第三节 简单的逻辑联结词全称量词与存在量词

合集下载

旧教材适用2023高考数学一轮总复习第一章集合与常用逻辑用语第3讲简单逻辑联结词全称量词与存在量词

旧教材适用2023高考数学一轮总复习第一章集合与常用逻辑用语第3讲简单逻辑联结词全称量词与存在量词

第3讲简单逻辑联结词、全称量词与存在量词1.全称量词和存在量词(1)全称量词有:所有的,任意一个,任给一个,用符号“□01∀”表示;存在量词有:存在一个,至少有一个,有些,用符号“□02∃”表示.(2)含有全称量词的命题,叫做全称命题.“对M中任意一个x,有p(x)成立”用符号简记为:□03∀x∈M,p(x).(3)含有存在量词的命题,叫做特称命题.“存在M中元素x0,使p(x0)成立”用符号简记为:□04∃x0∈M,p(x0).2.含有一个量词的命题的否定命题命题的否定∀x∈M,p(x)□05∃x0∈M,¬p(x0)∃x0∈M,p(x0)□06∀x∈M,¬p(x)1.命题p∧q,p∨q,¬p的真假判定p q p∧q p∨q ¬p真真真真假真假假真假假真假真真假假假假真2.确定p∧q,p∨q,¬p真假的记忆口诀如下:p∧q→见假即假,p∨q→见真即真,p 与¬p→真假相反.3.“p∨q”的否定是“(¬p)∧(¬q)”;“p∧q”的否定是“(¬p)∨(¬q)”.4.“且”“或”“非”三个逻辑联结词,对应着集合中的“交”“并”“补”,所以含有逻辑联结词的问题常常转化为集合问题处理.5.含有一个量词的命题的否定规律是“改量词,否结论”.6.命题的否定和否命题的区别:命题“若p,则q”的否定是“若p,则¬q”,否命题是“若¬p,则¬q”.1.命题p :“∀x ∈N *,⎝ ⎛⎭⎪⎫12x≤12”的否定为( )A .∀x ∈N *,⎝ ⎛⎭⎪⎫12x>12B .∀x ∉N *,⎝ ⎛⎭⎪⎫12x>12C .∃x 0∉N *,⎝ ⎛⎭⎪⎫12x 0>12D .∃x 0∈N *,⎝ ⎛⎭⎪⎫12x 0>12答案 D解析 全称命题的否定为特称命题,方法是改量词,否结论,故选D.2.(2022·山西大同摸底)已知命题p ,q ,则“¬p 为假命题”是“p ∧q 为真命题”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 答案 B解析 若¬p 为假命题,则p 为真命题,由于不知道q 的真假性,所以推不出p ∧q 是真命题,所以充分性不成立.p ∧q 是真命题,则p ,q 均为真命题,则¬p 为假命题,所以必要性成立.所以“¬p 为假命题”是“p ∧q 为真命题”的必要不充分条件.3.若命题“∃x 0∈R ,x 20+(a -1)x 0+1<0”是真命题,则实数a 的取值范围是( ) A.[-1,3] B .(-1,3)C .(-∞,-1]∪[3,+∞)D .(-∞,-1)∪(3,+∞) 答案 D解析 因为命题“∃x 0∈R ,x 20+(a -1)x 0+1<0”等价于“x 2+(a -1)x +1=0有两个不等的实根”,所以Δ=(a -1)2-4>0,即a 2-2a -3>0,解得a <-1或a >3.4.(2021·云南丽江模拟)命题p :甲的数学成绩不低于100分,命题q :乙的数学成绩低于100分,则p ∨(¬q )表示( )A .甲、乙两人数学成绩都低于100分B .甲、乙两人至少有一人数学成绩低于100分C .甲、乙两人数学成绩都不低于100分D .甲、乙两人至少有一人数学成绩不低于100分 答案 D解析 因为命题q :乙的数学成绩低于100分,所以命题¬q 表示乙的数学成绩不低于100分,所以命题p ∨(¬q )表示甲、乙两人至少有一人的数学成绩不低于100分.故选D.5.设有下面四个命题:p 1:∃n 0∈N ,n 20>2n 0;p 2:x ∈R ,“x >1”是“x >2”的充分不必要条件;p 3:命题“若x -312是有理数,则x 是无理数”的逆否命题;p 4:若“p ∨q ”是真命题,则p 一定是真命题.其中为真命题的是( ) A .p 1,p 2 B .p 2,p 3 C .p 2,p 4 D .p 1,p 3 答案 D解析 ∵n 0=3时,32>23,∴∃n 0∈N ,n 20>2n 0,∴p 1为真命题;∵(2,+∞)(1,+∞),∴x >2能推出x >1,x >1不能推出x >2,“x >1”是“x >2”的必要不充分条件,∴p 2是假命题;根据逆否命题的定义可知p 3为真命题.根据复合命题的真假判断法则可知p 4为假命题.故选D.6.已知命题p :不等式ax 2+ax +1>0的解集为R ,则实数a ∈(0,4),命题q :“x 2-2x -8>0”是“x >5”的必要不充分条件,则下列命题正确的是( )A .p ∧qB .p ∧(¬q )C .(¬p )∧(¬q )D .(¬p )∧q答案 D解析 命题p :a =0时,可得1>0恒成立;a ≠0时,可得⎩⎪⎨⎪⎧a >0,Δ=a 2-4a <0,解得0<a <4.综上,可得实数a ∈[0,4),因此p 是假命题,则¬p 是真命题;命题q :由x 2-2x -8>0解得x >4或x <-2.因此“x 2-2x -8>0”是“x >5”的必要不充分条件,是真命题,故(¬p )∧q 是真命题.故选D.考向一 含有逻辑联结词命题真假的判断 例1 (2020·全国Ⅱ卷)设有下列四个命题:p 1:两两相交且不过同一点的三条直线必在同一平面内. p 2:过空间中任意三点有且仅有一个平面. p 3:若空间两条直线不相交,则这两条直线平行. p 4:若直线l ⊂平面α,直线m ⊥平面α,则m ⊥l .则下述命题中所有真命题的序号是 . ①p 1∧p 4,②p 1∧p 2,③¬p 2∨p 3,④¬p 3∨¬p 4. 答案 ①③④解析 对于命题p 1,可设l 1与l 2相交,这两条直线确定的平面为α,设l 3与l 1,l 2的交点分别为A ,B (如图),则A ∈α,B ∈α,所以AB ⊂α,即l 3⊂α,命题p 1为真命题;对于命题p 2,若三点共线,则过这三个点的平面有无数个,命题p 2为假命题; 对于命题p 3,空间中两条直线的位置关系有相交、平行或异面,命题p 3为假命题; 对于命题p 4,若直线m ⊥平面α,则m 垂直于平面α内所有直线,因为l ⊂平面α,所以m ⊥l ,命题p 4为真命题.综上可知,p 1∧p 4为真命题,p 1∧p 2为假命题,¬p 2∨p 3为真命题,¬p 3∨¬p 4为真命题.判断含有逻辑联结词的命题真假的一般步骤(1)定结构:先判断复合命题的结构形式.(2)辨真假:判断构成这个命题的每一个简单命题的真假性.(3)下结论:依据“有真或为真,有假且为假,p 和¬p 真假相反”,作出判断.1.设命题p :函数y =sin 2x 的最小正周期为π2;命题q :函数y =cos x的图象关于直线x =π2对称,则下列判断正确的是 .①p 为真;②¬q 为假;③p ∧q 为假;④p ∨q 为真;⑤(¬p )∧(¬q )为真;⑥¬(p ∨q )为真. 答案 ③⑤⑥解析 p ,q 均为假,故p ∧q 为假,p ∨q 为假,(¬p )∧(¬q )为真,¬(p ∨q )为真.精准设计考向,多角度探究突破 考向二 全称命题、特称命题 角度全称命题、特称命题的否定例2 (1)(2021·安徽合肥质检)设命题p :∀x ∈R ,x 2-x +1>0,则¬p 为( )A.∃x0∈R,x2-x0+1>0B.∀x∈R,x2-x+1≤0C.∃x0∈R,x2-x0+1≤0D.∀x∈R,x2-x+1<0答案 C解析全称命题的否定是特称命题,同时否定结论.故选C.(2)命题“存在一个无理数,它的平方是有理数”的否定是( )A.任意一个有理数,它的平方是有理数B.任意一个无理数,它的平方不是有理数C.存在一个有理数,它的平方是有理数D.存在一个无理数,它的平方不是有理数答案 B解析根据特称命题的否定为全称命题,需先将存在量词改为全称量词,然后否定结论,故该命题的否定为“任意一个无理数,它的平方不是有理数”.一般地,写含有一个量词的命题的否定,先要明确这个命题是全称命题还是特称命题,并找到其量词的位置及相应结论,然后把命题中的全称量词改成存在量词或把存在量词改成全称量词,同时否定结论.如果所给命题中省去了量词,则要结合命题的含义加上量词,再对量词进行否定.2.(2022·西安模拟)命题p:∀a≥0,关于x的方程x2+ax+1=0有实数解,则¬p为( )A.∃a0<0,关于x的方程x2+a0x+1=0有实数解B.∃a0<0,关于x的方程x2+a0x+1=0没有实数解C.∃a0≥0,关于x的方程x2+a0x+1=0没有实数解D.∃a0≥0,关于x的方程x2+a0x+1=0有实数解答案 C解析根据全称命题的否定可知,¬p为∃a0≥0,关于x的方程x2+a0x+1=0没有实数解.故选C.3.命题“奇数的立方是奇数”的否定是.答案存在一个奇数,它的立方不是奇数解析此命题隐含了全称量词“所有”,故否定是特称命题,即“存在一个奇数,它的立方不是奇数”.角度全称命题、特称命题真假的判断例3 以下四个命题既是特称命题又是真命题的是( )A .锐角三角形有一个内角是钝角B .至少有一个实数x 0,使x 20≤0 C .两个无理数的和必是无理数 D .存在一个负数x 0,使1x 0>2答案 B解析 选项A 中,锐角三角形的所有内角都是锐角,所以A 是假命题;选项B 中,当x 0=0时,x 20=0,所以B 既是特称命题又是真命题;选项C 中,因为2+(-2)=0不是无理数,所以C 是假命题;选项D 中,对于任意一个负数x ,都有1x <0,不满足1x>2,所以D 是假命题.故选B.全称命题与特称命题真假性的两种判断方法不管是全称命题,还是特称命题,若其真假不容易正面判断时,可先判断其否定的真假.命题名称 真假 判断方法一 判断方法二 全称命题真 所有对象使命题真 否定为假 假 存在一个对象使命题假 否定为真 特称命题真 存在一个对象使命题真 否定为假 假所有对象使命题假否定为真4.(2021·江西师大附中模拟)已知定义域为R 的函数f (x )不是偶函数,则下列命题一定为真命题的是( )A .∀x ∈R ,f (-x )≠f (x )B .∀x ∈R ,f (-x )≠-f (x )C .∃x 0∈R ,f (-x 0)≠f (x 0)D .∃x 0∈R ,f (-x 0)≠-f (x 0) 答案 C解析 设命题p :∀x ∈R ,f (x )=f (-x ),∵f (x )不是偶函数,∴p 是假命题,则¬p 是真命题,又¬p :∃x 0∈R ,f (-x 0)≠f (x 0),故选C.考向三 利用复合命题的真假求参数范围例4 (1)已知命题p :“∀x ∈[0,1],a ≥e x”;命题q :“∃x 0∈R ,使得x 20+4x 0+a =0”.若命题“p ∧q ”是真命题,则实数a 的取值范围为( )A .[1,4]B .[1,e]C .[e ,4]D .[4,+∞) 答案 C解析 若命题“p ∧q ”是真命题,那么命题p ,q 都是真命题.由∀x ∈[0,1],a ≥e x,得a ≥e ;由∃x 0∈R ,使x 20+4x 0+a =0,知Δ=16-4a ≥0,则a ≤4,因此e ≤a ≤4.则实数a 的取值范围为[e ,4].故选C.(2)命题p :实数a 满足a 2+a -6≥0;命题q :函数y =ax 2-ax +1的定义域为R .若命题p ∧q 为假,p ∨q 为真,则实数a 的取值范围为 .答案 (-∞,-3]∪[0,2)∪(4,+∞)解析 当命题p 为真时,即a 2+a -6≥0,解得a ≥2或a ≤-3;当命题q 为真时,可得ax2-ax +1≥0对任意x ∈R 恒成立,若a =0,则满足题意;若a ≠0,则有⎩⎪⎨⎪⎧a >0,Δ=a 2-4a ≤0,解得0<a ≤4,∴0≤a ≤4.∵p ∧q 为假,p ∨q 为真,∴“p 真q 假”或“p 假q 真”,①当p 真q假时,则⎩⎪⎨⎪⎧a ≥2或a ≤-3,a >4或a <0,∴a >4或a ≤-3;②当p 假q真时,则⎩⎪⎨⎪⎧-3<a <2,0≤a ≤4,∴0≤a <2.综上,实数a 的取值范围是(-∞,-3]∪[0,2)∪(4,+∞).根据命题真假求参数的方法步骤(1)先根据题目条件,推出每一个命题的真假(有时不一定只有一种情况,本例(2)中有两种情况).(2)然后再求出每个命题是真命题时参数的取值范围. (3)最后根据每个命题的真假情况,求出参数的取值范围.5.设命题p :函数f (x )=x 3-ax -1在区间[-1,1]上单调递减;命题q :函数y =ln (x 2+ax +1)的值域是R .如果命题p ∨q 为真命题,p ∧q 为假命题,则实数a 的取值范围是( )A .(-∞,3]B .(-∞,-2]∪[2,3)C .(2,3]D .[3,+∞)答案 B解析 由函数f (x )=x 3-ax -1在区间[-1,1]上单调递减,得f ′(x )=3x 2-a ≤0在[-1,1]上恒成立,故a ≥(3x 2)max =3,即a ≥3;由函数y =ln (x 2+ax +1)的值域是R ,得x2+ax +1能取到全体正数,故Δ=a 2-4≥0,解得a ≤-2或a ≥2.因为命题p ∨q 为真命题,p ∧q 为假命题,所以p 和q 一真一假.当p 真q 假时,可得{a |a ≥3}∩{a |-2<a <2}=∅;当p 假q 真时,可得{a |a <3}∩{a |a ≤-2或a ≥2}={a |a ≤-2或2≤a <3}.因此实数a 的取值范围是(-∞,-2]∪[2,3).故选B.1.(2021·山西阳泉高三阶段考试)设A 是奇数集,B 是偶数集,则命题“∀x ∈A ,2x ∉B ”的否定是( )A.∃x0∈A,2x0∈B B.∃x0∉A,2x0∈BC.∀x∉A,2x∉B D.∀x∉A,2x∈B答案 A解析“∀x∈A,2x∉B”即“所有x∈A,都有2x∉B”,它的否定应该是“存在x0∈A,使2x0∈B”,所以正确选项为A.2.下列命题中的假命题是( )A.∀x∈R,e x-1>0B.∀x∈N*,(x-1)2>0C.∃x0∈R,ln x0<1D.∃x0∈R,tan x0=2答案 B解析因为当x=1时,(x-1)2=0,所以B为假命题,故选B.3.命题“∀x∈R,f(x)g(x)≠0”的否定是( )A.∀x∈R,f(x)=0且g(x)=0B.∀x∈R,f(x)=0或g(x)=0C.∃x0∈R,f(x0)=0且g(x0)=0D.∃x0∈R,f(x0)=0或g(x0)=0答案 D解析根据全称命题与特称命题互为否定的关系可得,命题“∀x∈R,f(x)g(x)≠0”的否定是“∃x0∈R,f(x0)=0或g(x0)=0”.故选D.4.(2022·江西南昌摸底)下列命题的否定是真命题的是( )A.有些实数的绝对值是正数B.所有平行四边形都不是菱形C.任意两个等边三角形都是相似的D.3是方程x2-9=0的一个根答案 B解析若命题的否定是真命题,则原命题是假命题,显然A,C,D是真命题,B是假命题.故选B.5.设非空集合P,Q满足P∩Q=P,则( )A.∀x∈Q,有x∈PB.∀x∉Q,有x∉PC.∃x0∉Q,使得x0∈PD.∃x0∈P,使得x0∉Q答案 B解析因为P∩Q=P,所以P⊆Q,所以∀x∉Q,有x∉P,故选B.6.(2021·全国乙卷)已知命题p:∃x∈R,sin x<1;命题q:∀x∈R,e|x|≥1,则下列命题中为真命题的是( )A.p∧q B.¬p∧qC.p∧¬q D.¬(p∨q)答案 A解析因为命题p为真命题,命题q为真命题,所以p∧q为真命题.故选A.7.关于命题“当m∈[1,2]时,方程x2-2x+m=0没有实数解”,下列说法正确的是( ) A.是全称命题,假命题B.是全称命题,真命题C.是特称命题,假命题D.是特称命题,真命题答案 A解析原命题的含义是“对于任意m∈[1,2],方程x2-2x+m=0都没有实数解”,但当m=1时,方程有实数解x=1,故命题是全称命题,假命题,所以A正确.8.(2022·四川南充月考)下列命题中,是真命题的全称命题的是( )A.对于实数a,b∈R,有a2+b2-2a-2b+2<0B.梯形两条对角线相等C.有小于1的自然数D.函数y=kx+1的图象过定点(0,1)答案 D解析选项A是全称命题,a2+b2-2a-2b+2=(a-1)2+(b-1)2≥0,故A是假命题;B是假命题;“存在小于1的自然数”,C是特称命题;D项,对于所有k∈R,函数y=kx +1的图象过定点(0,1),所以正确选项为D.9.(2021·河南济源、平顶山、许昌第二次质检)已知直线m,n和平面α,β.命题p:若m⊂α,n⊂β,α∥β,则直线m与直线n平行或异面;命题q:若m∥α,α∥β,则m∥β;命题s:若α⊥β,α∩β=m,在平面α内作直线m的垂线n,则n⊥β.则下列为真命题的是( )A.p∨(¬q) B.(¬p)∧sC.q∧(¬s) D.(¬p)∧(¬q)答案 A解析若α∥β,m⊂α,n⊂β,由于平面α与平面β没有交点,所以直线m与直线n 平行或异面,即命题p 是真命题;若m ∥α,α∥β,则m ∥β或m ⊂β,即命题q 是假命题;若α⊥β,α∩β=m ,在平面α内作直线m 的垂线n ,由面面垂直的性质定理,得n ⊥β,命题s 是真命题.对于A ,p ∨(¬q )是真命题;对于B ,p 是真命题,则¬p 是假命题,s 是真命题,则(¬p )∧s 是假命题;对于C ,s 是真命题,则¬s 是假命题,q 是假命题,则q ∧(¬s )是假命题;对于D ,p 是真命题,则¬p 是假命题,q 是假命题,则¬q 是真命题,则(¬p )∧(¬q )是假命题.故选A.10.命题p :若向量a ·b <0,则a 与b 的夹角为钝角;命题q :若cos αcos β=1,则sin (α+β)=0.下列命题为真命题的是( )A .pB .¬qC .p ∧qD .p ∨q答案 D解析 若a ,b 共线且方向相反时,a ·b <0,但a 与b 夹角为π,故p 是假命题.若cosα·cos β=1,则⎩⎪⎨⎪⎧cos α=1,cos β=1或⎩⎪⎨⎪⎧cos α=-1,cos β=-1,∴sin α=sin β=0,∴sin (α+β)=sin αcos β+cos αsin β=0,故q 是真命题,∴p ,¬q ,p ∧q 均为假命题,p ∨q 为真命题,故选D.11.短道速滑队进行冬奥会选拔赛(6人决出第一~六名),记“甲得第一名”为p ,“乙得第二名”为q ,“丙得第三名”为r ,若p ∨q 是真命题,p ∧q 是假命题,(¬q )∧r 是真命题,则选拔赛的结果为( )A .甲第一、乙第二、丙第三B .甲第二、乙第一、丙第三C .甲第一、乙第三、丙第二D .甲第一、乙没得第二名、丙第三 答案 D解析 (¬q )∧r 是真命题意味着¬q 为真,q 为假(乙没得第二名)且r 为真(丙得第三名);p ∨q 是真命题,由于q 为假,只能p 为真(甲得第一名),这与p ∧q 是假命题相吻合;由于还有其他三名队员参赛,只能肯定其他队员得第二名,乙没得第二名.故选D.12.(2022·甘肃兰州模拟)已知f (x )=ln (x 2+1),g (x )=⎝ ⎛⎭⎪⎫12x-m ,若∀x 1∈[0,3],∃x 2∈[1,2],使得f (x 1)≥g (x 2),则实数m 的取值范围是( )A .⎣⎢⎡⎭⎪⎫14,+∞B .⎝ ⎛⎦⎥⎤-∞,14C .⎣⎢⎡⎭⎪⎫12,+∞D .⎝ ⎛⎦⎥⎤-∞,-12 答案 A解析 当x ∈[0,3]时,f (x )min =f (0)=0,当x ∈[1,2]时,g (x )min =g (2)=14-m ,由f (x )min ≥g (x )min ,得0≥14-m ,所以m ≥14.故选A.13.已知命题p :∀x ∈R ,2x <3x,命题q :∃x 0∈R ,x 20=2-x 0,则下述命题中所有真命题的序号是 .①p ∧q ;②(¬p )∧q ;③p ∨(¬q );④(¬p )∨(¬q ). 答案 ②④解析 当x <0时,2x>3x,所以命题p 为假命题.解x 2=2-x ,得x =-2或1,所以命题q 为真命题.所以p ∧q ,p ∨(¬q )为假命题,(¬p )∧q ,(¬p )∨(¬q )为真命题.14.若命题:“∃x 0∈R ,使得3x 20+2ax 0+1<0”是假命题,则实数a 的取值范围是 .答案 [-3,3]解析 命题“∃x 0∈R ,使得3x 20+2ax 0+1<0”是假命题,即“∀x ∈R ,3x 2+2ax +1≥0”是真命题,故Δ=4a 2-12≤0,解得-3≤a ≤ 3.即实数a 的取值范围为[-3,3].15.(2022·四川绵阳中学模拟)已知命题p :∃x ∈⎣⎢⎡⎦⎥⎤0,π2,cos 2x +cos x -m =0为真命题,则实数m 的取值范围是 .答案 [-1,2]解析 cos 2x +cos x -m =0可变形为cos 2x +cos x =m .令f (x )=cos 2x +cos x ,则f (x )=2cos 2x +cos x -1=2⎝ ⎛⎭⎪⎫cos x +142-98.由于x ∈⎣⎢⎡⎦⎥⎤0,π2,所以cos x ∈[0,1].于是f (x )∈[-1,2].故实数m 的取值范围是[-1,2].16.(2021·南昌一中模拟)已知命题p :关于x 的方程x 2-mx -2=0在[0,1]上有解;命题q :f (x )=log 2⎝ ⎛⎭⎪⎫x 2-2mx +12在[1,+∞)上单调递增.若“¬p ”为真命题,“p ∨q ”为真命题,则实数m 的取值范围为 .答案 ⎝ ⎛⎭⎪⎫-1,34解析 对于命题p :令g (x )=x 2-mx -2,则g (0)=-2,∴g (1)=-m -1≥0,解得m ≤-1,故命题p 为真命题时,m ≤-1.∴¬p 为真命题时,m >-1.对于命题q :⎩⎪⎨⎪⎧m ≤1,1-2m +12>0, 解得m <34.又由题意可得p 假q 真,∴-1<m <34,即实数m 的取值范围为⎝⎛⎭⎪⎫-1,34.17.(2022·江西上饶高三摸底)已知m ∈R ,设p :∀x ∈[-1,1],x 2-2x -4m 2+8m -2≥0成立;q :∃x 0∈[1,2],log 12(x 20-mx 0+1)<-1成立.如果“p ∨q ”为真,“p ∧q ”为假,求实数m 的取值范围.解 若p 为真,则∀x ∈[-1,1],4m 2-8m ≤x 2-2x -2恒成立. 设f (x )=x 2-2x -2,配方得f (x )=(x -1)2-3,∴f (x )在[-1,1]上的最小值为-3, ∴4m 2-8m ≤-3,解得12≤m ≤32,∴p 为真时,12≤m ≤32.若q 为真,则∃x 0∈[1,2],x 20-mx 0+1>2成立,即m <x 20-1x 0成立.设g (x )=x 2-1x =x -1x ,则g (x )在[1,2]上是增函数,∴g (x )的最大值为g (2)=32,∴m <32,∴q 为真时,m <32.∵“p ∨q ”为真,“p ∧q ”为假,∴p 与q 一真一假. 当p 真q 假时,⎩⎪⎨⎪⎧12≤m ≤32,m ≥32,∴m =32;当p 假q 真时,⎩⎪⎨⎪⎧m <12或m >32,m <32,∴m <12.综上所述,实数m 的取值范围是⎩⎨⎧⎭⎬⎫m ⎪⎪⎪m <12或m =32.18.已知函数f (x )=-(x -2m )(x +m +3)(其中m <-1),g (x )=2x-2.设命题p :∀x ∈(1,+∞),f (x )<0或g (x )<0;命题q :∃x 0∈(-1,0),f (x 0)·g (x 0)<0.若p ∧q 是真命题,求m 的取值范围.解 ∵p ∧q 是真命题,∴p 与q 都是真命题. 当x >1时,g (x )=2x-2>0, 又p 是真命题,则f (x )<0. ∵m <-1,∴2m <-m -3,∴f (x )<0的解集为{x |x <2m 或x >-m -3},∴-m-3≤1,解得m≥-4;当-1<x<0时,g(x)=2x-2<0.∵q是真命题,则∃x0∈(-1,0),使得f(x0)>0,由f(x0)>0得2m<x0<-m-3,则(2m,-m-3)∩(-1,0)≠∅,又m<-1,∴2m<-2,∴-m-3>-1,解得m<-2. ∴若p∧q是真命题,m的取值范围是-4≤m<-2.。

第三节、逻辑连接词及量词

第三节、逻辑连接词及量词

分析 首先根据命题的定义,判断所给四个语句是 否为命题.若是,再由全称命题和存在性命题的定
义判断真假. 解 (1),(2),(3)都是命题.其中,(1),(2)是存在
性命题,为真命题;(3)是全称命题,为假命题.上述命 题用符号“∀”“∃”表示为: (1)∃a,使得a的方向不能确定. (2)∃f(x),使f(x)既是奇函数又是偶函数.
(3)∀a,b,c∈R,使方程ax2+bx+c=0都有解.
规律总结 要判断全称命题“∀x∈M,p(x)”是真命题,需 要对集合M中的任意一个x,证明p(x)成立;如果在集合M中
找到一个x0,使得p(x0)不成立,则该全称命题为假命题.要
判断存在性命题“∃x∈M,p(x)”是真命题,只需在集合M中 找到一个x0,使得p(x0)成立;如果在集合M中,使p(x)成立 的x不存在,则该特称命题是假命题.
1.命题p∧q,p∨q, p 的真假判断真值表 (1)p∧q形式复合命题真值表 p q 真 真 假 假 (2)p∨q形式复合命题真值表 (3) p形式复合命题真值表 p 真 綈p 假 真 假 真 假
p∧q 真 假 假 假

p
真 真 假 假
q
真 假 真 假
p∨q
真 真 真 假


2.关于非p的意义 (1)非p即对一个命题的结论全盘否定,所谓“全盘否定”就 是“非p”必须包含p的所有对立面,p与非p互为否定. (2)“非p”不同于否命题,非p是指仅仅对结论的否定;而否命 题是对条件和结论的同时否定. 3.“非p”的性质 p (1)无论p是怎样的命题,“p∧ p ”必是假命题,“p∨ ”必 是真命题; (2) p =p;
全称命题和特称命题的否定
写出下列命题的否定. (1)p:∃x0∈R,x02+2x0+2≤0. (2)p:有的三角形是等边三角形. (3)p:对任意x∈Z,x2的个位数字不等于3. (4)p:直线l⊥平面α,则对任意l′⊂α,l⊥l′. (5)p:∀x>1,log2x>0.

高考数学总复习第八章第3节简单逻概要

高考数学总复习第八章第3节简单逻概要

q);④(綈 p)∨q 中,真命题是( )
A.①③
B.①④ C.②③ D.②④ 高考数学总复习第八章第3节简单的逻概 要
(2)(2015·潍坊模拟)已知命题 p,q,“綈 p 为真”是“p∧q 为
假”的( ) A.充分不必要条件 C.充要条件
B.必要不充分条件 D.既不充分也不必要条件
高考数学总复习第八章第3节简单的逻概 要
高考数学总复习第八章第3节简单的逻概 要
[解析] “所有可以被 5 整除的整数”的否定为”“有些可以 被 5 整除的整数”,“末位数字都是 0”的否定为“末位数字不是 0”,故选 D.
[答案] D
高考数学总复习第八章第3节简单的逻概 要
3.(2013·湖北高考)在一次跳伞训练中,甲、乙两位学员各跳 一次.设命题 p 是“甲降落在指定范围”,q 是“乙降落在指定范 围”,则命题“至少有一位学员没有降落在指定范围”可表示为
[解析] (1)当 x>y 时,-x<-y,故命题 p 为真命题,从而綈 p
为假命题. 当 x>y 时,x2>y2 不一定成立,故命题 q 为假命题,从而綈 q
为真命题.
高考数学总复习第八章第3节简单的逻概 要
由真值表知,①p∧q 为假命题;②p∨q 为真命题;③p∧(綈 q)为真命题;④(綈 p)∨q 为假命题.故选 C.






·
·








第三节 简单的逻辑联结词、全称量词与存在量词





·





高三数学人教版A版数学(理)高考一轮复习教案简单的逻辑联结词、全称量词与存在量词

高三数学人教版A版数学(理)高考一轮复习教案简单的逻辑联结词、全称量词与存在量词

第三节简单的逻辑联结词、全称量词与存在量词1.简单的逻辑联结词了解逻辑联结词“或”“且”“非”的含义.2.全称量词与存在量词(1)理解全称量词与存在量词的意义.(2)能正确地对含有一个量词的命题进行否定.知识点一简单的逻辑联结词1.用联结词“且”联结命题p和命题q,记作p∧q,读作“p且q”.2.用联结词“或”联结命题p和命题q,记作p∨q,读作“p或q”.3.对一个命题p全盘否定,就得到一个新命题,记作綈p,读作“非p”或“p的否定”.4.命题p∧q,p∨q,綈p的真假判断:p∧q中p,q有一假为假,p∨q有一真为真,p与非p必定是一真一假.必备方法逻辑联结词与集合的关系“或、且、非”三个逻辑联结词,对应着集合运算中的“并、交、补”,因此,常常借助集合的“并、交、补”的意义来解答由“或、且、非”三个联结词构成的命题问题.[自测练习]1.(2015·枣庄模拟)如果命题“p∨q”与命题“綈p”都是真命题,则()A.命题q一定是真命题B.命题p不一定是假命题C.命题q不一定是真命题D.命题p与命题q真假相同解析:由綈p是真命题,则p为假命题.又p∨q是真命题,故q一定为真命题.答案:A知识点二全称量词与存在量词1.全称量词与全称命题(1)短语“所有的”、“任意一个”在逻辑中通常叫作全称量词,并用符号“∀”表示.(2)含有全称量词的命题,叫作全称命题.(3)全称命题“对M中任意一个x,有p(x)成立”可用符号简记为:∀x∈M,p(x),读作“对任意x属于M,有p(x)成立”.2.存在量词与特称命题(1)短语“存在一个”、“至少有一个”在逻辑中通常叫作存在量词,并用符号“∃”表示.(2)含有存在量词的命题,叫作特称命题.(3)特称命题“存在M 中的一个x 0,使p (x 0)成立”可用符号简记为∃x 0∈M ,P (x 0),读作“存在M 中的元素x 0,使p (x 0)成立”.3.含有一个量词的命题的否定命 题 命题的否定 ∀x ∈M ,p (x ) ∃x 0∈M ,綈p (x 0) ∃x 0∈M ,p (x 0)∀x ∈M ,綈p (x )易误提醒(1)对于省略量词的命题,应先挖掘命题中隐含的量词,改写成含量词的完整形式,再写出命题的否定,否则易出错.(2)p 或q 的否定易误写成“綈p 或綈q ”;p 且q 的否定易误写成“綈p 且綈q ”. 必备方法 不管是全称命题,还是特称命题,若其真假不容易正面判断时,可先判断其否定的真假.[自测练习]2.(2015·郑州预测)已知命题p :∀x >2,x 3-8>0,那么綈p 是( ) A .∀x ≤2,x 3-8≤0 B .∃x >2,x 3-8≤0 C .∀x >2,x 3-8≤0D .∃x ≤2,x 3-8≤0解析:本题考查全称命题的否定.依题意,綈p 是“∃x >2,x 3-8≤0”,故选B. 答案:B3.下列命题为真命题的是( ) A .∃x 0∈Z,1<4x 0<3 B .∃x 0∈Z,5x 0+1=0 C .∀x ∈R ,x 2-1=0 D .∀x ∈R ,x 2+x +2>0解析:1<4x 0<3,14<x 0<34,这样的整数x 0不存在,故A 为假命题;5x 0+1=0,x 0=-15∉Z ,故B 为假命题;x 2-1=0,x =±1,故C 为假命题;对任意实数x ,都有x 2+x +2=⎝⎛⎭⎫x +122+74>0,故D 为真命题.答案:D考点一 含有逻辑联结词的命题的真假判断|1.(2016·石家庄一模)命题p :若sin x >sin y ,则x >y ;命题q :x 2+y 2≥2xy .下列命题为假命题的是( )A .p 或qB .p 且qC .qD .綈p解析:取x =π3,y =5π6,可知命题p 不正确;由(x -y )2≥0恒成立,可知命题q 正确,故綈p 为真命题,p 或q 是真命题,p 且q 是假命题,故选B.答案:B2.给定下列三个命题:p 1:函数y =a x +x (a >0,且a ≠1)在R 上为增函数; p 2:∃a ,b ∈R ,a 2-ab +b 2<0;p 3:cos α=cos β成立的一个充分不必要条件是α=2k π+β(k ∈Z ). 则下列命题中的真命题为( ) A .p 1∨p 2 B .p 2∧p 3 C .p 1∨綈p 3D .綈p 2∧p 3解析:对于p 1:令y =f (x ),当a =12时,f (0)=⎝⎛⎭⎫120+0=1,f (-1)=⎝⎛⎭⎫12-1-1=1,所以p 1为假命题;对于p 2:a 2-ab +b 2=⎝⎛⎭⎫a -12b 2+34b 2≥0,所以p 2为假命题;对于p 3:由cos α=cos β,可得α=2k π±β(k ∈Z ),所以p 3是真命题,所以綈p 2∧p 3为真命题,故选D.答案:D判断一个含有逻辑联结词的命题的真假的三个步骤(1)判断复合命题的结构;(2)判断构成这个命题的每个简单命题的真假;(3)依据含有“或”、“且”、“非”的命题的真假判断方法,作出判断即可.考点二 全称命题与特称命题真假判断|1.下列命题中,真命题是( )A .存在x 0∈R ,sin 2x 02+cos 2x 02=12B .任意x ∈(0,π),sin x >cos xC .任意x ∈(0,+∞),x 2+1>xD .存在x 0∈R ,x 20+x 0=-1解析:对于A 选项:∀x ∈R ,sin 2x 2+cos 2x2=1,故A 为假命题;对于B 选项:存在x=π6,sin x =12,cos x =32,sin x <cos x ,故B 为假命题;对于C 选项:x 2+1-x =⎝⎛⎭⎫x -122+34>0恒成立,C 为真命题;对于D 选项:x 2+x +1=⎝⎛⎭⎫x +122+34>0恒成立,不存在x 0∈R ,使x 20+x 0=-1成立,故D 为假命题.答案:C2.下列命题中,真命题是( )A .∃m 0∈R ,使函数f (x )=x 2+m 0x (x ∈R )是偶函数B .∃m 0∈R ,使函数f (x )=x 2+m 0x (x ∈R )是奇函数C .∀m ∈R ,函数f (x )=x 2+mx (x ∈R )都是偶函数D .∀m ∈R ,函数f (x )=x 2+mx (x ∈R )都是奇函数解析:由于当m =0时,函数f (x )=x 2+mx =x 2为偶函数,故“∃m 0∈R ,使函数f (x )=x 2+m 0x (x ∈R )为偶函数”是真命题.答案:A全称命题与特称命题真假的判断方法 命题名称 真假 判断方法一 判断方法二 全称命题真 所有对象使命题真 否定为假 假存在一个对象使命题假否定为真考点三 利用命题的真假求参数范围|(2015·高考山东卷)若“∀x ∈⎣⎡⎦⎤0,π4,tan x ≤m ”是真命题,则实数m 的最小值为________.[解析] 由已知可得m ≥tan x ⎝⎛⎭⎫x ∈⎣⎡⎦⎤0,π4恒成立.设f (x )=tan x ⎝⎛⎭⎫x ∈⎣⎡⎦⎤0,π4,显然该函数为增函数,故f (x )的最大值为tan π4=1,由不等式恒成立可得m ≥1,即实数m 的最小值为1.[答案] 1根据命题真假求参数的方法步骤(1)先根据题目条件,推出每一个命题的真假(有时不一定只有一种情况); (2)然后再求出每个命题是真命题时参数的取值范围; (3)最后根据每个命题的真假情况,求出参数的取值范围.已知命题p :∃m ∈R ,m +1≤0,命题q :∀x ∈R ,x 2+mx +1>0恒成立,若p ∧q 为假命题.则实数m 的取值范围为________.解析:易知命题p 为真命题, 若命题q 为真命题,则Δ=m 2-4<0, 即-2<m <2.当p ∧q 为真时,有⎩⎪⎨⎪⎧m +1≤0,-2<m <2.∴-2<m ≤-1, ∴p ∧q 为假时,m 的取值范围为{m |m ≤-2,或m >-1}. 答案:(-∞,-2]∪(-1,+∞) 2.全称命题的否定不当致误【典例】 设x ∈Z ,集合A 是奇数集,集合B 是偶数集.若命题p :∀x ∈A,2x ∈B ,则( )A .綈p :∀x ∈A,2x ∉B B .綈p :∀x ∉A,2x ∉BC .綈p :∃x ∉A,2x ∈BD .綈p :∃x ∈A,2x ∉B[解析] “∀x ∈A ”的否定为“∃x ∈A ”,“2x ∈B ”的否定为“2x ∉B ”,故原命题的否定为“∃x ∈A,2x ∉B ”,故选D.[答案] D[易误点评] 此类题目常易犯下列三种错误:(1)否定了结论,并没有否定量词. (2)否定了条件与结论,没有否定量词. (3)否定了条件,没有否定结论.[防范措施] (1)弄清楚是全称命题还是特称命题,尤其是省略了量词的命题.(2)全(特)称命题的否定应从两个方面着手:一是量词变化,“∀”与“∃”互换;二是否定命题的结论,但不是否定命题的条件.[跟踪练习] (2015·高考全国卷Ⅰ)设命题p :∃n ∈N ,n 2>2n ,则綈p 为( ) A .∀n ∈N ,n 2>2n B .∃n ∈N ,n 2≤2n C .∀n ∈N ,n 2≤2nD .∃n ∈N ,n 2=2n解析:命题p 是一个特称命题,其否定是全称命题,故选C. 答案:CA 组 考点能力演练1.已知命题p :∀x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≥0,则綈p 是( ) A .∃x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≤0 B .∀x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≤0 C .∃x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<0 D .∀x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<0解析:綈p :∃x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<0. 答案:C2.已知命题p :∃x ∈R ,x 2-3x +4≤0,则下列说法正确的是( ) A .綈p :∃x ∈R ,x 2-3x +4>0,且綈p 为真命题 B .綈p :∃x ∈R ,x 2-3x +4>0,且綈p 为假命题 C .綈p :∀x ∈R ,x 2-3x +4>0,且綈p 为真命题 D .綈p :∀x ∈R ,x 2-3x +4>0,且綈p 为假命题解析:因为x 2-3x +4=⎝⎛⎭⎫x -322+74≥74,所以命题p 为假命题,所以綈p :∀x ∈R ,x 2-3x +4>0,且綈p 为真命题,故选C.答案:C3.(2016·珠海一模)命题p :5的值不超过2,命题q :2是无理数,则( )A .命题“p 或q ”是假命题B .命题“p 且q ”是假命题C .命题“非p ”是假命题D .命题“非q ”是真命题解析:因为5≈2.236>2,故p 为假命题,2是无理数,故q 是真命题,由复合命题的真假判断法则可知B 正确.答案:B4.下列选项中,说法正确的是( )A .命题“∃x ∈R ,x 2-x ≤0”的否定是“∃x ∈R ,x 2-x >0”B .命题“p ∨q 为真”是命题“p ∧q 为真”的充分不必要条件C .命题“若am 2≤bm 2,则a ≤b ”是假命题D .命题“在△ABC 中,若sin A <12,则A <π6”的逆否命题为真命题解析:A 中命题的否定是:∀x ∈R ,x 2-x >0,故A 不对;B 中当p 为假命题、q 为真命题时,p ∨q 为真,p ∧q 为假,故B 不对;C 中当m =0时,a ,b ∈R ,故C 的说法正确;D 中命题“在△ABC 中,若sin A <12,则A <π6”为假命题,所以其逆否命题为假命题.故选C.答案:C5.(2016·太原模拟)已知命题p :∃x 0∈R ,e x 0-mx 0=0,q :∀x ∈R ,x 2+mx +1≥0,若p ∨(綈q )为假命题,则实数m 的取值范围是( )A .(-∞,0)∪(2,+∞)B .[0,2]C .RD .∅解析:若p ∨(綈q )为假命题,则p 假q 真.命题p 为假命题时,有0≤m <e ;命题q 为真命题时,有Δ=m 2-4≤0,即-2≤m ≤2.所以当p ∨(綈q )为假命题时,m 的取值范围是0≤m ≤2.答案:B6.命题“存在x ∈R ,使得|x -1|-|x +1|>3”的否定是________.解析:本题考查了特称命题与全称命题.命题“存在x ∈R ,使得|x -1|-|x +1|>3”的否定是“对任意的x ∈R ,都有|x -1|-|x +1|≤3”.答案:对任意的x ∈R ,都有|x -1|-|x +1|≤37.命题p :若a ,b ∈R ,则ab =0是a =0的充分条件;命题q :函数y =x -3的定义域是[3,+∞),则“p ∨q ”、“p ∧q ”、“綈p ”中为真命题的是________.解析:依题意知p 假,q 真,所以p ∨q ,綈p 为真. 答案:p ∨q ,綈p8.命题:“存在实数x ,满足不等式(m +1)x 2-mx +m -1≤0”是假命题,则实数m 的取值范围是________.解析:依题意,“对任意的实数x ,都满足不等式(m +1)x 2-mx +m -1>0”是真命题,则必须满足⎩⎪⎨⎪⎧m +1>0,(-m )2-4(m +1)(m -1)<0,解得m >233.答案:⎝⎛⎭⎫233,+∞ 9.已知命题p :关于x 的方程x 2-ax +4=0有实根;命题q :关于x 的函数y =2x 2+ax +4在[3,+∞)上是增函数.若p 或q 是真命题,p 且q 是假命题,求实数a 的取值范围.解:命题p 等价于Δ=a 2-16≥0,即a ≤-4或a ≥4; 命题q 等价于-a4≤3,即a ≥-12.由p 或q 是真命题,p 且q 是假命题知,命题p 和q 一真一假. 若p 真q 假,则a <-12; 若p 假q 真,则-4<a <4.故a 的取值范围是(-∞,-12)∪(-4,4). 10.设p :实数x 满足x 2-4ax +3a 2<0,其中a >0.q :实数x 满足⎩⎪⎨⎪⎧x 2-x -6≤0,x 2+2x -8>0.(1)若a =1,且p ∧q 为真,求实数x 的取值范围. (2)綈p 是綈q 的充分不必要条件,求实数a 的取值范围. 解:由x 2-4ax +3a 2<0,a >0得a <x <3a , 即p 为真命题时,a <x <3a ,由⎩⎪⎨⎪⎧ x 2-x -6≤0,x 2+2x -8>0,得⎩⎪⎨⎪⎧-2≤x ≤3,x >2或x <-4,即2<x ≤3,即q 为真命题时2<x ≤3.(1)a =1时,p :1<x <3.由p ∧q 为真知p ,q 均为真命题,则⎩⎪⎨⎪⎧1<x <3,2<x ≤3,得2<x <3, 所以实数x 的取值范围为(2,3).(2)设A ={x |a <x <3a },B ={x |2<x ≤3},由题意知p 是q 的必要不充分条件, 所以B A ,有⎩⎪⎨⎪⎧0<a ≤2,3a >3,∴1<a ≤2, 所以实数a 的取值范围为(1,2].B 组 高考题型专练1.(2014·高考辽宁卷)设a ,b ,c 是非零向量,已知命题p :若a·b =0,b·c =0,则a·c =0;命题q :若a ∥b ,b ∥c ,则a ∥c .则下列命题中真命题是( )A .p ∨qB .p ∧qC .(綈p )∧(綈q )D .p ∨(綈q )解析:对命题p 中的a 与c 可能为共线向量,故命题p 为假命题.由a ,b ,c 为非零向量,可知命题q 为真命题.故p ∨q 为真命题.故选A.答案:A2.(2014·高考安徽卷)命题“∀x ∈R ,|x |+x 2≥0”的否定是( ) A .∀x ∈R ,|x |+x 2<0 B .∀x ∈R ,|x |+x 2≤0 C .∃x 0∈R ,|x 0|+x 20<0 D .∃x 0∈R ,|x 0|+x 20≥0解析:全称命题的否定是特称命题,否定结论. 答案:C3.(2015·高考浙江卷)命题“∀n ∈N *,f (n )∈N *且f (n )≤n ”的否定形式是( ) A .∀n ∈N *,f (n )∉N *且f (n )>n B .∀n ∈N *,f (n )∉N *或f (n )>n C .∃n 0∈N *,f (n 0)∉N *且f (n 0)>n 0 D .∃n 0∈N *,f (n 0)∉N *或f (n 0)>n 0解析:全称命题的否定为特称命题,因此命题“∀n∈N*,f(n)∈N*且f(n)≤n”的否定形式是“∃n0∈N*,f(n0)∉N*或f(n0)>n0”.答案:D4.(2015·高考湖北卷)命题“∃x0∈(0,+∞),ln x0=x0-1”的否定是()A.∀x∈(0,+∞),ln x≠x-1B.∀x∉(0,+∞),ln x=x-1C.∃x0∈(0,+∞),ln x0≠x0-1D.∃x0∉(0,+∞),ln x0=x0-1解析:该命题的否定是将存在量词改为全称量词,等号改为不等号即可,故选A.答案:A。

1.3简单的逻辑连接词、全称量词与存在量词

1.3简单的逻辑连接词、全称量词与存在量词

第三节简单的逻辑连接词、全称量词与存在量词考纲分析1.了解逻辑联结词“或”“且”“非”的含义.2.理解全称量词与存在量词的意义.3.能正确地对含有一个量词的命题进行否定.高频考点1. 含有一个量词的命题的否定;2. 真值表的利用数学思想与方法分类讨论思想的运用、逻辑推理能力的提高高考出题分值5分基础知识1.逻辑联结词(1)用联结词“且”联结命题p和命题q,记作p∧q,读作“p且q”.(2)用联结词“或”联结命题p和命题q,记作p∨q,读作“p或q”.(3)对一个命题p全盘否定,就得到一个新命题,记作⌝p,读作“非p”或“p的否定”.(4)命题p且q、p或q、非p的真假判断2.全称量词与存在量词1.全称量词与全称命题(1)短语“所有的”“任意一个”在逻辑中通常叫做全称量词,并用符号“∀”表示.(2)含有全称量词的命题,叫做全称命题.(3)全称命题“对M中任意一个x,有p(x)成立”可用符号简记为,()x M p x∀∈,读作“对任意x属于M,有p(x)成立”.2.存在量词与特称命题(1)短语“存在一个”“至少有一个”在逻辑中通常叫做存在量词,并用符号“∃”表示.(2)含有存在量词的命题,叫做特称命题.(3)特称命题“存在M中的一个x0,使p(x0)成立”可用符号简记为00,()x M p x∃∈,读作“存在M中的元素x0,使p(x0)成立”.3.全称命题与特称命题的否定(1)全称命题的否定是特称命题;特称命题的否定是全称命题.(2)“p或q”的否定为:“非p且非q”;“p且q”的否定为:“非p或非q”.(3)含有一个量词的命题的否定题型分类题型一含有逻辑联结词的命题1.【2017届山东青岛二模】已知命题,p q ,“p ⌝为假”是“p q ∨为真”的A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件2.已知命题p :若x>y ,则-x<-y ;命题q :若x>y ,则x 2>y 2.在命题①p ∧q ;②p ∨p ;③p ∧(¬q);④(¬p)∨q 中,真命题是( ) A .①③ B .①④ C .②③ D .②④ 【领悟技法】1.逻辑联结词与集合的关系:“或、且、非”三个逻辑联结词,对应着集合运算中的“并、交、补”,因此,常常借助集合的“并、交、补”的意义来解答由“或、且、非”三个联结词构成的命题问题.2.“p ∨q”“p ∧q”“⌝p”形式命题真假的判断步骤:(1)确定命题的构成形式;(2)判断其中命题p 、q 的真假;(3)确定“p ∧q”“p ∨q”“⌝p”形式命题的真假.3.含逻辑联结词命题真假的等价关系(1)p ∨q 真⇔p,q 至少一个真⇔(⌝p)∧(⌝q)假.(2)p ∨q 假⇔p,q 均假⇔(⌝p)∧(⌝q)真. (3)p ∧q 真⇔p,q 均真⇔(⌝p)∨(⌝q)假. (4)p ∧q 假⇔p,q 至少一个假⇔(⌝p)∨(⌝q)真.(5)⌝p 真⇔p 假; ⌝p 假⇔p 真.4.命题p 且q 、p 或q 、非p 的真假判断规律:p ∧q 中p 、q 有一假为假,p ∨q 有一真为真,p 与非p 必定是一真一假.题型二全称命题与特称命题的真假判断 1.【2017届安徽安庆二模】设命题()0:0,p x ∃∈+∞,013x x +>;命题q :()2,x ∀∈+∞,22xx >,则下列命题为真的是( )A. ()p q ∧⌝B. ()p q ⌝∧C. p q ∧D. ()p q ⌝∨2.已知命题2:4,log 2p x x ∀≥≥;命题:q 在ABC ∆中,若3A π>,则sin A >.则下列命题为真命题的是( )A .p q ∧B .()p q ∧⌝C .()()p q ⌝∧⌝D .()p q ⌝∨ 【领悟技法】1.全称命题真假的判断方法(1)要判断一个全称命题是真命题,必须对限定的集合M 中的每一个元素x ,证明p(x)成立; (2)要判断一个全称命题是假命题,只要能举出集合M 中的一个特殊值x =x 0,使p(x 0)不成立即可.2.特称命题真假的判断方法要判断一个特称命题是真命题,只要在限定的集合M 中,找到一个x =x 0,使p(x 0)成立即可,否则这一特称命题就是假命题.3. 不管是全称命题,还是特称命题,若其真假不容易正面判断时,可先判断其否定的真假.1.命题“所有实数的平方是非负实数”的否定是( )(A )所有实数的平方是负实数(B )不存在一个实数,它的平方是负实数 (C )存在一个实数,它的平方是负实数 (D )不存在一个实数它的平方是非负实数 2已知命题3:2,80p x x ∀>->,那么p ⌝是( )A.32,80x x ∀≤-≤ B .32,80x x ∃>-≤ C .32,80x x ∀>-≤ D .32,80x x ∃≤-≤ 【领悟技法】1.命题的否定与否命题的区别:“否命题”是对原命题“若p ,则q ”的条件和结论分别加以否定而得的命题,它既否定其条件,又否定其结论;“命题的否定”即“非p ”,只是否定命题p 的结论.命题的否定与原命题的真假总是对立的,即两者中有且只有一个为真,而原命题与否命题的真假无必然联系.2.弄清命题是全称命题还是特称命题是写出命题否定的前提.3.注意命题所含的量词,没有量词的要结合命题的含义加上量词,再进行否定.4.要判断“⌝p”命题的真假,可以直接判断,也可以判断“p”的真假,p 与⌝p 的真假相反. 5.常见词语的否定形式有: ≤ 一个也没有至少有两个1.【2017山东,文5】已知命题p :,x ∃∈R 210x x -+≥;命题q :若22a b <,则a<b.下列命题为真命题的是A .p q ∧ B.p q ∧⌝ C.p q ⌝∧ D.p q ⌝∧⌝ 模拟练习1.【2017陕西师范附属二模】若命题:p 对任意的x R ∈,都有3210x x -+<,则p ⌝为( )A. 不存在x R ∈,使得3210x x -+< B. 存在x R ∈,使得3210x x -+<C. 对任意的x R ∈,都有3210x x -+≥ D.存在x R ∈,使得3210x x -+≥2. 【1-2】【2017届安徽蚌埠二模】在射击训练中 ,某战士射击了两次 ,设命题p 是“ 第一次射击击中目标”,命题q 是“ 第二次射击击中目标 ”,则命题“两次射击中至少有一次没有击中目标”为真命题的充要条件是 ( ) A. ()()p q ⌝∨⌝ 为真命题 B. ()p q ∨⌝ 为真命题 C. ()()p q ⌝∧⌝ 为真命题D. p q ∨ 为真命题3. 【1-4】已知命题p :关于x 的方程x 2-ax +4=0有实根;命题q :关于x 的函数y =2x 2+ax +4在[3,+∞)上是增函数.若p 或q 是真命题,p 且q 是假命题,则实数a 的取值范围是( ) A .(-12,-4]∪[4,+∞) B .[-12,-4]∪[4,+∞) C .(-∞,-12)∪(-4,4) D .[-12,+∞)每日一练1、函数的定义域为 。

03简单的逻辑联结词、全称量词与存在量词

03简单的逻辑联结词、全称量词与存在量词
简单的逻辑联结词、全称量词与存在量词
知识网络
命题 四种命题
原命题:若p则q
互否 互逆
命题及 其关系
四种命 题的相 互关系
逆命题:若q则p
互否
互为逆否
等价关系
否命题:若p则q
互逆
逆命题:若q则p
常 用 逻 辑 用 语
充分条件 必要条件 充要条件
充分条件
p ⇒q
必要条件 充要条件 且∧
p ⇐q p ⇔q p∧q
根据含有逻辑联结词的命题的真假,求参数的取值范围
【例 3】 设 a 为实数,给出命题 p:关于 x 的不等式
( 1 )| x 1| ≥ a 的 解 集 为 ∅ , 命 题 q : 函 数 f(x) = 2 lg[ax 2 (a 2) x 9 ] 的定义域为 R,若命题“p∨q”为真, 8
“p∧q”为假,求 a 的取值范围.
解:①若 p 正确,则由 0 ( 1 )| x1| ≤ 1 ,得 a>1.
2
②若 q 正确,则 ax +(a-2)x+ 8>0 解集为 R. 8 8 9 当 a=0 a=0 时,-2x+9>0 不合题意,舍去; 时,-2x+ >0 9 当 a=0 时,-2x+不合题意,舍去; 8 当 >0 8 不合题意,舍去; 8 a>0a>0 a>0 1
命题 ∀x∈M,p(x) ∃x0∈M,p(x0)
忆一忆知识要点
(1)含有一个量词的命题的否定 命题的否定 ∃x0∈M , ¬p(x0) ∀x∈M, ¬p(x)
全称命题的否定是存在性命题;存在性命题的否定是全称命题. (2) p或q, p且q的否定
p⋀q 的否定 p⋁q 的否定

简单的逻辑联结词、全称量词与存在量词

简单的逻辑联结词、全称量词与存在量词一、基础知识1.简单的逻辑联结词(1)命题中的“且”“或”“非”❶叫做逻辑联结词.①用联结词“且”把命题p和命题q联结起来,得到复合命题“p且q”,记作p∧q;②用联结词“或”把命题p和命题q联结起来,得到复合命题“p或q”,记作p∨q;③对命题p的结论进行否定,得到复合命题“非p”,记作非p.❷❶“且”的数学含义是几个条件同时满足,“且”在集合中的解释为“交集”;“或”的数学含义是至少满足一个条件,“或”在集合中的解释为“并集”;“非”的含义是否定,“非p”只否定p的结论,“非”在集合中的解释为“补集”.❷“命题的否定”与“否命题”的区别(1)命题的否定只是否定命题的结论,而否命题既否定其条件,也否定其结论.(2)命题的否定与原命题的真假总是相对立的,即一真一假,而否命题与原命题的真假无必然联系.(2)命题真值表:p q p∧q p∨q非p真真真真假假真假真真真假假真假假假假假真命题真假的判断口诀p∨q→见真即真,p∧q→见假即假,p与非p→真假相反.2.全称量词与存在量词量词名称常见量词表示符号全称量词所有、一切、任意、全部、每一个等∀存在量词存在一个、至少有一个、有一个、某个、有些、某些等∃3.全称命题与特称命题命题名称命题结构命题简记全称命题对M中任意一个x,有p(x)成立∀x∈M,p(x)特称命题存在M中的一个x0,使p(x0)成立∃x0∈M,p(x0) 4.全称命题与特称命题的否定命题命题的否定∀x∈M,p(x)∃x0∈M,非p(x0)∃x0∈M,p(x0)∀x∈M,非p(x)二、常用结论含逻辑联结词命题真假的等价关系(1)p∨q真⇔p,q至少一个真⇔(非p)∧(非q)假.(2)p∨q假⇔p,q均假⇔(非p)∧(非q)真.(3)p∧q真⇔p,q均真⇔(非p)∨(非q)假.(4)p∧q假⇔p,q至少一个假⇔(非p)∨(非q)真.考点一判断含有逻辑联结词命题的真假[典例](1)(2017·山东高考)已知命题p:∀x>0,ln(x+1)>0;命题q:若a>b,则a2>b2.下列命题为真命题的是()A.p∧q B.p∧非qC.非p∧q D.非p∧非q(2)(2019·安徽安庆模拟)设命题p:∃x0∈(0,+∞),x0+1x0>3;命题q:∀x∈(2,+∞),x2>2x,则下列命题为真的是()A.p∧(非q)B.(非p)∧qC.p∧q D.(非p)∨q[解析](1)当x>0时,x+1>1,因此ln(x+1)>0,即p为真命题;取a=1,b=-2,这时满足a>b,显然a2>b2不成立,因此q为假命题.由复合命题的真假性,知B为真命题.(2)对于命题p,当x0=4时,x0+1x0=174>3,故命题p为真命题;对于命题q,当x=4时,24=42=16,即∃x0∈(2,+∞),使得2x0=x20成立,故命题q为假命题,所以p∧(非q)为真命题,故选A.[答案](1)B(2)A[题组训练]1.(2019·惠州调研)已知命题p,q,则“非p为假命题”是“p∧q是真命题”的() A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选B充分性:若非p为假命题,则p为真命题,由于不知道q的真假性,所以推不出p∧q是真命题.必要性:p∧q是真命题,则p,q均为真命题,则非p为假命题.所以“非p为假命题”是“p∧q是真命题”的必要不充分条件.2.已知命题p:“若x2-x>0,则x>1”;命题q:“若x,y∈R,x2+y2=0,则xy=0”.下列命题是真命题的是()A.p∨(非q)B.p∨qC.p∧q D.(非p)∧(非q)解析:选B若x2-x>0,则x>1或x<0,故p是假命题;若x,y∈R,x2+y2=0,则x =0,y=0,xy=0,故q是真命题.则p∨q是真命题.考点二全称命题与特称命题[典例](1)命题∀x∈R,e x-x-1≥0的否定是()A.∀x∈R,e x-x-1≤0B.∀x∈R,e x-x-1≥0C.∃x0∈R,e x0-x0-1≤0D.∃x0∈R,e x0-x0-1<0(2)对命题∃x0>0,x20>2x0,下列说法正确的是()A.真命题,其否定是∃x0≤0,x20≤2x0B.假命题,其否定是∀x>0,x2≤2xC.真命题,其否定是∀x>0,x2≤2xD.真命题,其否定是∀x≤0,x2≤2x[解析](1)改全称量词为存在量词,把不等式中的大于或等于改为小于.故选D.(2)已知命题是真命题,如32=9>8=23,其否定是∀x>0,x2≤2x.故选C.[答案](1)D(2)C[题组训练]1.命题“∀x∈R,∃n∈N*,使得n≤x2”的否定形式是()A.∀x∈R,∃n∈N*,使得n>x2B.∀x∈R,∀n∈N*,使得n>x2C.∃x0∈R,∃n∈N*,使得n>x20D.∃x0∈R,∀n∈N*,使得n>x20解析:选D∀改写为∃,∃改写为∀,n≤x2的否定是n>x2,则该命题的否定形式为“∃x0∈R,∀n∈N*,使得n>x20”.2.已知命题p:∃n∈R,使得f(x)=nxn2+2n是幂函数,且在(0,+∞)上单调递增;命题q:“∃x0∈R,x20+2>3x0”的否定是“∀x∈R,x2+2<3x”.则下列命题为真命题的是()A.p∧q B.(非p)∧qC.p∧(非q)D.(非p)∧(非q)解析:选C当n=1时,f(x)=x3为幂函数,且在(0,+∞)上单调递增,故p是真命题,则非p是假命题;“∃x0∈R,x20+2>3x0”的否定是“∀x∈R,x2+2≤3x”,故q是假命题,非q是真命题.所以p∧q,(非p)∧q,(非p)∧(非q)均为假命题,p∧(非q)为真命题,选C.考点三根据命题的真假求参数的取值范围[典例]已知p:存在x0∈R,mx20+1≤0,q:任意x∈R,x2+mx+1>0.若p或q为假命题,求实数m的取值范围.[解]依题意知p,q均为假命题,当p是假命题时,则mx2+1>0恒成立,则有m≥0;当q是真命题时,则Δ=m2-4<0,-2<m<2.因此由p,q均为假命题得{m≥0,m≤-2或m≥2,即m≥2.所以实数m的取值范围为[2,+∞).[变透练清]1.(变条件)若本例将条件“p或q为假命题”变为“p且q为真命题”,其他条件不变,则实数m的取值范围为________.解析:依题意,当p是真命题时,有m<0;当q是真命题时,有-2<m<2,<0,2<m<2,可得-2<m<0.所以m的取值范围为(-2,0).答案:(-2,0)2.(变条件)若本例将条件“p或q为假命题”变为“p且q为假,p或q为真”,其他条件不变,则实数m的取值范围为________.解析:若p且q为假,p或q为真,则p,q一真一假.当p真q<0,≥2或m≤-2,所以m≤-2;当p假q≥0,2<m<2,所以0≤m<2.所以m的取值范围为(-∞,-2]∪[0,2).答案:(-∞,-2]∪[0,2)3.(变条件)若本例将条件q变为:存在x0∈R,x20+mx0+1<0,其他条件不变,则实数m 的取值范围为________.解析:依题意,当q是真命题时,Δ=m2-4>0,所以m>2或m<-2.≥0,2≤m≤2,得0≤m≤2,所以m的取值范围为[0,2].答案:[0,2][课时跟踪检测]1.(2019·西安摸底)命题“∀x>0,xx-1>0”的否定是()A.∃x0≥0,x0x0-1≤0B.∃x0>0,0≤x0≤1C.∀x>0,xx-1≤0D.∀x<0,0≤x≤1解析:选B∵xx-1>0,∴x<0或x>1,∴xx-1>0的否定是0≤x≤1,∴命题的否定是“∃x0>0,0≤x0≤1”.2.下列命题中,假命题的是()A.∀x∈R,21-x>0B.∃a0∈R,y=xa0的图象关于y轴对称C.函数y=x a的图象经过第四象限D.直线x+y+1=0与圆x2+y2=12相切解析:选C对于A,由指数函数的性质可知为真命题;对于B,当a=2时,其图象关于y轴对称;对于C,当x>0时,y>0恒成立,从而图象不过第四象限,故为假命题;对于D,因为圆心(0,0)到直线x+y+1=0的距离等于12,等于圆的半径,命题成立.3.(2019·陕西质检)已知命题p:对任意的x∈R,总有2x>0;q:“x>1”是“x>2”的充分不必要条件,则下列命题为真命题的是()A.p∧q B.(非p)∧(非q)C.(非p)∧q D.p∧(非q)解析:选D由指数函数的性质知命题p为真命题.易知x>1是x>2的必要不充分条件,所以命题q为假命题.由复合命题真值表可知p∧(非q)为真命题.4.(2018·湘东五校联考)下列说法中正确的是()A.“a>1,b>1”是“ab>1”成立的充分条件B.命题p:∀x∈R,2x>0,则非p:∃x0∈R,2x0<0C.命题“若a>b>0,则1a <1b”的逆命题是真命题D.“a>b”是“a2>b2”成立的充分不必要条件解析:选A对于选项A,由a>1,b>1,易得ab>1,故A正确.对于选项B,全称命题的否定是特称命题,所以命题p:∀x∈R,2x>0的否定是非p:∃x0∈R,2x0≤0,故B错误.对于选项C,其逆命题:若1a<1b,则a>b>0,可举反例,如a=-1,b=1,显然是假命题,故C错误.对于选项D,由“a>b”并不能推出“a2>b2”,如a=1,b=-1,故D错误.故选A.5.(2019·唐山五校联考)已知命题p:“a>b”是“2a>2b”的充要条件;命题q:∃x0∈R,|x0+1|≤x0,则()A.(非p)∨q为真命题B.p∧(非q)为假命题C.p∧q为真命题D.p∨q为真命题解析:选D由题意可知命题p为真命题.因为|x+1|≤x的解集为空集,所以命题q 为假命题,所以p∨q为真命题.6.下列说法错误的是()A.命题“若x2-5x+6=0,则x=2”的逆否命题是“若x≠2,则x2-5x+6≠0”B.若命题p:存在x0∈R,x20+x0+1<0,则非p:对任意x∈R,x2+x+1≥0C.若x,y∈R,则“x=y”是“xy”的充要条件D.已知命题p和q,若“p或q”为假命题,则命题p与q中必一真一假解析:选D由原命题与逆否命题的关系,知A正确;由特称命题的否定知B正确;由xy⇔4xy≥(x+y)2⇔4xy≥x2+y2+2xy⇔(x-y)2≤0⇔x=y,知C正确;对于D,命题“p或q”为假命题,则命题p与q均为假命题,所以D不正确.7.(2019·长沙模拟)已知命题“∀x∈R,ax2+4x+1>0”是假命题,则实数a的取值范围是()A.(4,+∞)B.(0,4]C.(-∞,4]D.[0,4)解析:选C当原命题为真命题时,a>0且Δ<0,所以a>4,故当原命题为假命题时,a≤4.8.下列命题为假命题的是()A.存在x>y>0,使得ln x+ln y<0B.“φ=π2”是“函数y=sin(2x+φ)为偶函数”的充分不必要条件C.∃x0∈(-∞,0),使3x0<4x0成立D.已知两个平面α,β,若两条异面直线m,n满足m⊂α,n⊂β且m∥β,n∥α,则α∥β解析:选C对于A选项,令x=1,y=1e,则ln x+ln y=-1<0成立,故排除A.对于B选项,“φ=π2”是“函数y=sin(2x+φ)为偶函数”的充分不必要条件,正确,故排除B.对于C选项,根据幂函数y=xα,当α<0时,函数单调递减,故不存在x0∈(-∞,0),使3x0<4x0成立,故C错误.对于D选项,已知两个平面α,β,若两条异面直线m,n满足m⊂α,n ⊂β且m∥β,n∥α,可过n作一个平面与平面α相交于直线n′.由线面平行的性质定理可得n′∥n,再由线面平行的判定定理可得n′∥β,接下来由面面平行的判定定理可得α∥β,故排除D,选C.9.若命题p的否定是“∀x∈(0,+∞),x>x+1”,则命题p可写为________________________.解析:因为p是非p的否定,所以只需将全称量词变为特称量词,再对结论否定即可.答案:∃x0∈(0,+∞),x0≤x0+110.已知命题p:x2+4x+3≥0,q:x∈Z,且“p∧q”与“非q”同时为假命题,则x =________.解析:若p为真,则x≥-1或x≤-3,因为“非q”为假,则q为真,即x∈Z,又因为“p∧q”为假,所以p为假,故-3<x<-1,由题意,得x=-2.答案:-211.已知p:a<0,q:a2>a,则非p是非q的________条件(填:充分不必要、必要不充分、充要、既不充分也不必要).解析:由题意得非p:a≥0,非q:a2≤a,即0≤a≤1.因为{a|0≤a≤1}{a|a≥0},所以非p是非q的必要不充分条件.答案:必要不充分12.已知命题p:a2≥0(a∈R),命题q:函数f(x)=x2-x在区间[0,+∞)上单调递增,则下列命题:①p∨q;②p∧q;③(非p)∧(非q);④(非p)∨q.其中为假命题的序号为________.解析:显然命题p为真命题,非p为假命题.∵f(x)=x2-x-1 4,∴函数f(x)在区间1 2,+∴命题q为假命题,非q为真命题.∴p∨q为真命题,p∧q为假命题,(非p)∧(非q)为假命题,(非p)∨q为假命题.答案:②③④13.设t∈R,已知命题p:函数f(x)=x2-2tx+1有零点;命题q:∀x∈[1,+∞),1x -x≤4t2-1.(1)当t=1时,判断命题q的真假;(2)若p∨q为假命题,求t的取值范围.解:(1)当t=1=0,1x-x≤3在[1,+∞)上恒成立,故命题q为真命题.(2)若p∨q为假命题,则p,q都是假命题.当p为假命题时,Δ=(-2t)2-4<0,解得-1<t<1;当q≤4t2-1,即4t2-1≥0,解得t≤-12或t≥12,∴当q为假命题时,-12<t<12,∴t -1 2,。

高考数学(文)一轮课件【第3讲】简单的逻辑联结词、全称量词与存在量词


返回目录
第 3讲
双 向 固 基 础
简单的逻辑联结词、全称量词与存在量词
3.命题¬p,p∧q,p∨q 真假的判断 p 真 真 假 假 q 真 假 真 假 ¬p ____ 假 ____ 假 ____ 真 ____ 真 p∧q ____ 真 假 ____ ____ 假 ____ 假 p∨q 真 ____ 真 ____ ____ 真 ____ 假
第3讲
双 向 固 基 础
简单的逻辑联结词、全称量词与存在量词
[答案] (1)√
(2)×
(3)√
(4)√
[解析]命题 p 是真命题,命题 q 是假命题,所以 p 是假命题, q 是真命题, 根据复合命题的真假的概念知(2) 错,其余都对.
返回目录
第3讲
双 向 固 基 础
简单的逻辑联结词、全称量词与存在量词
2. “命题的否定”中的易错点 (1)[2013· 重庆卷改编] “对任意 x∈R,都有 x2≥0”的 否定是“对任意 x∈R,使得 x2<0” .( ) (2)命题“∀x∈R,x2-x+1>0”的否定是“∃x∈R,x2 -x+1>0” .( ) (3)“有些偶数能被 3 整除”的否定是“所有的偶数都 不能被 3 整除”.( ) (4) 已 知 命 题 p , q , 则 命 题 p∨q 的 否 定 是 (¬p)∧(¬q).( )
返回目录
第3讲
双 向 固 基 础
简单的逻辑联结词、全称量词与存在量词
4 . [ 教材改编 ] 命题“有的菱形是正方形”的否定是 _______________________________________________.
[答案] “所有的菱形不是正方形”
返回目录

2023年高考数学总复习第一章 集合与常用逻辑用语 第3节:简单的逻辑联结词 (教师版)

2023年高考数学总复习第一章集合与常用逻辑用语第3节全称量词与存在量词、逻辑联结词“且”“或”“非”考试要求 1.了解逻辑联结词、“且”、“或”、“非”的含义;2.理解全称量词与存在量词的意义;3.能正确地对含有一个量词的命题进行否定.1.简单的逻辑联结词(1)命题中的且、或、非叫作逻辑联结词.(2)命题p且q,p或q,非p的真假判断p q p且q p或q非p真真真真假真假假真假假真假真真假假假假真2.全称量词与存在量词(1)常见的全称量词有:“任意一个”“一切”“每一个”“任给”“所有的”等.(2)常见的存在量词有:“存在一个”“至少有一个”“有些”“有一个”“某个”“有的”等.3.全称命题和特称命题名称全称命题特称命题结构对M中的任意一个x,有p(x)成立存在M中的一个x0,使p(x0)成立简记任意x∈M,p(x)存在x0∈M,p(x0)否定存在x0∈M,非p(x0)任意x∈M,非p(x)1.含有逻辑联结词的命题真假判断口诀:p或q→见真即真,p且q→见假即假,p 与非p→真假相反.2.含有一个量词的命题的否定规律是“改量词,否结论”.3.“p或q”的否定是“(非p)且(非q)”,“p且q”的否定是“(非p)或(非q)”.4.逻辑联结词“或”“且”“非”对应集合运算中的“并”“交”“补”,可借助集合运算处理含逻辑联结词的命题.1.思考辨析(在括号内打“√”或“×”)(1)命题“5>6或5>2”是假命题.()(2)命题非(p且q)是假命题,则命题p,q中至少有一个是假命题.()(3)“长方形的对角线相等”是特称命题.()(4)存在x0∈M,p(x0)与任意x∈M,非p(x)的真假性相反.()答案(1)×(2)×(3)×(4)√解析(1)错误.命题p或q中,p,q有一真则真.(2)错误.p且q是真命题,则p,q都是真命题.(3)错误.命题“长方形的对角线相等”是全称命题.2.(2021·全国乙卷)已知命题p:存在x∈R,sin x<1;命题q:任意x∈R,e|x|≥1,则下列命题中为真命题的是()A.p且qB.(非p)且qC.p且(非q)D.非(p或q)答案A解析由正弦函数的图象及性质可知,存在x∈R,使得sin x<1,所以命题p为真命题.对任意的x∈R,均有e|x|≥e0=1成立,故命题q为真命题,所以命题p 且q为真命题,故选A.3.(2017·山东卷)已知命题p:任意x>0,ln(x+1)>0;命题q:若a>b,则a2>b2.下列命题为真命题的是()A.p且qB.p且(非q)C.(非p)且qD.(非p)且(非q)答案B解析由已知得p真,q假,故非q真,所以p且(非q)真,故选B.4.(易错题)命题p:“有些三角形是等腰三角形”,则非p是________.答案所有三角形都不是等腰三角形5.(易错题)命题“任意x∈R,ax2-ax+1>0”为真命题,则实数a的取值范围为________.答案[0,4)解析①当a=0时,1>0恒成立;②当a≠0a>0,Δ=a2-4a<0,∴0<a<4.综上0≤a<4.6.(2021·合肥调研)能说明命题“任意x∈R且x≠0,x+1x≥2”是假命题的x的值可以是________(写出一个即可).答案-1(任意负数)解析当x>0时,x+1x≥2,当且仅当x=1时取等号,当x<0时,x+1x≤-2,当且仅当x=-1时取等号,∴x的取值为负数即可,例如x=-1.考点一含有逻辑联结词的命题1.(2021·成都调研)已知命题p:函数y=2sin x+sin x,x∈(0,π)的最小值为22;命题q:若a·b=0,b·c=0,则a·c=0.下列命题为真命题的是()A.(非p)且qB.p或qC.p且(非q)D.(非p)且(非q)答案D解析命题p:函数y=2sin x+sin x,x∈(0,π),由基本不等式成立的条件可知,y>22sin x·sin x=22,等号取不到,所以命题p是假命题.命题q:取a=c=(1,0),b=(0,1),显然a·b=0,b·c=0,但a·c=1≠0,所以命题q是假命题.所以非p为真,非q为真.因此,只有(非p)且(非q)为真命题.2.在一次跳伞训练中,甲、乙两位学员各跳一次.设命题p是“甲降落在指定范围”,q是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为()A.(非p)或(非q)B.p且(非q)C.(非p)且(非q)D.p或q答案A解析命题p是“甲降落在指定范围”,则非p是“甲没降落在指定范围”,q 是“乙降落在指定范围”,则非q是“乙没降落在指定范围”,命题“至少有一位学员没有降落在指定范围”包括“甲降落在指定范围,乙没降落在指定范围”“甲没降落在指定范围,乙降落在指定范围”“甲没降落在指定范围,乙没降落在指定范围”.所以命题“至少有一位学员没有降落在指定范围”可表示为(非p)或(非q).3.(2022·洛阳质检)设a,b,c均为非零向量,已知命题p:a=b是a·c=b·c的必要不充分条件,命题q:x>1是|x|>1的充分不必要条件.则下列命题中为真命题的是()A.p且qB.p或qC.(非p)且(非q)D.p或(非q)答案B解析由a=b⇒a·c=b·c,但a·c=b·c⇒/a=b,故p为假命题.命题q:∵|x|>1,∴x>1或x<-1,∴由x>1⇒|x|>1,但|x|>1⇒/x>1,故q为真命题.故选B.4.(2020·全国Ⅱ卷)设有下列四个命题:p1:两两相交且不过同一点的三条直线必在同一平面内.p2:过空间中任意三点有且仅有一个平面.p3:若空间两条直线不相交,则这两条直线平行.p4:若直线l平面α,直线m⊥平面α,则m⊥l.则下述命题中所有真命题的序号是________.①p1且p4②p1且p2③(非p2)或p3④(非p3)或(非p4)答案①③④解析p1是真命题,两两相交不过同一点的三条直线必定有三个交点,且这三个交点不在同一条直线上,由平面的基本性质“经过不在同一直线上的三个点,有且只有一个平面”,可知p1为真命题;p2是假命题,因为空间三点在一条直线上时,有无数个平面过这三个点;p3是假命题,因为空间两条直线不相交时,它们可能平行,也可能异面;p4是真命题,因为一条直线垂直于一个平面,那么它垂直于平面内的所有直线.由以上结论知非p2,非p3,非p4依次为真命题、真命题、假命题,从而①③④中命题为真命题,②中命题为假命题.感悟提升 1.“p或q”,“p且q”,“非p”形式命题真假的判断关键是对逻辑联结词“或”“且”“非”含义的理解,其操作步骤是:(1)明确其构成形式;(2)判断其中命题p,q的真假;(3)确定“p或q”“p且q”“非p”形式命题的真假.2.p且q形式是“一假必假,全真才真”,p或q形式是“一真必真,全假才假”,非p与p的真假性相反.考点二全称量词与存在量词例1(1)(2021·江南十校联考)已知f(x)=sin x-tan x,命题p:存在x0∈0,π2f(x0)<0,则()A.p是假命题,非p:任意x 0π2,f(x)≥0B.p是假命题,非p:存在x0∈0,π2f(x0)≥0C.p是真命题,非p:任意x 0,π2,f(x)≥0D.p是真命题,非p:存在x0∈0,π2f(x0)≥0(2)已知定义域为R的函数f(x)不是偶函数,则下列命题一定为真命题的是()A.任意x∈R,f(-x)≠f(x)B.任意x∈R,f(-x)≠-f(x)C.存在x0∈R,f(-x0)≠f(x0)D.存在x0∈R,f(-x0)≠-f(x0)答案(1)C(2)C解析(1)当x π4,π2sin x<1,tan x>1.此时sin x-tan x<0,故命题p为真命题.由于命题p为特称命题,所以命题p 的否定为全称命题,则非p 为:任意x f (x )≥0.(2)∵定义域为R 的函数f (x )不是偶函数,∴任意x ∈R ,f (-x )=f (x )为假命题,∴存在x 0∈R ,f (-x 0)≠f (x 0)为真命题.感悟提升1.全称命题与特称命题的否定与一般命题的否定有一定的区别,否定全称命题和特称命题时,一是要改写量词,全称量词改写为存在量词,存在量词改写为全称量词;二是要否定结论,而一般命题的否定只需直接否定结论.2.判定全称命题“任意x ∈M ,p (x )”是真命题,需要对集合M 中的每一个元素x ,证明p (x )成立;要判断特称命题是真命题,只要在限定集合内找到一个x =x 0,使p (x 0)成立即可.训练1(1)设命题p :所有正方形都是平行四边形,则非p 为()A.所有正方形都不是平行四边形B.有的平行四边形不是正方形C.有的正方形不是平行四边形D.不是正方形的四边形不是平行四边形(2)下列四个命题:p 1:存在x 0∈(0,+∞)00;p 2:存在x 0∈(0,π),sin x 0<cos x 0;p 3:任意x ∈R ,e x >x +1;p 4:任意x <log 13x .其中真命题是()A.p 1,p 3B.p 1,p 4C.p 2,p 3D.p 2,p 4答案(1)C(2)D解析(1)“所有”改为“存在”(或“有的”),“都是”改为“不都是”(或“不是”),即非p 为有的正方形不是平行四边形.(2)对于p 1,当x 0∈(0,+∞)00成立,故p 1是假命题;对于p 2,当x0=π6时,sin x0<cos x0,故p2为真命题;对于p3,当x=0时,e x=x+1,故p3为假命题;对于p4,结合指数函数y=12与对数函数y=log13x0,13上的图象(图略)可以判断p4为真命题.考点三由命题的真假求参数例2(1)已知命题p:任意x∈[1,2],x2-a≥0;q:存在x0∈R,x20+2ax0+2-a =0,若(非p)且q是真命题,则实数a的取值范围是________________.(2)(经典母题)已知f(x)=ln(x2+1),g(x)12-m,若对任意x1∈[0,3],存在x2∈[1,2],使得f(x1)≥g(x2),则实数m的取值范围是________________.答案(1)(1,+∞)(2)14,+∞解析(1)∵(非p)且q是真命题,∴p假q真.p:任意x∈[1,2],x2-a≥0为假命题,∴存在x∈[1,2],x2-a<0为真命题,即a>x2成立,∴a>1.q:存在x0∈R,x20+2ax0+2-a=0为真命题,所以Δ=(2a)2-4(2-a)≥0,∴a≥1或a≤-2.综上,a>1.(2)当x∈[0,3]时,f(x)min=f(0)=0,当x∈[1,2]时,g(x)min=g(2)=14-m,由f(x)min≥g(x)min,得0≥14-m,所以m≥14.迁移本例(2)中,若将“存在x2∈[1,2]”改为“任意x2∈[1,2]”,其他条件不变,则实数m的取值范围是________________.答案12,+∞解析当x∈[1,2]时,g(x)max=g(1)=12-m,对任意x1∈[0,3],任意x2∈[1,2]使得f(x1)≥g(x2)等价于f(x)min≥g(x)max,得0≥1 2-m,∴m≥1 2 .感悟提升 1.由含逻辑联结词的命题真假求参数的方法步骤:(1)求出每个命题是真命题时参数的取值范围;(2)根据每个命题的真假情况,求出参数的取值范围.2.全称命题可转化为恒成立问题.3.含量词的命题中参数的取值范围,可根据命题的含义,利用函数的最值解决.训练2(2022·许昌质检)已知p:关于x的方程e x-a=0在(-∞,0)上有解;q:函数y=lg(ax2-x+a)的定义域为R,若p或q为真命题,p且q为假命题,则实数a的取值范围是________.答案,12∪[1,+∞)解析p真:a=e x在(-∞,0)上有解,∴0<a<1.q真:ax2-x+a>0在R上恒成立,当a=0时,显然不成立;当a≠0>0,=(-1)2-4a2<0,∴a>12.又p或q为真,p且q为假,∴p真q假或p假q真.当p真qa<1,≤12,∴0<a≤12,当p假q≤0或a≥1,>12,∴a≥1.∴0<a≤12或a≥1.1.(2021·成都诊断)已知命题p:对任意的x∈R,2x-x2≥1,则非p为()A.对任意的x∉R,2x-x2<1B.存在x∉R,2x-x2<1C.对任意的x∈R,2x-x2<1D.存在x∈R,2x-x2<1答案D解析p:任意x∈R,2x-x2≥1,∴非p:存在x∈R,2x-x2<1.2.“p且q是真命题”是“p或q是真命题”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案A3.下列命题的否定是真命题的是()A.有些实数的绝对值是正数B.所有平行四边形都不是菱形C.任意两个等边三角形都是相似的D.3是方程x2-9=0的一个根答案B4.命题“任意x∈R,f(x)·g(x)≠0”的否定是()A.任意x∈R,f(x)=0且g(x)=0B.任意x∈R,f(x)=0或g(x)=0C.存在x0∈R,f(x0)=0且g(x0)=0D.存在x0∈R,f(x0)=0或g(x0)=0答案D解析根据全称命题与特称命题的互为否定的关系可得:命题“任意x∈R,f(x)g(x)≠0”的否定是“存在x0∈R,f(x0)=0或g(x0)=0”.故选D.5.命题p:甲的数学成绩不低于100分,命题q:乙的数学成绩低于100分,则p 或(非q)表示()A.甲、乙两人的数学成绩都低于100分B.甲、乙两人至少有一人的数学成绩低于100分C.甲、乙两人的数学成绩都不低于100分D.甲、乙两人至少有一人的数学成绩不低于100分答案D解析由于命题q:乙的数学成绩低于100分,因此非q:乙的数学成绩不低于100分,所以p或(非q)表示甲、乙两人至少有一人的数学成绩不低于100分. 6.已知命题“存在x∈R,4x2+(a-2)x+14≤0”是假命题,则实数a的取值范围为()A.(-∞,0)B.[0,4]C.[4,+∞)D.(0,4)答案D解析因为命题“存在x∈R,4x2+(a-2)x+14≤0”是假命题,所以其否定为“任意x∈R,4x2+(a-2)x+14>0”是真命题.则Δ=(a-2)2-4×4×14=a2-4a<0,解得0<a<4.7.(2021·衡水检测)命题p:若向量a·b<0,则a与b的夹角为钝角;命题q:若cosα·cosβ=1,则sin(α+β)=0.下列命题为真命题的是()A.pB.非qC.p且qD.p或q答案D解析当a,b方向相反时,a·b<0,但夹角是180°,不是钝角,命题p是假命题;若cosαcosβ=1,则cosα=cosβ=1或cosα=cosβ=-1,所以sinα=sinβ=0,从而sin(α+β)=0,命题q是真命题,所以p或q是真命题.8.已知命题p:“任意x∈[0,1],a≥e x”;命题q:“存在x0∈R,使得x20+4x0+a=0”.若命题“p且q”是真命题,则实数a的取值范围为()A.[e,4]B.(-∞,e]C.[e,4)D.[4,+∞)答案A解析若命题“p且q”是真命题,那么命题p,q都是真命题.由任意x∈[0,1],a≥e x,得a≥e;由存在x0∈R,使x20+4x0+a=0,得Δ=16-4a≥0,则a≤4,因此e≤a≤4.9.命题:存在x0∈R,1<f(x0)<2的否定是________________________.答案任意x∈R,f(x)≤1或f(x)≥210.若“任意x∈0,π4,tan x≤m”是真命题,则实数m的最小值为________.答案1解析∵函数y=tan x在0,π4上是增函数,∴y max=tan π4=1,依题意,m≥y max,即m≥1.∴m的最小值为1.11.下列命题为真命题的是________(填序号).①存在x0∈R,x20+x0+1≤0;②任意a∈R,f(x)=log(a2+2)x在定义域内是增函数;③若f(x)=2x-2-x,则任意x∈R,f(-x)=-f(x);④若f(x)=x+1x,则∃x0∈(0,+∞),f(x0)=1.答案②③解析x20+x0+10+34>0,故①错误;∵a2+2≥2>1,∴f(x)=log(a2+2)x在(0,+∞)上是增函数,故②正确;f(x)为奇函数,所以任意x∈R,都有f(-x)=-f(x),故③正确;x0∈(0,+∞)时,f(x0)=x0+1x0≥2,当且仅当x0=1时取“=”,故④错误.综上有②③正确.12.(2022·周口调研)已知p:函数f(x)=x2-(2a+4)x+6在(1,+∞)上是增函数,q:任意x∈R,x2+ax+2a-3>0,若p且(非q)是真命题,则实数a的取值范围为________.答案(-∞,-1]解析依题意,p为真命题,非q为真命题.若p为真命题,则2a+42≤1,解得a≤-1.①若非q为真命题,则存在x0∈R,x20+ax0+2a-3≤0成立.∴a2-4(2a-3)≥0,解之得a≥6或a≤2.②结合①②,知a≤-1,即实数a的取值范围是(-∞,-1].13.已知命题p:任意x>0,e x>x+1,命题q:存在x∈(0,+∞),ln x≥x,则下列命题为真命题的是()A.p且qB.(非p)且qC.p且(非q)D.(非p)且(非q)答案C解析令f(x)=e x-x-1,则f′(x)=e x-1,当x>0时,f′(x)>0,所以f(x)在(0,+∞)上单调递增,∴f(x)>f(0)=0,即e x>x+1,则命题p真;令g(x)=ln x-x,x>0,则g′(x)=1x-1=1-xx,当x∈(0,1)时,g′(x)>0;当x∈(1,+∞)时,g′(x)<0,即当x=1时,g(x)取得极大值,也是最大值,所以g(x)max=g(1)=-1<0,∴g(x)<0在(0,+∞)上恒成立,则命题q假,因此非q为真,故p且(非q)为真.14.(2019·全国Ⅲ卷)+y≥6,x-y≥0表示的平面区域为D.命题p:存在(x,y)∈D,2x+y≥9;命题q:任意(x,y)∈D,2x+y≤12.下面给出了四个命题①p或q;②(非p)或q;③p且(非q);④(非p)且(非q).这四个命题中,所有真命题的编号是()A.①③B.①②C.②③D.③④答案A 解析由不等式组画出平面区域D ,如图阴影部分所示,在图中画出直线2x +y =9,可知p 为真命题,非p 为假命题,作出直线2x +y =12,2x +y ≤12表示直线及其下方区域,易知命题q 为假命题;命题非q 为真命题;∴p 或q 为真,(非p )或q 为假,p 且(非q )为真,(非p )且(非q )为假.故真命题的编号为①③.15.已知函数f (x )的定义域为(a ,b ),若“存在x ∈(a ,b ),f (x )+f (-x )≠0”是假命题,则f (a +b )=________.答案0解析“存在x ∈(a ,b ),f (x )+f (-x )≠0”的否定是任意x ∈(a ,b ),f (x )+f (-x )=0,依题意:命题任意x ∈(a ,b ),f (x )+f (-x )=0为真命题,故函数y =f (x ),x ∈(a ,b )为奇函数,∴a +b =0,∴f (a +b )=f (0)=0.16.若f (x )=x 2-2x ,g (x )=ax +2(a >0),任意x 1∈[-1,2],存在x 0∈[-1,2],使g (x 1)=f (x 0),则实数a 的取值范围是________.答案,12解析设f (x )=x 2-2x ,g (x )=ax +2(a >0)在[-1,2]上的值域分别为A ,B ,则A =[-1,3],B =[-a +2,2a +2],a +2≥-1,a +2≤3,∴a ≤12,又∵a >0,∴0<a ≤12.。

第三节(逻辑连接词)

第三节简单的逻辑联结词、全称量词与存在量词[知识能否忆起]一、简单的逻辑联结词1.用联结词“且”联结命题p和命题q,记作p∧q,读作“p且q”.2.用联结词“或”联结命题p和命题q,记作p∨q,读作“p或q”.3.对一个命题p全盘否定,就得到一个新命题,记作綈p,读作“非p”或“p的否定”.4.命题p∧q,p∨q,綈p的真假判断:p∧q中p、q有一假为假,p∨q有一真为真,p与非p必定是一真一假.二、全称量词与存在量词1.全称量词与全称命题(1)短语“所有的”“任意一个”在逻辑中通常叫做全称量词,并用符号“∀”表示.(2)含有全称量词的命题,叫做全称命题.(3)全称命题“对M中任意一个x,有p(x)成立”可用符号简记为∀x∈M,p(x),读作“对任意x属于M,有p(x)成立”.2.存在量词与特称命题(1)短语“存在一个”“至少有一个”在逻辑中通常叫做存在量词,并用符号“∃”表示.(2)含有存在量词的命题,叫做特称命题.(3)特称命题“存在M中的一个x0,使p(x0)成立”可用符号简记为∃x0∈M,P(x0),读作“存在M中的元素x0,使p(x0)成立”.三、含有一个量词的命题的否定1.(2011·北京高考)若p是真命题,q是假命题,则() A.p∧q是真命题B.p∨q是假命题C.綈p是真命题D.綈q是真命题答案:D2.(教材习题改编)下列命题中的假命题是()A.∃x0∈R,x0+1x0=2 B.∃x0∈R,sin x0=-1C.∀x∈R,x2>0 D.∀x∈R,2x>0答案:C3.(2012·湖南高考)命题“∃x0∈∁R Q,x30∈Q”的否定是()A.∃x0∉∁R Q,x30∈Q B.∃x0∈∁R Q,x30∉QC.∀x∉∁R Q,x3∈Q D.∀x∈∁R Q,x3∉Q解析:选D其否定为∀x∈∁R Q,x3∉Q.4.(教材习题改编)命题p:有的三角形是等边三角形.命题綈p:__________________.答案:所有的三角形都不是等边三角形5.命题“∃x0∈R,2x20-3ax0+9<0”为假命题,则实数a的取值范围为________.解析:∃x0∈R,2x20-3ax0+9<0为假命题,则∀x∈R,2x2-3ax+9≥0恒成立,有Δ=9a2-72≤0,解得-22≤a≤2 2.答案:[-22,2 2 ]1.逻辑联结词与集合的关系“或、且、非”三个逻辑联结词,对应着集合运算中的“并、交、补”,因此,常常借助集合的“并、交、补”的意义来解答由“或、且、非”三个联结词构成的命题问题.2.正确区别命题的否定与否命题“否命题”是对原命题“若p,则q”的条件和结论分别加以否定而得到的命题,它既否定其条件,又否定其结论;“命题的否定”即“非p”,只是否定命题p的结论.命题的否定与原命题的真假总是对立的,即两者中有且只有一个为真,而原命题与否命题的真假无必然联系.典题导入[例1](2012·齐齐哈尔质检)已知命题p:∃x0∈R,使tan x0=1,命题q:x2-3x+2<0的解集是{x|1<x<2},给出下列结论:①命题“p∧q”是真命题;②命题“p∧(綈q)”是假命题;③命题“(綈p)∨q”是真命题;④命题“(綈p)∨(綈q)”是假命题.其中正确的是()A.②③B.①②④C.①③④D.①②③④[自主解答]命题p:∃x0∈R,使tan x0=1是真命题,命题q:x2-3x+2<0的解集是{x|1<x<2}也是真命题,故①命题“p∧q”是真命题;②命题“p∧(綈q)”是假命题;③命题“(綈p)∨q”是真命题;④命题“(綈p)∨(綈q)”是假命题.[答案] D由题悟法1.“p∧q”“p∨q”“綈p”形式命题的真假判断步骤(1)准确判断简单命题p、q的真假;(2)判断“p∧q”“p∨q”“綈p”命题的真假.2.含有逻辑联结词的命题的真假判断规律(1)p∨q:p、q中有一个为真,则p∨q为真,即一真全真;(2)p∧q:p、q中有一个为假,则p∧q为假,即一假即假;(3)綈p:与p的真假相反,即一真一假,真假相反.以题试法1.(1)如果命题“非p或非q”是假命题,给出下列四个结论:①命题“p且q”是真命题;②命题“p且q”是假命题;③命题“p或q”是真命题;④命题“p或q”是假命题.其中正确的结论是()A.①③B.②④C.②③D.①④(2)(2012·江西盟校联考)已知命题p:“∀x∈[0,1],a≥e x”,命题q:“∃x∈R,x2+4x+a=0”,若命题“p∧q”是真命题,则实数a的取值范围是() A.(4,+∞) B.[1,4]C.[e,4] D.(-∞,1]解析:(1)选A“非p或非q”是假命题⇒“非p”与“非q”均为假命题⇒p与q 均为真命题.(2)选C“p∧q”是真命题,则p与q都是真命题.p真则∀x∈[0,1],a≥e x,需a≥e;q真则x2+4x+a=0有解,需Δ=16-4a≥0,所以a≤4.p∧q为真,则e≤a≤4.典题导入[例2]下列命题中的假命题是()A.∀a,b∈R,a n=an+b,有{a n}是等差数列B.∃x0∈(-∞,0),2x0<3x0C.∀x∈R,3x≠0D.∃x0∈R,lg x0=0[自主解答]对于A,a n+1-a n=a(n+1)+b-(an+b)=a常数.A正确;对于B,∀x∈(-∞,0),2x>3x,B不正确;对于C,易知3x≠0,因此C正确;对于D,注意到lg 1=0,因此D正确.[答案] B由题悟法1.全称命题真假的判断方法(1)要判断一个全称命题是真命题,必须对限定的集合M 中的每一个元素x ,证明p (x )成立;(2)要判断一个全称命题是假命题,只要能举出集合M 中的一个特殊值x =x 0,使p (x 0)不成立即可.2.特称命题真假的判断方法要判断一个特称命题是真命题,只要在限定的集合M 中,找到一个x =x 0,使p (x 0)成立即可,否则这一特称命题就是假命题.以题试法2.(2012·湖南十二校联考)下列命题中的真命题是( ) A .∃x 0∈R ,使得sin x 0cos x 0=35B .∃x 0∈(-∞,0),2x 0>1C .∀x ∈R ,x 2≥x -1D .∀x ∈(0,π),sin x >cos x解析:选C 由sin x cos x =35,得sin 2x =65>1,故A 错误;结合指数函数和三角函数的图象,可知B ,D 错误;因为x 2-x +1=⎝⎛⎭⎫x -122+34>0恒成立,所以C 正确.典题导入[例3] (2013·武汉适应性训练)命题“所有不能被2整除的整数都是奇数”的否定是( )A .所有能被2整除的整数都是奇数B .所有不能被2整除的整数都不是奇数C .存在一个能被2整除的整数是奇数D .存在一个不能被2整除的整数不是奇数[自主解答] 命题“所有不能被2整除的整数都是奇数”的否定是“存在一个不能被2整除的整数不是奇数”,选D.[答案] D若命题改为“存在一个能被2整除的整数是奇数”,其否定为________. 答案:所有能被2整除的整数都不是奇数由题悟法1.弄清命题是全称命题还是特称命题是写出命题否定的前提.2.注意命题所含的量词,没有量词的要结合命题的含义加上量词,再进行否定. 3.要判断“綈p ”命题的真假,可以直接判断,也可以判断“p ”的真假,p 与綈p 的真假相反.4.常见词语的否定形式有:以题试法3.(2012·辽宁高考)已知命题p :∀x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≥0,则綈p 是( ) A .∃x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≤0 B .∀x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≤0 C .∃x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<0 D .∀x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<0解析:选C 命题p 的否定为“∃x 1,x 2∈R ,(f (x 2)-f ( x 1))(x 2-x 1)<0”.[典例](2012·湖北高考)命题“存在一个无理数,它的平方是有理数”的否定是()A.任意一个有理数,它的平方是有理数B.任意一个无理数,它的平方不是有理数C.存在一个有理数,它的平方是有理数D.存在一个无理数,它的平方不是有理数[尝试解题]特称命题的否定为全称命题,即将“存在”改为“任意”,并将其结论进行否定.原命题的否定是“任意一个无理数,它的平方不是有理数”.[答案] B——————[易错提醒]——————————————————————————1.因只否定量词不否定结论,而误选A.2.对含有一个量词的命题进行否定时,要明确否定的实质,不应只简单地对量词进行否定,应遵循否定的要求,同时熟记一些常用量词的否定形式及其规律.——————————————————————————————————————针对训练1.命题“对任何x∈R,|x-2|+|x-4|>3”的否定是____________.解析:全称命题的否定为特称命题,所以该命题的否定为:∃x0∈R,|x0-2|+|x0-4|≤3.答案:∃x0∈R,|x0-2|+|x0-4|≤32.命题“能被5整除的数,末位是0”的否定是________.解析:省略了全称量词“任何一个”,否定为:有些可以被5整除的数,末位不是0.答案:有些可以被5整除的数,末位不是01.将a 2+b 2+2ab =(a +b )2改写成全称命题是( ) A .∃a ,b ∈R ,a 2+b 2+2ab =(a +b )2 B .∃a <0,b >0,a 2+b 2+2ab =(a +b )2 C .∀a >0,b >0,a 2+b 2+2ab =(a +b )2 D .∀a ,b ∈R ,a 2+b 2+2ab =(a +b )2解析:选D 全称命题含有量词“∀”,故排除A 、B ,又等式a 2+b 2+2ab =(a +b )2对于全体实数都成立,故选D.2.(2012·山东高考)设命题p :函数y =sin 2x 的最小正周期为π2;命题q :函数y =cosx 的图象关于直线x =π2对称.则下列判断正确的是( )A .p 为真B .q 为真C .p ∧q 为假D .p ∨q 为真解析:选C 命题p ,q 均为假命题,故p ∧q 为假命题.3.(2013·广州模拟)已知命题p :所有有理数都是实数,命题q :正数的对数都是负数,则下列命题中为真命题的是( )A .(綈p )∨qB .p ∧qC .(綈p )∧(綈q )D .(綈p )∨(綈q )解析:选D 不难判断命题p 为真命题,命题q 为假命题,所以綈p 为假命题,綈q 为真命题,所以(綈p )∨(綈q )为真命题.4.下列命题中,真命题是( )A .∃m ∈R ,使函数f (x )=x 2+mx (x ∈R )是偶函数B .∃m ∈R ,使函数f (x )=x 2+mx (x ∈R )是奇函数C .∀m ∈R ,函数f (x )=x 2+mx (x ∈R )`都是偶函数D .∀m ∈R ,函数f (x )=x 2+mx (x ∈R )都是奇函数解析:选A 由于当m =0时,函数f (x )=x 2+mx =x 2为偶函数,故“∃m ∈R ,使函数f (x )=x 2+mx (x ∈R )为偶函数”是真命题.5.(2012·福建高考)下列命题中,真命题是( )A .∃x 0∈R ,e x 0≤0B .∀x ∈R,2x >x 2C .a +b =0的充要条件是ab =-1D .a >1,b >1是ab >1的充分条件解析:选D 因为∀x ∈R ,e x >0,故排除A ;取x =2,则22=22,故排除B ;a +b =0,取a =b =0,则不能推出ab=-1,故排除C.6.(2012·石家庄质检)已知命题p 1:∃x 0∈R ,x 20+x 0+1<0;p 2:∀x ∈[1,2],x 2-1≥0.以下命题为真命题的是( )A .(綈p 1)∧(綈p 2)B .p 1∨(綈p 2)C .(綈p 1)∧p 2D .p 1∧p 2解析:选C ∵方程x 2+x +1=0的判别式Δ=12-4=-3<0,∴x 2+x +1<0无解,故命题p 1为假命题,綈p 1为真命题;由x 2-1≥0,得x ≥1或x ≤-1,∴∀x ∈[1,2],x 2-1≥0,故命题p 2为真命题,綈p 2为假命题.∵綈p 1为真命题,p 2为真命题,∴(綈p 1)∧p 2为真命题.7.(2012·“江南十校”联考)下列说法中错误的是( )A .对于命题p :∃x 0∈R ,使得x 0+1x 0>2,则綈p :∀x ∈R ,均有x +1x ≤2B .“x =1”是“x 2-3x +2=0”的充分不必要条件C .命题“若x 2-3x +2=0,则x =1”的逆否命题为:“若x ≠1,则x 2-3x +2≠0”D .若p ∧q 为假命题,则p ,q 均为假命题解析:选D 显然选项A 正确;对于B ,由x =1可得x 2-3x +2=0;反过来,由x 2-3x +2=0不能得知x =1,此时x 的值可能是2,因此“x =1”是“x 2-3x +2=0”的充分不必要条件,选项B 正确;对于C ,原命题的逆否命题是:“若x ≠1,则x 2-3x +2≠0”,因此选项C 正确;对于D ,若p ∧q 为假命题,则p ,q 中至少有一个为假命题,故选项D 错误.8.(2013·石家庄模拟)已知命题p :∀x ∈[1,2],x 2-a ≥0,命题q :∃x 0∈R ,x 20+2ax 0+2-a =0,若“p 且q ”为真命题,则实数a 的取值范围是( )A .a =1或a ≤-2B .a ≤-2或1≤a ≤2C .a ≥1D .-2≤a ≤1解析:选A 若命题p :∀x ∈[1,2],x 2-a ≥0真,则a ≤1.若命题q :∃x 0∈R ,x 20+2ax 0+2-a =0真,则Δ=4a 2-4(2-a )≥0,a ≥1或a ≤-2,又p 且q 为真命题所以a =1或a ≤-2.9.命题“存在x 0∈R ,使得x 20+2x 0+5=0”的否定是________. 答案:对任何x ∈R ,都有x 2+2x +5≠010.已知命题p :“∀x ∈N *,x >1x ”,命题p 的否定为命题q ,则q 是“________”;q 的真假为________(填“真”或“假”).解析:q :∃x 0∈N *,x 0≤1x 0,当x 0=1时,x 0=1x 0成立,故q 为真.答案:∃x 0∈N *,x 0≤1x 0真11.若命题“存在实数x 0,使x 20+ax 0+1<0”的否定是假命题,则实数a 的取值范围为________.解析:由于命题的否定是假命题,所以原命题为真命题,结合图象知Δ=a 2-4>0,解得a >2或a <-2.答案:(-∞,-2)∪(2,+∞)12.若∃θ∈R ,使sin θ≥1成立,则cos ⎝⎛⎭⎫θ-π6的值为________. 解析:由题意得sin θ-1≥0.又-1≤sin θ≤1,∴sin θ=1. ∴θ=2k π+π2(k ∈Z ).故cos ⎝⎛⎭⎫θ-π6=12. 答案:1213.已知命题p :∃a 0∈R ,曲线x 2+y 2a 0=1为双曲线;命题q :x -1x -2≤0的解集是{x |1<x <2}.给出下列结论:①命题“p ∧q ”是真命题;②命题“p ∧(綈q )”是真命题;③命题“(綈p )∨q ”是真命题;④命题“(綈p )∨(綈q )”是真命题.其中正确的是________.解析:因为命题p 是真命题,命题q 是假命题,所以命题“p ∧q ”是假命题,命题“p ∧(綈q )”是真命题,命题“(綈p )∨q ”是假命题,命题“(綈p )∨(綈q )”是真命题.答案:②④14.下列结论:①若命题p :∃x 0∈R ,tan x 0=2;命题q :∀x ∈R ,x 2-x +12>0.则命题“p ∧(綈q )”是假命题;②已知直线l 1:ax +3y -1=0,l 2:x +by +1=0,则l 1⊥l 2的充要条件是a b=-3; ③“设a 、b ∈R ,若ab ≥2,则a 2+b 2>4”的否命题为:“设a 、b ∈R ,若ab <2,则a 2+b 2≤4”.其中正确结论的序号为________.(把你认为正确结论的序号都填上)解析:在①中,命题p 是真命题,命题q 也是真命题,故“p ∧(綈q )”是假命题是正确的.在②中l 1⊥l 2⇔a +3b =0,所以②不正确.在③中“设a 、b ∈R ,若ab ≥2,则a 2+b 2>4”的否命题为:“设a 、b ∈R ,若ab <2,则a 2+b 2≤4”正确.答案:①③1.下列说法错误的是( )A .如果命题“綈p ”与命题“p 或q ”都是真命题,那么命题q 一定是真命题B .命题“若a =0,则ab =0”的否命题是:若“a ≠0,则ab ≠0”C .若命题p :∃x 0∈R ,ln(x 20+1)<0,则綈p :∀x ∈R ,ln(x 2+1)≥0D .“sin θ=12”是“θ=30°”的充分不必要条件 解析:选D sin θ=12是θ=30°的必要不充分条件,故选D. 2.(2012·“江南十校”联考)命题p :若a ·b >0,则a 与b 的夹角为锐角;命题q :若函数f (x )在(-∞,0]及(0,+∞)上都是减函数,则f (x )在(-∞,+∞)上是减函数.下列说法中正确的是( )A .“p 或q ”是真命题B .“p 或q ”是假命题C .綈p 为假命题D .綈q 为假命题解析:选B ∵当a ·b >0时,a 与b 的夹角为锐角或零度角,∴命题p 是假命题;命题q 是假命题,例如f (x )=⎩⎪⎨⎪⎧-x +1,x ≤0,-x +2,x >0,综上可知,“p 或q ”是假命题. 3.已知命题p :“∃x 0∈R,4x 0-2x 0+1+m =0”,若命题綈p 是假命题,则实数m 的取值范围是________.解析:若綈p 是假命题,则p 是真命题,即关于x 的方程4x -2·2x +m =0有实数解,由于m =-(4x -2·2x )=-(2x -1)2+1≤1,∴m ≤1.答案:(-∞,1]4.下列四个命题:①∃x 0∈R ,使sin x 0+cos x 0=2;②对∀x ∈R ,sin x +1sin x ≥2;③对∀x ∈⎝⎛⎭⎫0,π2,tan x +1tan x≥2;④∃x 0∈R ,使sin x 0+cos x 0= 2. 其中正确命题的序号为________.解析:∵sin x +cos x =2sin ⎝⎛⎭⎫x +π4∈[-2, 2 ]; 故①∃x 0∈R ,使sin x 0+cos x 0=2错误;④∃x 0∈R ,使sin x 0+cos x 0=2正确;∵sin x +1sin x ≥2或sin x +1sin x≤-2, 故②对∀x ∈R ,sin x +1sin x≥2错误; ③对∀x ∈⎝⎛⎭⎫0,π2,tan x >0,1tan x >0,由基本不等式可得tan x +1tan x≥2正确. 答案:③④5.设命题p :实数x 满足x 2-4ax +3a 2<0,其中a >0,命题q :实数x 满足⎩⎪⎨⎪⎧x 2-x -6≤0,x 2+2x -8>0. (1)若a =1,且p ∧q 为真,求实数x 的取值范围;(2)綈p 是綈q 的充分不必要条件,求实数a 的取值范围.解:(1)由x 2-4ax +3a 2<0,得(x -3a )(x -a )<0.又a >0,所以a <x <3a ,当a =1时,1<x <3,即p 为真命题时,1<x <3.由⎩⎪⎨⎪⎧ x 2-x -6≤0,x 2+2x -8>0,解得⎩⎪⎨⎪⎧-2≤x ≤3,x <-4或x >2,即2<x ≤3. 所以q 为真时,2<x ≤3.若p ∧q 为真,则⎩⎪⎨⎪⎧1<x <3,2<x ≤3⇔2<x <3, 所以实数x 的取值范围是(2,3).(2)设A ={x |x ≤a ,或x ≥3a },B ={x |x ≤2,或x >3},因为綈p 是綈q 的充分不必要条件,所以A B .所以0<a ≤2且3a >3,即1<a ≤2.所以实数a 的取值范围是(1,2].6.已知命题p :方程2x 2+ax -a 2=0在[-1,1]上有解;命题q :只有一个实数x 0满足不等式x 20+2ax 0+2a ≤0,若命题“p ∨q ”是假命题,求a 的取值范围.解:由2x 2+ax -a 2=0,得(2x -a )(x +a )=0,∴x =a 2或x =-a , ∴当命题p 为真命题时,⎪⎪⎪⎪a 2≤1或|-a |≤1, ∴|a |≤2.又“只有一个实数x 0满足不等式x 20+2ax 0+2a ≤0”,即抛物线y =x 2+2ax +2a 与x 轴只有一个交点,∴Δ=4a 2-8a =0,∴a =0或a =2.∴当命题q 为真命题时,a =0或a =2.∴命题“p ∨q ”为真命题时,|a |≤2.∵命题“p ∨q ”为假命题,∴a >2或a <-2.即a 的取值范围为{ a |}a >2,或a <-2.1.(2012·济宁模拟)有下列四个命题:p 1:若a ·b =0,则一定有a ⊥b ;p 2:∃x ,y ∈R ,sin(x -y )=sin x -sin y ;p 3:∀a ∈(0,1)∪(1,+∞),函数f (x )=a 1-2x +1都恒过定点⎝⎛⎭⎫12,2;p 4:方程x 2+y 2+Dx +Ey +F =0表示圆的充要条件是D 2+E 2-4F ≥0.其中假命题的是( )A .p 1,p 4B .p 2,p 3C .p 1,p 3D .p 2,p 4解析:选A 对于p 1:∵a ·b =0⇔a =0或b =0或a ⊥b ,当a =0,则a 方向任意,a ,b 不一定垂直,故p 1假,否定B 、D ,又p 3显然为真,否定C.2.若命题p :关于x 的不等式ax +b >0的解集是⎩⎨⎧⎭⎬⎫xx >-b a ,命题q :关于x 的不等式(x -a )(x -b )<0的解集是{x |a <x <b },则在命题“p ∧q ”“p ∨q ”“綈p ”“綈q ”中,是真命题的有________.解析:依题意可知命题p 和q 都是假命题,所以“p ∧q ”为假、“p ∨q ”为假、“綈p ”为真、“綈q ”为真.答案:綈p ,綈q3.已知p :方程x 2+mx +1=0有两个不等的负根;q :方程4x 2+4(m -2)x +1=0无实根.若p 或q 为真,p 且q 为假,求m 的取值范围.解:若方程x 2+mx +1=0有两个不等的负根x 1,x 2,则⎩⎪⎨⎪⎧ Δ>0,x 1+x 2<0,x 1x 2>0,即⎩⎪⎨⎪⎧Δ=m 2-4>0,m >0. 解得m >2,即p :m >2.若方程4x 2+4(m -2)x +1=0无实根,则Δ=16(m -2)2-16=16(m 2-4m +3)<0.解得1<m <3,即q :1<m <3.∵p 或q 为真,p 且q 为假,∴p 、q 两命题应一真一假,即p 为真、q 为假或p 为假、q 为真. ∴⎩⎪⎨⎪⎧ m >2,m ≤1或m ≥3或⎩⎪⎨⎪⎧m ≤2,1<m <3. 解得m ≥3或1<m ≤2.∴m 的取值范围是(1,2]∪[3,+∞).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


、 或
、 非
叫做逻辑.
(2)命题 p∧q、p∨q、綈 p 的真假判定 p 真 真 假 假 q 真 假 真 假 p∧q p∨q 綈p
真 假 假 假
真 真 真 假
假 假 真 真
新课标高考总复习·数学
创新方案系列丛书
2.量词及含有一个量词的命题的否定 (1)全称量词和存在量词 ①全称量词有:所有的,任意一个,任给一个,用符号“ ∀ ” 表示;存在量词有:存在一个,至少有一个,有些,用符号“ ∃ ” 表示. ②含有全称量词的命题, 叫做全称命题. “对 M 中任意一个 x, 有 p(x)成立”用符号简记为:
新课标高考总复习·数学
创新方案系列丛书
(3)命题“全等三角形的面积一定都相等”的否定是( A.全等三角形的面积不一定都相等 B.不全等三角形的面积不一定都相等 C.存在两个不全等三角形的面积相等 D.存在两个全等三角形的面积不相等 )
新课标高考总复习·数学
创新方案系列丛书
[听前试做] (1)因为“∃x0∈M,p(x0)”的否定是“∀x∈M, 綈 p(x)” ,所以命题 “ ∃ n ∈ N , n2>2n” 的否定是 “ ∀ n ∈ N , n2≤2n”. (2)按照“任意”改“存在”, 结论变否定的模式, 应该为存在 x0∈R,使得 x02<ln 2. (3)命题是省略量词的全称命题.易知选 D.
答案:[e,4]
新课标高考总复习·数学
创新方案系列丛书
2.(2016· 昆明模拟)由命题“存在 x0∈R,使 x02+2x0+ m≤0”是假命题,求得 m 的取值范围是(a,+∞),则实数 a 的值是________.
解析:∵命题“存在 x0∈R,使 x02+2x0+m≤0”是假命题, ∴命题“∀x∈R,x2+2x+m>0”是真命题,故 Δ=22-4m<0, 即 m>1,故 a=1.
新课标高考总复习·数学
创新方案系列丛书
(2)∵y=2 在 R 上为增函数, y=2 ∴y=-2
-x
x
-x
1 =2x 在
R 上为减函数,

1 =-2x 在
R 上为增函数,∴y=2x-2 x 在 R 上为增
函数,故 p1 是真命题. y=2x+2-x 在 R 上为减函数是错误的,故 p2 是假命题.∴q1:p1∨p2 是真命题,因此排除选项 B 和选项 D, q2:p1∧p2 是假命题, q3:(綈 p1)∨p2 是假命题,排除选项 A,故选 C. (3)p 或 q 为真命题 为真命题. p 是 q 为真命题; p 且 q 为真命题⇒ p 且 q
x>y,则 x2>y2.在命题①p∧q;②p∨q;③p∧(綈 q);④(綈 p) ∨q 中,真命题是( A.①③ C.②③ ) B.①④ D.②④
新课标高考总复习·数学
创新方案系列丛书
(2)(2016· 开封模拟)已知命题 p1: 函数 y=2x-2 x 在 R 上为

增函数,p2:函数 y=2x+2-x 在 R 上为减函数,则在命题 q1: p1∨p2,q2:p1∧p2,q3:(綈 p1)∨p2,q4:p1∧(綈 p2)中,真命
新课标高考总复习·数学
创新方案系列丛书
[探究 3] 取值范围.
解:∵綈 p 为真命题,∴p 为假命题,
在本例条件下,若綈 p 为真命题,求实数 a 的
故 Δ=a2-16<0,即-4<a<4. 即实数 a 的取值范围是(-4,4).
新课标高考总复习·数学
创新方案系列丛书
以命题真假为依据求参数的取值范围时,首先要对两个简单命 题进行化简, 然后依据“p∧q”“p∨q”“綈 p”形式命题的真假, 列出含有参数的不等式(组)求解即可.
答案:(1)C (2)D
(3)D
新课标高考总复习·数学
创新方案系列丛书
全称命题与特称命题的否定与命题的否定有一定的区别, 否定全称命题和特称命题时,一是要改写量词,全称量词改写 为存在量词,存在量词改写为全称量词;二是要否定结论,而 一般命题的否定只需直接否定结论即可.另外,对于省略量词 的命题,应先挖掘命题中的隐含的量词,改写成含量词的完整 形式,再写出命题的否定.
新课标高考总复习·数学
创新方案系列丛书
[听前试做] (1)因为 2x 1>0,对∀x∈R 恒成立,所以 A 是真

命题;当 x=1 时,(x-1)2=0,所以 B 是假命题;存在 0< x0<e, 使得 ln x0<1,所以 C 是真命题;因为正切函数 y=tan x 的值域是 R,所以 D 是真命题. 4 (2)当 x>0 时, x+x≥2 4 x x· = 4 , p 是真命题; 当 x >0 时, 2 >1, x
新课标高考总复习·数学
创新方案系列丛书
[易错防范] 1.注意区分命题的否定与否命题的不同. “否命题”是对原命题“若 p,则 q”的条件和结论分别 加以否定而得到的命题, 它既否定其条件, 又否定其结论; “命 题的否定”即“非 p”,只是否定命题 p 的结论. 2.由于全称量词经常省略,因此,在写这类命题的否定 时,应先确定其中的全称量词,再否定量词和结论. 3.“p∨q”的否定是“(綈 p)∧(綈 q)”;“p∧q”的否 定是“(綈 p)∨(綈 q)”.
新课标高考总复习·数学
创新方案系列丛书
1.已知命题 p:“∀x∈[0,1],a≥ex”;命题 q:“∃x0 ∈R,使得 x02+4x0+a=0”.若命题“p∧q”是真命题,则 实数 a 的取值范围为________.
解析: 若命题“p∧q”是真命题, 那么命题 p, q 都是真命题. 由∀x∈[0,1],a≥ex,得 a≥e; 由∃x0∈R,使 x02+4x0+a=0, 知 Δ=16-4a≥0,a≤4,因此 e≤a≤4. 则实数 a 的取值范围为[e,4].
新课标高考总复习·数学
创新方案系列丛书
[典题 4]
已知命题 p: 关于 x 的方程 x2-ax+4=0 有实根; 命
ห้องสมุดไป่ตู้
题 q:关于 x 的函数 y=2x2+ax+4 在[3,+∞)上是增函数.若 p ∨q 是真命题,则实数 a 的取值范围是________.
[听前试做]
若命题 p 是真命题,则 Δ=a2-16≥0,即 a≤-4
q 是假命题,所以 p∧(綈 q)是真命题,(綈 p)∧q 是假命题.
答案:(1)B (2)C
新课标高考总复习·数学
创新方案系列丛书
1.全称命题真假的判断方法 (1)要判断一个全称命题是真命题,必须对限定的集合 M 中的每一个元素 x,证明 p(x)成立. (2)要判断一个全称命题是假命题,只要能举出集合 M 中 的一个特殊值 x=x0,使 p(x0)不成立即可. 2.特称命题真假的判断方法 要判断一个特称命题是真命题,只要在限定的集合 M 中, 找到一个 x=x0,使 p(x0)成立即可,否则这一特称命题就是假 命题.
答案:(1)C (2)C
(3)必要不充分
新课标高考总复习·数学
创新方案系列丛书
[解题模板] 判断含有逻辑联结词命题真假的步骤
新课标高考总复习·数学
创新方案系列丛书
全称命题与特称命题是高考的常考内容,题型多为选择题,难 度较小,属容易题,且主要有以下几个角度: 角度一:全称命题、特称命题的否定 [典题 2] 则綈 p 为( (1)(2015· 新课标全国卷Ⅰ)设命题 p: ∃n∈N, n2>2n, ) B.∃n∈N,n2≤2n D.∃n∈N,n2=2n
新课标高考总复习·数学
创新方案系列丛书
角度二:全称命题、特称命题的真假判断 [典题 3] (1)下列命题中的假命题是( )
A.∀x∈R,2x-1>0 C.∃x0∈R,ln x0<1
B.∀x∈N*,(x-1)2>0 D.∃x0∈R,tan x0=2
4 (2)已知命题 p:∀x>0,x+x≥4;命题 q:∃x0∈(0,+∞), 1 2 x0= ,则下列判断正确的是( 2 A.p 是假命题 C.p∧(綈 q)是真命题 ) B.q 是真命题 D.(綈 p)∧q 是真命题
(4)p∧q 为假的充要条件是 p,q 至少有一个为假.( (5)写特称命题的否定时,存在量词变为全称量词.( (6)∃ x0∈M,p(x0)与∀x∈M,綈 p(x)的真假性相反.(
答案:(1)√ (2)√ (3)× (4)√ (5)√ (6)√
新课标高考总复习·数学
创新方案系列丛书
2.已知命题 p:对任意 x∈R,总有|x|≥0;q:x=1 是方程 x +2=0 的根.则下列命题为真命题的是________. ①p∧綈 q;②綈 p∧q;③綈 p∧綈 q;④p∧q.
答案:1
新课标高考总复习·数学
创新方案系列丛书
[方法技巧] 1.含有逻辑联结词的命题真假判断口诀:p∨q→见真即真, p∧q→见假即假,p 与綈 p→真假相反. 2.要写一个命题的否定,需先分清其是全称命题还是特称 命题,对照否定结构去写,否定的规律是“改量词,否结论”. 3.不管是全称命题,还是特称命题,若其真假不容易正面 判断时,可先判断其否定的真假.
∀x∈M,綈 p(x)
新课标高考总复习·数学
创新方案系列丛书
[自我查验] 1. 判断下列结论的正误. (正确的打“√”, 错误的打“×”) (1)命题“5>6 或 5>2”是真命题.( (2)命题 p 和綈 p 不可能都是真命题.( (3)若 p∧q 为真,则 p 为真或 q 为真.( ) ) ) ) ) )
题是(
) B.q2,q3 D.q2,q4
A.q1,q3 C.q1,q4
新课标高考总复习·数学
创新方案系列丛书
(3)“p 或 q”为真命题是“p 且 q”为真命题的________条 件.
相关文档
最新文档