或减)函数,而y=f(u)在B上是减(或增)函数,则函数y= f[g(x)]在A上是减函数。 4)判断函数单调性的方法步骤 利用定义证明函数f(x)在给定的区间D上的单调性的一般步骤: 错误!任取x1,x ∈D,且x1<x2;错误!作差f(x1)-f(x2);错误!变形 2 (通常是因式分解和配方);

高中数学立体几何讲义

平面与空间直线 (Ⅰ)、平面的基本性质及其推论 图形 符号语言 文字语言(读法) A a A a ∈ 点A 在直线a 上。 A a A a ? 点A 不在直线a 上。 A α A α∈ 点A 在平面α内。 A α A α? 点A 不在平面α内。 b a A a b A =I 直线a 、b 交于A 点。 a α a α? 直线a 在平面α内。 a α a α=?I 直线a 与平面α无公共点。 a A α a A α=I 直线a 与平面α交于点A 。 l αβ=I 平面α、β相交于直线l 。 2、平面的基本性质 公理1: 如果一条直线的两点在一个平面内,那么这条直线上的所有点都在这个平面内 推理模式:A AB B ααα∈? ??∈? ?。 如图示: 应用:是判定直线是否在平面内的依据,也是检验平面的方法。 B A α

公理2:如果两个平面有一个公共点,那么它们还有其他公共点,且所有这些公共点的集合是一条过这个公共点的直线。 推理模式: A l A ααββ∈? ?=?∈? I 且A l ∈且l 唯一如图示: 应用:①确定两相交平面的交线位置;②判定点在直线上。 例1.如图,在四边形ABCD 中,已知AB ∥CD ,直线AB ,BC ,AD ,DC 分别与平面 α相交于点E ,G ,H ,F .求证:E ,F ,G ,H 四点必定共线. 解:∵AB ∥CD , ∴AB ,CD 确定一个平面β. 又∵AB I α=E ,AB ?β,∴E ∈α,E ∈β, 即E 为平面α与β的一个公共点. 同理可证F ,G ,H 均为平面α与β的公共点. ∵两个平面有公共点,它们有且只有一条通过公共点的公共直线, ∴E ,F ,G ,H 四点必定共线. 说明:在立体几何的问题中,证明若干点共线时,常运用公理2,即先证明这些点都是某二平面的公共点,而后得出这些点都在二平面的交线上的结论. 例2.如图,已知平面α,β,且αI β=l .设梯形ABCD 中,AD ∥BC ,且AB ?α,CD ?β,求证:AB ,CD ,l 共点(相交于一点). 证明 ∵梯形ABCD 中,AD ∥BC , ∴AB ,CD 是梯形ABCD 的两条腰. ∴ AB ,CD 必定相交于一点, 设AB I CD =M . 又∵AB ?α,CD ?β,∴M ∈α,且M ∈β.∴M ∈αI β. 又∵αI β=l ,∴M ∈l , 即AB ,CD ,l 共点. 说明:证明多条直线共点时,一般要应用公理2,这与证明多点共线是一样的. 公理3: 经过不在同一条直线上的三点,有且只有一个平面。 推理模式:,, A B C 不共线?存在唯一的平面α,使得,,A B C α∈。 应用:①确定平面;②证明两个平面重合 。 例3.已知:a ,b ,c ,d 是不共点且两两相交的四条直线,求证:a ,b ,c ,d 共面. 证明 1o 若当四条直线中有三条相交于一点,不妨设a ,b ,c 相交于一点A , α D C B A E F H G α D C B A l 例2 β M

空间几何体的表面积和体积经典例题(教师讲义打印一份)

空间几何体的表面积和体积 一.课标要求: 了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式)。 二.命题走向 近些年来在高考中不仅有直接求多面体、旋转体的面积和体积问题,也有已知面积或体积求某些元素的量或元素间的位置关系问题。即使考查空间线面的位置关系问题,也常以几何体为依托.因而要熟练掌握多面体与旋转体的概念、性质以及它们的求积公式.同时也要学会运用等价转化思想,会把组合体求积问题转化为基本几何体的求积问题,会等体积转化求解问题,会把立体问题转化为平面问题求解,会运用“割补法”等求解。 由于本讲公式多反映在考题上,预测2016年高考有以下特色: (1)用选择、填空题考查本章的基本性质和求积公式; (2)考题可能为:与多面体和旋转体的面积、体积有关的计算问题;与多面体和旋转体中某些元素有关的计算问题; 三.要点精讲 1.多面体的面积和体积公式 侧棱长。 2.旋转体的面积和体积公式 12 上、下底面半径,R 表示半径。 四.典例解析 题型1:柱体的体积和表面积 例1.一个长方体全面积是20cm 2,所有棱长的和是24cm ,求长方体的对角线长. 解:设长方体的长、宽、高、对角线长分别为xcm 、ycm 、zcm 、lcm 依题意得:?? ?=++=++24 )(420)(2z y x zx yz xy )2()1(

由(2)2得:x 2+y 2+z 2+2xy+2yz+2xz=36(3) 由(3)-(1)得x 2+y 2+z 2=16 即l 2=16 所以l =4(cm)。 点评:涉及棱柱面积问题的题目多以直棱柱为主,而直棱柱中又以正方体、长方体的表面积多被考察。我们平常的学习中要多建立一些重要的几何要素(对角线、内切)与面积、体积之间的关系。 例2.如图1所示,在平行六面体ABCD —A 1B 1C 1D 1中,已知AB=5,AD=4,AA 1=3,AB ⊥AD ,∠A 1AB=∠A 1AD= 3 π。 (1)求证:顶点A 1在底面ABCD 上的射影O 在∠BAD 的平分线上; (2)求这个平行六面体的体积。 图1 图2 解析:(1)如图2,连结A 1O ,则A 1O ⊥底面ABCD 。作OM ⊥AB 交AB 于M ,作ON ⊥AD 交AD 于N ,连结A 1M ,A 1N 。由三垂线定得得A 1M ⊥AB ,A 1N ⊥AD 。∵∠A 1AM=∠A 1AN , ∴Rt △A 1NA ≌Rt △A 1MA,∴A 1M=A 1N , 从而OM=ON 。 ∴点O 在∠BAD 的平分线上。 (2)∵AM=AA 1cos 3 π =3×21=23 ∴AO=4 cos πAM =223 。 又在Rt △AOA 1中,A 1O 2=AA 12 – AO 2=9- 29=2 9, ∴A 1O= 223,平行六面体的体积为2 2 345? ?=V 230=。 题型2:柱体的表面积、体积综合问题 例3.一个长方体共一顶点的三个面的面积分别是6,3,2,这个长方体对角线的长是( ) A .2 3 B .3 2 C .6 D . 6 解析:设长方体共一顶点的三边长分别为a =1,b = 2,c =3,则对角线l 的长为

20届高考数学一轮复习讲义(提高版) 专题9.3 空间几何体外接球和内切球(原卷版)

9.3 空间几何外接球和内切球 一.公式 1.球的表面积:S =4πR 2 2.球的体积:V =43πR 3 二.概念 1. 2. 考向一 长(正)方体外接球 【例1】若一个长、宽、高分别为4,3,2的长方体的每个顶点都在球O 的表面上,则此球的表面积为__________. 【举一反三】 1.已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为________. 2.如图是一个空间几何体的三视图,则该几何体的外接球的表面积是________.

考向二棱柱的外接球 【例2】直三棱柱ABC?A′B′C′的所有棱长均为2√3,则此三棱柱的外接球的表面积为()A.12πB.16πC.28πD.36π 【举一反三】

1.设直三棱柱ABC-A1B1C1的所有顶点都在一个球面上,且球的表面积是40π,AB=AC=AA1,∠BAC=120°,则此直三棱柱的高是________. 2.直三棱柱ABC?A1B1C1中,已知AB⊥BC,AB=3,BC=4,AA1=5,若三棱柱的所有顶点都在同一球面上,则该球的表面积为__________. 考向三棱锥的外接球 类型一:正棱锥型 【例3-1】已知正四棱锥P ABCD -的各顶点都在同一球面上, 体积为2,则此球的体积为() A. 124 3 π B. 625 81 π C. 500 81 π D. 256 9 π 【举一反三】 1.已知正四棱锥P ABCD -的各条棱长均为2,则其外接球的表面积为( )

A. 4π B. 6π C. 8π D. 16π 2.如图,正三棱锥D ABC -的四个顶点均在球O 的球面上,底面正三角形的边长为3,侧棱长为则球O 的表面积是( ) A .4π B . 323 π C .16π D .36π 类型二:侧棱垂直底面型 【例3-2】在三棱锥P ABC -中, 2AP =, AB = PA ⊥面ABC ,且在三角形ABC 中,有()cos 2cos c B a b C =-(其中,,a b c 为ABC ?的内角,,A B C 所对的边),则该三棱锥外接球的表面积为( ) A. 40π B. 20π C. 12π D. 203 π 【举一反三】

高中数学选修21空间向量与立体几何知识点讲义

第三章 空间向量与立体几何 一、坐标运算 ()()111222,,,,,a x y z b x y z == ()()()()121212121212 11112121 2,,,,,,,,a b x x y y z z a b x x y y z z a x y z a b x x y y z z λλλλ+=+++-=---=?=???则 二、共线向量定理 (),0,=.a b b a b a b λλ≠←??→?充要对于使 三、共面向量定理 ,,.a b p a b x y p x a y b ←??→?=+充要若与不共线,则与共面使 ,,, 1.O OP xOA yOB P A B x y =+←???→+=充要条件四、对空间任意一点,若则三点共线 ,1.P A B C O OP xOA yOB zOC P A B C x y z =++←??→++=充要五、对空间异于、、、四点的任意一点,若若、、、四点 ()()()11, 1. P A B C AP xAB y AC OP OA x OB OA y OC OA OP xOB yOC x y OA x y z x y z ∴=+∴-=-+-∴=++----=∴++=证明:①必要性 、、、四点共面, ,,, 令()()() 1, 1,x y z OP y z OA yOB zOC OP OA y OB OA z OC OA AP y AB z AC A B C P ++=∴=--++∴-=-+-∴=+∴②充分性,,、、、四点共面. 六、空间向量基本定理 {} ,,a b c p x y z p xa yb zc a b c a b c ?若,,不共面,对于任意,使=++,称,,做空间的一个基底,, ,都叫做基向量.

相关文档
最新文档