基本逻辑联结词与量词

合集下载

简单的逻辑联结词、全称量词与存在量词

简单的逻辑联结词、全称量词与存在量词

5 例1、已知命题p : x R, 使得 sin x ;命题q:x R, 2 C ________ 都有x 2 x 1 0, 下列结论中正确的是 __________D A.命题" p q" 是真命题 B.命题" p q" 是真命题 C.命题" p q" 是真命题 D.命题" p q" 是真命题
“有些” “有一个” “对某个” “有 的”等. 通常,将含有变量x的语句用p(x)、q(x)、
r(x)表示,变量x的取值范围用M表示。 特称命题“存在 M中的一个x ,使p(x)成立.
简记为:x M,p(x)
读作“存在一个x属于M,使P(x)成立”。
3、全称命题与特称命题的改写
含有一个量词的全称命题的否定,有下面的结论 全称命题 p : x M,p(x)
① 是真命题的为________.①p∨q;②p∧q.
5、已知命题P :" x [0,1],a e x,命题q :" x R, x 2 4 x a 0" 若命题p q是真命题,则实数a的 C 取值范围是 __________ __ A.( 4,) B.[1,4] C.[e,4] D.( ,1]
通常,将含有变量x的语句用p(x)、q(x)、 r(x)表示,变量x的取值范围用M表示。 全称命题“对 M中任意一个x, 有p(x)成立.
简记为:x M,p(x)
读作“任意x属于M,有P(x)成立”。
2、短语“存在一个”“至少一个” 在逻辑中通 常叫做存在量词.用符号“ ”表示。 含有存在量词的命题,叫做特称命题。 常见的存在量词还有
1.如果命题“p或q”是真命题,命题“p且q” 是假命题,那么( C ) A. 命题p与命题q都是假命题 B. 命题p与命题q都是真命题

[整理版]逻辑连接词与量词

[整理版]逻辑连接词与量词

逻辑连接词与量词【考点导读】1.了解逻辑联结词“或”,“且”,“非”的含义;能用“或”,“且”,“非”表述相关的数学内容.2.理解全称量词与存在量词的意义;能用全称量词与存在量词叙述简单的数学内容.理解对含有一个量词的命题的否定的意义;能正确地对含有一个量词的命题进行否定.【基础知识】1、简单的逻辑联结词逻辑联结词有,不含的命题是简单命题.由的命题是复合命题.复合命题的构成形式有三种:,(其中p,q都是简单命题).2、量词(1)短语“对所有的”“任意一个”在逻辑中通常叫做全称量词。

含有全称量词的命题,叫做全称命题。

(2)短语“存在一个”“至少一个”在逻辑中通常叫做存在量词。

含有存在量词的命题,叫做特称命题。

全称命题的否定是特称命题;特称命题的否定是全称命题。

3、真值表p q p 且q p 或q 非p真真真真假真假假真假假真假真真假假假假真4、全称命题及存在性命题的真假判定【基础题回顾】1.判断下列命题是全称命题:存在性命题:1)任何实数的平方都是非负数; 2)任何数与0相乘,都等于0; 3)任何一个实数都有相反数;4)△ABC的内角中有锐角.2.判断下列命题是真命题的是::1)中国的所有的江河都流入太平洋2)有的四边形既是矩形,又是菱形;3)实系数方程都有实数解; 4)有的数比它的倒数小;3.写出命题“中学生的年龄都在15以上”的否定: ;4.写出命题” x∈R,x2>x”的否定:5. 写出命题” 6是2的倍数也是4的倍数”的否命题:【典型例题】例1.分别指出下列复合命题的形式及构成它的简单命题,并判断其真假.(1)相似三角形周长相等或对应角相等;(2)9的算术平方根不是3;(3)垂直于弦的直径平分这条弦,并且平分这条弦所对的两条弧.变式训练1.写出由下列各组命题构成的“p 或q ”,“p 且q ”,“非p ”形式的命题,并判断真假.(1)p :2是4的约数,q :2是6的约数; (2)p :矩形的对角线相等,q :矩形的对角线互相平分;(3)p :方程210x x -+=的两实根的符号相同,q :方程210x x -+=的两实根的绝对值相等.例2. 写出下列命题的否定:(1)所有人都晨练;(2) ∀ x ∈R,x 2+x+1>0; (3)平行四边形的对边相等;(4) ∃x ∈R,x 2-x+1=0变式训练2.写出下列命题的否定,并判断真假.(1)p :所有末位数字是0或5的整数都能被5整除;(2)p :每一个非负数的平方都是正数;(3)p :存在一个三角形,它的内角和大于180°;(4)p :有的四边形没有外接圆;(5)p :某些梯形的对角线互相平分.例 3. p:关于x 的不等式{},0|1<>x x a x的解集是q :函数2l g ()y a x x a =-+的定义域为R ,P Q a 如果和有且只有一个正确,求的取值范围。

简单的逻辑联结词、全称量词与存在量词

简单的逻辑联结词、全称量词与存在量词
与真假的判断.
栏目 导引
第一章
集合与常用逻辑用语
互动探究 1.把例1中的要求改为“写出下列各组命 题构成的(¬ p)∨(¬ q),(¬ p)∧(¬ q)形式的
复合命题,并判断真假”.
栏目 导引
第一章
集合与常用逻辑用语
解:(1)¬ p:有些平行四边形的对角线 不相等,真命题.
¬ q:有些平行四边形的对角线不互相垂
第一章
集合与常用逻辑用语
【思路分析】
(1)利用“或”、“且
”、“非”把两个命题联结成新命题;
(2)根据命题p和命题q的真假判断复合 命题的真假.
栏目 导引
第一章
集合与常用逻辑用语
【名师点评】
正确理解逻辑联结词“
或”、“且”、“非”的含义是解题的 关键,应根据组成各个复合命题的语句
中所出现的逻辑联结词,进行命题结构
栏目 导引
第一章
集合与常用逻辑用语
【解】
2
(1)¬ p:存在一个实数 m0,使方程
x +m0x-1=0 没有实数根.因为该方程的 判别式 Δ=m2+4>0 恒成立,故¬p 为假命题. 0 (2)¬ p:所有的三角形的三条边不全相等. 显然¬p 为假命题.
栏目 导引
第一章
集合与常用逻辑用语
(3)¬ p:有的菱形的对角线不垂直. 显然¬p 为假命题. (4)¬ p:∀x∈N,x2-2x+1>0. 显然当 x=1 时,x2-2x+1>0 不成立,故¬p 是假命题.
a≥0”,命题q:“∃x∈R,使x2 +2ax
+2-a=0”,若命题“p且q”是真命
题,则实数a的取值范围是________. 【思路分析】 先判断p与q的真假,再 各自求出a的范围,p且q是真命题,因 而p、q皆真,可取a的范围的交集,即

简单的逻辑联结词-全称量词与存在量词

简单的逻辑联结词-全称量词与存在量词
解 p为真命题时:m∈[-1,1] m2 8 [2 2,3]. ∵对m∈[-1,1],不等式a2-5a-3≥ m2 8 恒成立,
可得a2-5a-3≥3, ∴a≥6或a≤-1. 命题q:不等式x2+ax+2<0有解,∴Δ=a2-8>0.
a 2 2或a 2 2.
从而命题q为假命题时, 2 2 a 2 2,
∴p真q假时,a的取值范围为 2 2 a 1.
练习: (1)x0 [1,1], x02 x0 1 a 0成立, 求a的取值范围.
(2)x [1,1], x02 x0 1 a 0成立,
求a的取值范围.
解 : (1)x0 [1,1], a x02 x0 1成立,
a ( x02 x0 1)max .
题型分类 深度剖析
题型一 用“或”、“且”、“非” 联结简单命题并判断其真假
【例1】写出由下列各组命题构成的“p∨q”、
“p∧q”、“ p”形式的复合命题,并判断真假.
(1)p:1是质数;q:1是方程x2+2x-3=0的根; (2)p:平行四边形的对角线相等;q:平行四边形的
对角线互相垂直; (3)p:0∈ ;q:{x|x2-3x-5<0} R; (4)p:5≤5;q:27不是质数.
x0 [1,1], x02 x0 a 3 (2)x [1,1],
1的 a x02
值域:[ 3 ,3] x0 14恒成


a ( x02 x0 1)min .
y由(1)知:a 3 4
例5:已知c 0,设P:函数y c x在R上单调 递减,Q : 不等式x x 2c 1的解集为R, 若P和Q有且只有一个正确,求c的取值范围
(C)
A. a∈R,f(x)在(0,+∞)上是增函数

简单的逻辑联结词、全称量词与存在量词

 简单的逻辑联结词、全称量词与存在量词

§1.3简单的逻辑联结词、全称量词与存在量词1.简单的逻辑联结词(1)命题中的且、或、非叫做逻辑联结词.(2)命题p且q、p或q、非p的真假判断2.全称量词和存在量词(1)全称量词:短语“所有的”“任意一个”等在逻辑中通常叫做全称量词,用符号“∀”表示.(2)存在量词:短语“存在一个”“至少有一个”等在逻辑中通常叫做存在量词,用符号“∃”表示.3.全称命题、特称命题及含一个量词的命题的否定知识拓展1.含有逻辑联结词的命题真假的判断规律(1)p∨q:p,q中有一个为真,则p∨q为真,即有真为真.(2)p∧q:p,q中有一个为假,则p∧q为假,即有假即假.(3)非p:与p的真假相反,即一真一假,真假相反.2.含有一个量词的命题的否定的规律是“改量词,否结论”.3.命题的否定和否命题的区别:命题“若p,则q”的否定是“若p,则非q”,否命题是“若非p,则非q”.题组二教材改编2.[P18B组]已知p:2是偶数,q:2是质数,则命题非p,非q,p∨q,p∧q中真命题的个数为()A.1 B.2C.3 D.4答案 B解析p和q显然都是真命题,所以非p,非q都是假命题,p∨q,p∧q都是真命题.3.[P28T6(4)]命题“正方形都是矩形”的否定是____________________.答案存在一个正方形,这个正方形不是矩形题组三易错自纠4.已知命题p,q,“非p为真”是“p∧q为假”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案 A解析由非p为真知,p为假,可得p∧q为假;反之,若p∧q为假,则可能是p真q假,从而非p为假,故“非p为真”是“p∧q为假”的充分不必要条件,故选A. 5.(2017·贵阳调研)下列命题中的假命题是()A.∃x0∈R,lg x0=1 B.∃x0∈R,sin x0=0C.∀x∈R,x3>0 D.∀x∈R,2x>0答案 C解析当x=10时,lg 10=1,则A为真命题;当x=0时,sin 0=0,则B为真命题;当x<0时,x3<0,则C为假命题;由指数函数的性质知,∀x∈R,2x>0,则D为真命题.故选C.6.已知命题p:∀x∈R,x2-a≥0;命题p:∃x0∈R,x20+2ax0+2-a=0.若命题“p∧q”是真命题,则实数a的取值范围为__________.答案(-∞,-2]题型一含有逻辑联结词的命题的真假判断1.(2018·济南调研)设a,b,c是非零向量.已知命题p:若a·b=0,b·c=0,则a·c=0;命题q :若a ∥b ,b ∥c ,则a ∥c .则下列命题中的真命题是( ) A .p ∨q B .p ∧q C .(非p )∧(非q ) D .p ∨(非q )答案 A解析 如图所示,若a =A 1A →,b =AB →,c =B 1B →,则a ·c ≠0,命题p 为假命题;显然命题q 为真命题,所以p ∨q 为真命题.故选A.2.(2017·山东)已知命题p :∀x >0,ln(x +1)>0;命题q :若a >b ,则a 2>b 2.下列命题为真命题的是( ) A .p ∧q B .p ∧(非q ) C .(非p )∧q D .(非p )∧(非q )答案 B解析 ∵x >0,∴x +1>1,∴ln(x +1)>ln 1=0. ∴命题p 为真命题,∴非p 为假命题.∵a >b ,取a =1,b =-2,而12=1,(-2)2=4, 此时a 2<b 2,∴命题q 为假命题,∴非q 为真命题.∴p ∧q 为假命题,p ∧(非q )为真命题,(非p )∧q 为假命题,(非p )∧(非q )为假命题. 故选B.3.已知命题p :若平面α⊥平面β,平面γ⊥平面β,则有平面α∥平面γ.命题q :在空间中,对于三条不同的直线a ,b ,c ,若a ⊥b ,b ⊥c ,则a ∥c .对以上两个命题,有以下命题: ①p ∧q 为真;②p ∨q 为假;③p ∨q 为真;④(非p )∨(非q )为假. 其中,正确的是________.(填序号) 答案 ②解析 命题p 是假命题,这是因为α与γ也可能相交;命题q 也是假命题,这两条直线也可能异面,相交.思维升华 “p ∨q ”“p ∧q ”“非p ”等形式命题真假的判断步骤 (1)确定命题的构成形式; (2)判断其中命题p 、q 的真假;(3)确定“p ∧q ”“p ∨q ”“非p ”等形式命题的真假. 题型二 含有一个量词的命题命题点1 全称命题、特称命题的真假 典例 下列四个命题:p 1:∃x 0∈(0,+∞),0011()()23x x <;p 2:∃x 0∈(0,1),101023log log x x >;p 3:∀x ∈(0,+∞),⎝⎛⎭⎫12x >12log x ;p 4:∀x ∈⎝⎛⎭⎫0,13,⎝⎛⎭⎫12x <13log x . 其中真命题是( )A .p 1,p 3B .p 1,p 4C .p 2,p 3D .p 2,p 4答案 D 假命题;对于p 4,结合指数函数y =⎝⎛⎭⎫12x与对数函数y =13log x 在⎝⎛⎭⎫0,13上的图象,可以判断p 4是真命题.命题点2 含一个量词的命题的否定典例 (1)命题“∀x ∈R ,⎝⎛⎭⎫13x>0”的否定是( ) A .∃x 0∈R ,01()3x <0 B .∀x ∈R ,⎝⎛⎭⎫13x≤0 C .∀x ∈R ,⎝⎛⎭⎫13x <0 D .∃x 0∈R ,01()3x ≤0答案 D解析 全称命题的否定是特称命题,“>”的否定是“≤”.(2)(2017·河北五个一名校联考)命题“∃x 0∈R ,1<f (x 0)≤2”的否定形式是( ) A .∀x ∈R ,1<f (x )≤2 B .∃x 0∈R ,1<f (x 0)≤2 C .∃x 0∈R ,f (x 0)≤1或f (x 0)>2D .∀x ∈R ,f (x )≤1或f (x )>2 答案 D解析 特称命题的否定是全称命题,原命题的否定形式为“∀x ∈R ,f (x )≤1或f (x )>2”. 思维升华 (1)判定全称命题“∀x ∈M ,p (x )”是真命题,需要对集合M 中的每一个元素x ,证明p (x )成立;要判断特称命题是真命题,只要在限定集合内找到一个x =x 0,使p (x 0)成立. (2)对全(特)称命题进行否定的方法①找到命题所含的量词,没有量词的要结合命题的含义先加上量词,再改变量词; ②对原命题的结论进行否定.跟踪训练 (1)下列命题是假命题的是( ) A .∃α,β∈R ,使cos(α+β)=cos α+cos β B .∀φ∈R ,函数f (x )=sin(2x +φ)都不是偶函数C .∃x 0∈R ,使x 30+ax 20+bx 0+c =0(a ,b ,c ∈R 且为常数)D .∀a >0,函数f (x )=ln 2x +ln x -a 有零点 答案 B解析 取α=π2,β=-π4,cos(α+β)=cos α+cos β,A 正确;取φ=π2,函数f (x )=sin ⎝⎛⎭⎫2x +π2=cos 2x 是偶函数,B 错误; 对于三次函数y =f (x )=x 3+ax 2+bx +c ,当x →-∞时,y →-∞,当x →+∞时,y →+∞,又f (x )在R 上为连续函数,故∃x 0∈R ,使x 30+ax 20+bx 0+c =0,C 正确;当f (x )=0时,ln 2x +ln x -a =0,则有a =ln 2x +ln x =⎝⎛⎭⎫ln x +122-14≥-14,所以∀a >0,函数f (x )=ln 2x +ln x -a 有零点,D 正确,综上可知,选B.(2)(2017·福州质检)已知命题p :“∃x 0∈R ,0e x -x 0-1≤0”,则非p 为( ) A .∃x 0∈R ,0e x -x 0-1≥0 B .∃x 0∈R ,0e x -x 0-1>0 C .∀x ∈R ,e x -x -1>0 D .∀x ∈R ,e x -x -1≥0 答案 C解析 根据全称命题与特称命题的否定关系,可得非p 为“∀x ∈R ,e x -x -1>0”,故选C. 题型三 含参命题中参数的取值范围典例 (1)已知命题p :关于x 的方程x 2-ax +4=0有实根;命题q :关于x 的函数y =2x 2+ax +4在[3,+∞)上是增函数,若p ∧q 是真命题,则实数a 的取值范围是________________. 答案 [-12,-4]∪[4,+∞)解析 若命题p 是真命题,则Δ=a 2-16≥0, 即a ≤-4或a ≥4;若命题q 是真命题, 则-a4≤3,即a ≥-12.∵p ∧q 是真命题,∴p ,q 均为真, ∴a 的取值范围是[-12,-4]∪[4,+∞).(2)已知f (x )=ln(x 2+1),g (x )=⎝⎛⎭⎫12x-m ,若对∀x 1∈[0,3],∃x 2∈[1,2],使得f (x 1)≥g (x 2),则实数m 的取值范围是________________. 答案 ⎣⎡⎭⎫14,+∞解析 当x ∈[0,3]时,f (x )min =f (0)=0,当x ∈[1,2]时, g (x )min =g (2)=14-m ,由f (x )min ≥g (x )min ,得0≥14-m ,所以m ≥14.引申探究本例(2)中,若将“∃x 2∈[1,2]”改为“∀x 2∈[1,2]”,其他条件不变,则实数m 的取值范围是___________. 答案 ⎣⎡⎭⎫12,+∞ 解析 当x ∈[1,2]时,g (x )max =g (1)=12-m ,由f (x )min ≥g (x )max ,得0≥12-m ,∴m ≥12.思维升华 (1)已知含逻辑联结词的命题的真假,可根据每个命题的真假,利用集合的运算求解参数的取值范围.(2)对于含量词的命题中求参数的取值范围的问题,可根据命题的含义,利用函数值域(或最值)解决.跟踪训练 (1)已知命题“∃x 0∈R ,使2x 20+(a -1)x 0+12≤0”是假命题,则实数a 的取值范围是( )A .(-∞,-1)B .(-1,3)C .(-3,+∞)D .(-3,1)答案 B解析 原命题的否定为∀x ∈R ,2x 2+(a -1)x +12>0,由题意知,其为真命题,即Δ=(a -1)2-4×2×12<0,则-2<a -1<2,即-1<a <3.(2)(2017·洛阳模拟)已知p :∀x ∈⎣⎡⎦⎤14,12,2x <m (x 2+1),q :函数f (x )=4x +2x +1+m -1存在零点,若“p 且q ”为真命题,则实数m 的取值范围是__________. 答案 ⎝⎛⎭⎫45,1解析 由2x <m (x 2+1),可得m >2xx 2+1,又x ∈⎣⎡⎦⎤14,12时,⎝ ⎛⎭⎪⎫2x x 2+1max =45,故当p 为真时,m >45;函数f (x )=4x +2x +1+m -1=(2x +1)2+m -2, 令f (x )=0,得2x =2-m -1,若f (x )存在零点, 则2-m -1>0,解得m <1,故当q 为真时,m <1.若“p 且q ”为真命题,则实数m 的取值范围是⎝⎛⎭⎫45,1.常用逻辑用语考点分析 有关四种命题及其真假判断、充分必要条件的判断或求参数的取值范围、量词等问题几乎在每年高考中都会出现,多与函数、数列、立体几何、解析几何等知识相结合,难度中等偏下.解决这类问题应熟练把握各类知识的内在联系.一、命题的真假判断典例1 (1)(2017·佛山模拟)已知a ,b 都是实数,那么“a >b ”是“ln a >ln b ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件答案 B解析 由ln a >ln b ⇒a >b >0⇒a >b ,故必要性成立.当a =1,b =0时,满足a >b ,但ln b 无意义,所以ln a >ln b 不成立,故充分性不成立.(2)(2017·江西红色七校联考)已知函数f (x )=⎩⎪⎨⎪⎧3x,x <0,m -x 2,x ≥0,给出下列两个命题:命题p :∃m ∈(-∞,0),方程f (x )=0有解,命题q :若m =19,则f (f (-1))=0,则下列命题为真命题的是( ) A .p ∧q B .(非p )∧q C .p ∧(非q ) D .(非p )∧(非q )答案 B解析 因为3x >0,当m <0时,m -x 2<0, 所以命题p 为假命题;当m =19时,因为f (-1)=3-1=13,所以f (f (-1))=f ⎝⎛⎭⎫13=19-⎝⎛⎭⎫132=0, 所以命题q 为真命题,逐项检验可知,只有(非p )∧q 为真命题,故选B. 二、充要条件的判断典例2 (1)(2017·湖南五市十校联考)已知数列{a n }的前n 项和S n =Aq n +B (q ≠0),则“A =-B ”是“数列{a n }是等比数列”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 答案 B解析 若A =B =0,则S n =0,数列{a n }不是等比数列;若数列{a n }是等比数列,则由a 1=Aq +B ,a 2=Aq 2-Aq ,a 3=Aq 3-Aq 2及a 3a 2=a 2a 1,得A =-B ,故选B.(2)(2017·湖北七市联考)已知圆C :(x -1)2+y 2=r 2(r >0).设p :0<r <3,q :圆C 上至多有2个点到直线x -3y +3=0的距离为1,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件答案 C解析 圆C :(x -1)2+y 2=r 2的圆心(1,0)到直线x -3y +3=0的距离d =|1-3×0+3|2=2.当r ∈(0,1)时,直线与圆相离,圆C 上没有到直线的距离为1的点;当r =1时,直线与圆相离,圆C 上只有1个点到直线的距离为1;当r ∈(1,2)时,直线与圆相离,圆C 上有2个点到直线的距离为1;当r =2时,直线与圆相切,圆C 上有2个点到直线的距离为1;当r ∈(2,3)时,直线与圆相交,圆C 上有2个点到直线的距离为1.综上,当r ∈(0,3)时,圆C 上至多有2个点到直线的距离为1,又由圆C 上至多有2个点到直线的距离为1,可得0<r <3,故p 是q 的充要条件,故选C. 三、求参数的取值范围典例3 (1)已知命题p :∀x ∈[0,1],a ≥e x ,命题q :∃x 0∈R ,x 20+4x 0+a =0,若命题“p ∧q ”是真命题,则实数a 的取值范围是__________. 答案 [e,4]解析 命题“p ∧q ”是真命题,p 和q 均是真命题.当p 是真命题时,a ≥(e x )max =e ;当q 为真命题时,Δ=16-4a ≥0,a ≤4,所以a ∈[e,4].(2)已知函数f (x )=x +4x ,g (x )=2x +a ,若∀x 1∈⎣⎡⎦⎤12,3,∃x 2∈[2,3]使得f (x 1)≥g (x 2),则实数a 的取值范围是________. 答案 (-∞,0]解析 ∵x ∈⎣⎡⎦⎤12,3,∴f (x )≥2x ·4x=4,当且仅当x =2时,f (x )min =4,当x ∈[2,3]时,g (x )min =22+a =4+a ,依题意知f (x )min ≥g (x )min ,即4≥a +4,∴a ≤0.1.已知命题p :对任意x ∈R ,总有2x >0;q :“x >1”是“x >2”的充分不必要条件.则下列命题为真命题的是( ) A .p ∧q B .(非p )∧(非q ) C .(非p )∧q D .p ∧(非q )答案 D解析 因为指数函数的值域为(0,+∞),所以对任意x ∈R ,y =2x >0恒成立,故p 为真命题;因为当x >1时,x >2不一定成立,反之,当x >2时,一定有x >1成立,故“x >1”是“x >2”的必要不充分条件,故q 为假命题.则p ∧q ,非p 为假命题,非q 为真命题,(非p )∧(非q ),(非p )∧q 为假命题,p ∧(非q )为真命题,故选D.2.设命题p :函数y =sin 2x 的最小正周期为π2;命题q :函数y =cos x 的图象关于直线x =π2对称,则下列判断正确的是( ) A .p 为真 B .非q 为假 C .p ∧q 为假 D .p ∨q 为真 答案 C解析 函数y =sin 2x 的最小正周期为2π2=π,故命题p 为假命题;x =π2不是y =cos x 的对称轴,故命题q 为假命题,故p ∧q 为假.故选C. 3.下列命题中为假命题的是( ) A .∀x ∈⎝⎛⎭⎫0,π2,x >sin x B .∃x 0∈R ,sin x 0+cos x 0=2 C .∀x ∈R ,3x >0 D .∃x 0∈R ,lg x 0=0 答案 B解析 对于A ,令f (x )=x -sin x ,则f ′(x )=1-cos x ,当x ∈⎝⎛⎭⎫0,π2时,f ′(x )>0.从而f (x )在⎝⎛⎭⎫0,π2上是增函数,则f (x )>f (0)=0,即x >sin x ,故A 正确;对于B ,由sin x +cos x =2sin ⎝⎛⎭⎫x +π4≤2<2知,不存在x 0∈R ,使得sin x 0+cos x 0=2,故B 错误;对于C ,易知3x >0,故C 正确;对于D ,由lg 1=0知,D 正确.故选B.4.(2017·豫西五校联考)若定义域为R 的函数f (x )不是偶函数,则下列命题中一定为真命题的是( )A .∀x ∈R ,f (-x )≠f (x )B .∀x ∈R ,f (-x )=-f (x )C .∃x 0∈R ,f (-x 0)≠f (x 0)D .∃x 0∈R ,f (-x 0)=-f (x 0)答案 C解析 由题意知∀x ∈R ,f (-x )=f (x )是假命题,则其否定为真命题,∃x 0∈R ,f (-x 0)≠f (x 0)是真命题,故选C.5.(2017·安庆二模)设命题p :∃x 0∈(0,+∞),x 0+1x 0>3;命题q :∀x ∈(2,+∞),x 2>2x ,则下列命题为真的是( )A .p ∧(非q )B .(非p )∧qC .p ∧qD .(非p )∨q答案 A解析 对于命题p ,当x 0=4时,x 0+1x 0=174>3,故命题p 为真命题;对于命题q ,当x =4时,24=42=16,即∃x 0∈(2,+∞),使得02x =x 20成立,故命题q 为假命题,所以p ∧(非q )为真命题,故选A.6.(2018届东莞外国语学校月考)已知命题p :∃x 0∈R ,cos x 0=54;命题q :∀x ∈R ,x 2-x +1>0.则下列结论正确的是( )A .命题p ∧q 是真命题B .命题p ∧(非q )是真命题C .命题(非p )∧q 是真命题D .命题(非p )∨(非q )是假命题答案 C解析 因为对任意x ∈R ,都有cos x ≤1成立,而54>1,所以命题p :∃x 0∈R ,cos x 0=54是假命题;因为对任意的x ∈R ,x 2-x +1=⎝⎛⎭⎫x -122+34>0, 所以命题q :∀x ∈R ,x 2-x +1>0是真命题.由此对照各个选项,可知命题(非p )∧q 是真命题.7.下列命题中,真命题是( )A .∃x 0∈R ,0e x ≤0B .∀x ∈R ,2x >x 2C .a +b =0的充要条件是a b=-1 D .“a >1,b >1”是“ab >1”的充分条件答案 D解析 因为y =e x >0,x ∈R 恒成立,所以A 不正确;因为当x =-5时,2-5<(-5)2,所以B 不正确;“a b=-1”是“a +b =0”的充分不必要条件,C 不正确; 当a >1,b >1时,显然ab >1,D 正确.8.命题p :∀x ∈R ,ax 2+ax +1≥0,若非p 是真命题,则实数a 的取值范围是( )A .(0,4]B .[0,4]C .(-∞,0]∪[4,+∞)D .(-∞,0)∪(4,+∞)答案 D解析 因为命题p :∀x ∈R ,ax 2+ax +1≥0,所以非p :∃x 0∈R ,ax 20+ax 0+1<0, 则a <0或⎩⎪⎨⎪⎧a >0,Δ=a 2-4a >0,解得a <0或a >4. 9.命题p 的否定是“对所有正数x ,x >x +1”,则命题p 可写为____________________. 答案 ∃x 0∈(0,+∞),x 0≤x 0+1解析 因为p 是非p 的否定,所以只需将全称命题变为特称命题,再对结论否定即可.10.已知函数f (x )的定义域为(a ,b ),若“∃x 0∈(a ,b ),f (x 0)+f (-x 0)≠0”是假命题,则f (a +b )=________.答案 0解析 若“∃x 0∈(a ,b ),f (x 0)+f (-x 0)≠0”是假命题,则“∀x ∈(a ,b ),f (x )+f (-x )=0”是真命题,即f (-x )=-f (x ),则函数f (x )是奇函数,则a +b =0,即f (a +b )=f (0)=0.11.以下四个命题:①∀x ∈R ,x 2-3x +2>0恒成立;②∃x 0∈Q ,x 20=2;③∃x 0∈R ,x 20+1=0;④∀x ∈R,4x 2>2x -1+3x 2.其中真命题的个数为________.答案 0解析 ∵x 2-3x +2=0的判别式Δ=(-3)2-4×2>0,∴当x >2或x <1时,x 2-3x +2>0才成立,∴①为假命题;当且仅当x =±2时,x 2=2,∴不存在x 0∈Q ,使得x 20=2,∴②为假命题;对∀x ∈R ,x 2+1≠0,∴③为假命题;4x 2-(2x -1+3x 2)=x 2-2x +1=(x -1)2≥0,即当x =1时,4x 2=2x -1+3x 2成立,∴④为假命题.∴①②③④均为假命题.故真命题的个数为0.12.(2017·江西五校联考)已知命题p :∃x 0∈R ,(m +1)·(x 20+1)≤0,命题q :∀x ∈R ,x 2+mx +1>0恒成立.若p ∧q 为假命题,则实数m 的取值范围为____________.答案 (-∞,-2]∪(-1,+∞)解析 由命题p :∃x 0∈R ,(m +1)(x 20+1)≤0,可得m ≤-1,由命题q :∀x ∈R ,x 2+mx +1>0恒成立,可得-2<m <2,因为p ∧q 为假命题,所以m ≤-2或m >-1.13.已知命题p :x 2+2x -3>0;命题q :13-x>1,若“(非q )∧p ”为真,则x 的取值范围是___.答案 (-∞,-3)∪(1,2]∪[3,+∞)解析 因为“(非q )∧p ”为真,即q 假p 真,而当q 为真命题时,13-x -1=-x -2x -3>0,即2<x <3,所以当q 为假命题时,有x ≥3或x ≤2;当p 为真命题时,由x 2+2x -3>0,解得x >1或x <-3,由⎩⎪⎨⎪⎧x >1或x <-3,x ≥3或x ≤2,得x ≥3或1<x ≤2或x <-3,所以x 的取值范围是{x |x ≥3或1<x ≤2或x <-3}.14.下列结论:①若命题p :∃x 0∈R ,tan x 0=1;命题q :∀x ∈R ,x 2-x +1>0,则命题“p ∧(非q )”是假命题;②已知直线l 1:ax +3y -1=0,l 2:x +by +1=0,则l 1⊥l 2的充要条件是a b=-3; ③命题“若x 2-3x +2=0,则x =1”的逆否命题是“若x ≠1,则x 2-3x +2≠0”. 其中正确结论的序号为________.答案 ①③解析 ①中命题p 为真命题,命题q 为真命题,所以p ∧(非q )为假命题,故①正确;②当b =a =0时,有l 1⊥l 2,故②不正确;③正确,所以正确结论的序号为①③.15.已知命题p :∃x 0∈R ,0e x-mx 0=0,命题q :∀x ∈R ,x 2+mx +1≥0,若p ∨(非q )为假命题,则实数m 的取值范围是____.答案 [0,2]解析 若p ∨(非q )为假命题,则p 假q 真.由e x -mx =0,可得m =e x x ,x ≠0, 设f (x )=e x x,x ≠0,则 f ′(x )=x e x -e x x 2=(x -1)e xx 2, 当x >1时,f ′(x )>0,函数f (x )=e x x在(1,+∞)上是单调递增函数;当0<x <1或x <0时,f ′(x )<0,函数f (x )=e x x在(0,1)和(-∞,0)上是单调递减函数,所以当x =1时,函数取得极小值f (1)=e ,所以函数f (x )=e x x的值域是(-∞,0)∪[e ,+∞),由p 是假命题,可得0≤m <e. 当命题q 为真命题时,有Δ=m 2-4≤0,即-2≤m ≤2.所以当p ∨(非q )为假命题时,m 的取值范围是0≤m ≤2.16.已知函数f (x )=x 2-x +1x -1(x ≥2),g (x )=a x (a >1,x ≥2). (1)若∃x 0∈[2,+∞),使f (x 0)=m 成立,则实数m 的取值范围为________________;(2)若∀x 1∈[2,+∞),∃x 2∈[2, +∞),使得f (x 1)=g (x 2),则实数a 的取值范围为________________.答案 (1)[3,+∞) (2)(1,3]解析 (1)因为f (x )=x 2-x +1x -1=x +1x -1=x -1+1x -1+1≥2+1=3,当且仅当x =2时等号成立,所以若∃x 0∈[2,+∞),使f (x 0)=m 成立,则实数m 的取值范围为[3,+∞).(2)因为当x ≥2时,f (x )≥3,g (x )≥a 2,若∀x 1∈[2,+∞),∃x 2∈[2,+∞),使得f (x 1)=g (x 2),则⎩⎪⎨⎪⎧a 2≤3,a >1, 解得a ∈(1,3].。

逻辑联结词、量词 知识点+例题 分类全面

逻辑联结词、量词 知识点+例题 分类全面

p或q联结起来,就得到一个新命题,记作=∈B x x{|(加以否定,得到一个新的命题,记作在全集U中的补集:答案 B解析 因为M N ,所以a ∈M ⇒a ∈N ,反之,则不成立,故“a ∈N ”是“a ∈M ”的必要而不充分条件.故选B.6.若命题p :对于任意x ∈[-1,1],有f (x )≥0,则对命题p 的否定是________.答案 存在x 0∈[-1,1],使f (x 0)<07.已知命题p :x 2+2x -3>0;命题q :13-x>1,若“⌝q 且p ”为真,则x 的取值范围是____________________. 答案 (-∞,-3)∪(1,2]∪[3,+∞)解析 因为“綈q 且p ”为真,即q 假p 真,而q 为真命题时,x -2x -3<0,得2<x <3,所以q 假时有x ≥3或x ≤2;p 为真命题时,由x 2+2x -3>0,解得x >1或x <-3,由⎩⎪⎨⎪⎧x >1或x <-3,x ≥3或x ≤2,解得x <-3或1<x ≤2或x ≥3, 所以x 的取值范围是x <-3或1<x ≤2或x ≥3.8.下列结论:①若命题p :∃x ∈R ,tan x =1;命题q :∀x ∈R ,x 2-x +1>0.则命题“p ∧(⌝q )”是假命题;②已知直线l 1:ax +3y -1=0,l 2:x +by +1=0,则l 1⊥l 2的充要条件是a b=-3; ③命题“若x 2-3x +2=0,则x =1”的逆否命题:“若x ≠1,则x 2-3x +2≠0”.其中正确结论的序号为________.答案 ①③解析 ①中命题p 为真命题,命题q 为真命题,所以p ∧(綈q )为假命题,故①正确;②当b =a =0时,有l 1⊥l 2,故②不正确;③正确.所以正确结论的序号为①③.9.已知c >0,且c ≠1,设p :函数y =c x 在R 上单调递减;q :函数f (x )=x 2-2cx +1在⎝⎛⎭⎫12,+∞上为增函数,若“p 且q ”为假,“p 或q ”为真,求实数c 的取值范围.解 ∵函数y =c x 在R 上单调递减,∴0<c <1.即p :0<c <1,∵c >0且c ≠1,∴綈p :c >1.又∵f (x )=x 2-2cx +1在⎝⎛⎭⎫12,+∞上为增函数,∴c ≤12. 即q :0<c ≤12,∵c >0且c ≠1,∴綈q :c >12且c ≠1. 又∵“p 或q ”为真,“p 且q ”为假,∴p 真q 假或p 假q 真.①当p 真,q 假时,{c |0<c <1}∩⎩⎨⎧⎭⎬⎫c |c >12且c ≠1=⎩⎨⎧⎭⎬⎫c |12<c <1. ②当p 假,q 真时,{c |c >1}∩⎩⎨⎧⎭⎬⎫c |0<c ≤12=∅. 综上所述,实数c 的取值范围是⎩⎨⎧⎭⎬⎫c |12<c <1. 能力提升训练。

第一章 命题与量词、基本逻辑联结词

第一章 命题与量词、基本逻辑联结词

§1.2命题与量词、基本逻辑联结词2014高考会这样考 1.以量词为载体,判断命题的真假;2.考查基本逻辑联结词的含义,在与其他知识交汇处命题.复习备考要这样做 1.充分理解逻辑联结词的含义,注意和日常用语的区别;2.对量词的练习要在“含一个量词”框架内进行,不要随意加深;3.注意逻辑与其他知识的交汇.1.命题的概念能够判断真假的语句叫做命题.其中判断为真的语句叫真命题,判断为假的语句叫假命题.2.全称量词与全称命题(1)全称量词:短语“所有”在陈述中表示所述事物的全体,逻辑中通常叫做全称量词,并用符号“∀”表示.(2)全称命题:含有全称量词的命题.(3)全称命题的符号表示:形如“对M中的所有x,p(x)”的命题,用符号简记为“∀x∈M,p(x)”.3.存在量词与存在性命题(1)存在量词:短语“有一个”或“有些”或“至少有一个”在陈述中表示所述事物的个体或部分,逻辑中通常叫做存在量词,并用符号“∃”表示.(2)存在性命题:含有存在量词的命题.(3)存在性命题的符号表示:形如“存在集合M中的元素x,q(x)”的命题,用符号简记为∃x∈M,q(x).(4)全称命题与存在性命题的否定4.(1)命题中的“且”、“或”、“非”叫做逻辑联结词.(2)命题真值表:[难点正本1.命题的否定与否命题“否命题”是对原命题“若p,则q”的条件和结论分别加以否定而得到的命题,它既否定其条件,又否定其结论;“命题的否定”即“非p”,只是否定命题p的结论.命题的否定与原命题的真假总是对立的,即两者中有且只有一个为真,而原命题与否命题的真假无必然联系.2.逻辑联结词“或”的含义逻辑联结词中的“或”的含义,与并集概念中的“或”的含义相同.如“x∈A或x∈B”,是指:x∈A且x∉B;x∉A且x∈B;x∈A且x∈B三种情况.再如“p真或q 真”是指:p真且q假;p假且q真;p真且q真三种情况.1.下列命题中,所有真命题的序号是________.①5>2且7>4;②3>4或4>3;③2不是无理数.答案①②解析①5>2和7>4都真,故5>2且7>4也真.②3>4假,4>3真,故3>4或4>3真.③2是无理数,故2不是无理数为假命题.点评对含有“或”、“且”、“非”的复合命题的判断,先判断简单命题,再根据真值表判断复合命题.2.已知命题p:∃x∈R,x2+1x2≤2,命题q是命题p的否定,则命题p、q、p∧q、p∨q中是真命题的是________.答案p、p∨q解析x=±1时,p成立,所以p真,q假,p∨q真,p∧q假.3.若命题“∃x∈R,有x2-mx-m<0”是假命题,则实数m的取值范围是________.答案[-4,0]解析“∃x∈R有x2-mx-m<0”是假命题,则“∀x∈R有x2-mx-m≥0”是真命题.即Δ=m2+4m≤0,∴-4≤m≤0.4.(2012·湖北)命题“∃x ∈∁R Q ,x 3∈Q ”的否定是 ( )A .∃x ∁R Q ,x 3∈QB .∃x ∈∁R Q ,x 3QC .∀x ∁R Q ,x 3∈QD .∀x ∈∁R Q ,x 3Q答案 D解析 “∃”的否定是“∀”,x 3∈Q 的否定是x 3Q .命题“∃x ∈∁R Q ,x 3∈Q ”的否定是“∀x ∈∁R Q ,x 3Q ”,故应选D. 5.有四个关于三角函数的命题: p 1:∃x ∈R ,sin 2x 2+cos 2x 2=12p 2:∃x ,y ∈R ,sin(x -y )=sin x -sin y p 3:∀x ∈[0,π],1-cos 2x2=sin x p 4:sin x =cos y ⇒x +y =π2其中的假命题是( )A .p 1,p 4B .p 2,p 4C .p 1,p 3D .p 2,p 3答案 A解析 p 1为假命题;对于p 2,令x =y =0,显然有sin(x -y )=sin x -sin y ,即p 2为真命题;对于p 3,由sin 2x =1-cos 2x2,当x ∈[0,π]时,sin x ≥0,sin x =1-cos 2x2.于是可判断p 3为真命题;对于p 4,当x =5π4时,有sin x =cos y =-22,这说明p 4是假命题.题型一 含有逻辑联结词的命题的真假例1 已知命题p 1:函数y =2x -2-x 在R 上为增函数,p 2:函数y =2x +2-x 在R 上为减函数,则在命题q 1:p 1∨p 2,q 2:p 1∧p 2,q 3:(綈p 1)∨p 2和q 4:p 1∧(綈p 2)中,真命题是( )A .q 1,q 3B .q 2,q 3C .q 1,q 4D .q 2,q 4思维启迪:先判断命题p 1、p 2的真假,然后对含逻辑联结词的命题根据真值表判断真假.答案 C解析 命题p 1是真命题,p 2是假命题,故q 1为真,q 2为假,q 3为假,q 4为真. 探究提高 (1)判断含有逻辑联结词的复合命题的真假,关键是对逻辑联结词“且”“或”“非”含义的理解.(2)解决该类问题的基本步骤:①弄清构成复合命题中简单命题p 和q 的真假;②明确其构成形式;③根据复合命题的真假规律判断构成新命题的真假.写出由下列各组命题构成的“p ∨q ”、“p ∧q ”、“綈p ”形式的复合命题,并判断真假:(1)p :1是素数;q :1是方程x 2+2x -3=0的根;(2)p :平行四边形的对角线相等;q :平行四边形的对角线互相垂直;(3)p :方程x 2+x -1=0的两实根的符号相同;q :方程x 2+x -1=0的两实根的绝对值相等.解 (1)p ∨q :1是素数或是方程x 2+2x -3=0的根.真命题. p ∧q :1既是素数又是方程x 2+2x -3=0的根.假命题. 綈p :1不是素数.真命题.(2)p ∨q :平行四边形的对角线相等或互相垂直.假命题. p ∧q :平行四边形的对角相等且互相垂直.假命题. 綈p :有些平行四边形的对角线不相等.真命题.(3)p ∨q :方程x 2+x -1=0的两实根的符号相同或绝对值相等.假命题. p ∧q :方程x 2+x -1=0的两实根的符号相同且绝对值相等.假命题. 綈p :方程x 2+x -1=0的两实根的符号不相同.真命题. 题型二 含有一个量词的命题的否定例2 写出下列命题的否定,并判断其真假: (1)p :∀x ∈R ,x 2-x +14≥0;(2)q :所有的正方形都是矩形; (3)r :∃x ∈R ,x 2+2x +2≤0; (4)s :至少有一个实数x 使x 3+1=0.思维启迪:否定量词,否定结论,写出命题的否定;判断命题的真假. 解 (1)綈p :∃x ∈R ,x 2-x +14<0,假命题.(2)綈q :至少存在一个正方形不是矩形,假命题. (3)綈r :∀x ∈R ,x 2+2x +2>0,真命题.(4)綈s :∀x ∈R ,x 3+1≠0,假命题.探究提高 全称命题与存在性命题的否定与命题的否定有一定的区别,否定全称命题和存在性命题时,一是要改写量词,全称量词改写为存在量词,存在量词改写为全称量词;二是要否定结论.而一般命题的否定只需直接否定结论即可.(1)已知命题p :∀x ∈R ,sin x ≤1,则( )A .綈p :∃x ∈R ,sin x ≥1B .綈p :∀x ∈R ,sin x ≥1C .綈p :∃x ∈R ,sin x >1D .綈p :∀x ∈R ,sin x >1(2)命题p :∃x ∈R,2x +x 2≤1的否定綈p 为__________________________________. 答案 (1)C (2)∀x ∈R,2x +x 2>1 题型三 逻辑联结词与命题真假的应用例3 已知p :方程x 2+mx +1=0有两个不相等的负实数根;q :不等式4x 2+4(m -2)x +1>0的解集为R .若“p ∨q ”为真命题,“p ∧q ”为假命题,求实数m 的取值范围. 思维启迪:判断含有逻辑联结词的命题的真假,关键是判断对应p ,q 的真假,然后 判断“p ∧q ”,“p ∨q ”,“綈p ”的真假.解 p 为真命题⇔⎩⎪⎨⎪⎧Δ=m 2-4>0,-m <0⇒m >2;q 为真命题⇔Δ=[4(m -2)]2-4×4×1<0⇒1<m <3.由“p ∨q ”为真命题,“p ∧q ”为假命题,知p 与q 一真一假.当p 真,q 假时,由⎩⎪⎨⎪⎧m >2,m ≤1或m ≥3⇒m ≥3;当p 假,q 真时,由⎩⎪⎨⎪⎧m ≤2,1<m <3⇒1<m ≤2.综上,知实数m 的取值范围是(1,2]∪[3,+∞).探究提高 含有逻辑联结词的命题要先确定构成命题的(一个或两个)命题的真假,求出此时参数成立的条件,再求出含逻辑联结词的命题成立的条件.已知a >0,设命题p :函数y =a x 在R 上单调递增;命题q :不等式ax 2-ax +1>0对∀x ∈R 恒成立.若“p 且q ”为假,“p 或q ”为真,求a 的取值范围. 解 ∵函数y =a x 在R 上单调递增,∴p :a >1. 不等式ax 2-ax +1>0对∀x ∈R 恒成立,且a >0,∴a 2-4a <0,解得0<a <4,∴q :0<a <4.∵“p ∧q ”为假,“p ∨q ”为真,∴p 、q 中必有一真一假.①当p 真,q 假时,⎩⎪⎨⎪⎧a >1a ≥4,得a ≥4.②当p 假,q 真时,⎩⎪⎨⎪⎧0<a ≤10<a <4,得0<a ≤1.故a 的取值范围为(0,1]∪[4,+∞).借助逻辑联结词求解参数范围问题典例:(12分)已知c >0,且c ≠1,设p :函数y =c x 在R 上单调递减;q :函数f (x )=x 2-2cx +1在⎝⎛⎭⎫12,+∞上为增函数,若“p 且q ”为假,“p 或q ”为真,求实数c 的取值范围.审题视角 (1)p 、q 都为真时,分别求出相应的a 的取值范围;(2)用补集的思想,求 出綈p 、綈q 分别对应的a 的取值范围;(3)根据“p 且q ”为假、“p 或q ”为真,确 定p 、q 的真假. 规范解答解 ∵函数y =c x 在R 上单调递减,∴0<c <1. [2分] 即p :0<c <1,∵c >0且c ≠1,∴綈p :c >1.[3分]又∵f (x )=x 2-2cx +1在⎝⎛⎭⎫12,+∞上为增函数,∴c ≤12. 即q :0<c ≤12,∵c >0且c ≠1,∴綈q :c >12且c ≠1.[5分]又∵“p 或q ”为真,“p 且q ”为假, ∴p 真q 假或p 假q 真. [6分]①当p 真,q 假时,{c |0<c <1}∩⎩⎨⎧⎭⎬⎫c |c >12且c ≠1=⎩⎨⎧⎭⎬⎫c |12<c <1.[8分] ②当p 假,q 真时,{c |c >1}∩⎩⎨⎧⎭⎬⎫c |0<c ≤12=∅.[10分]综上所述,实数c 的取值范围是⎩⎨⎧⎭⎬⎫c |12<c <1.[12分]第一步:求命题p 、q 对应的参数的范围. 第二步:求命题綈p 、綈q 对应的参数的范围.第三步:根据已知条件构造新命题,如本题构造新命题“p 且q ”或“p 或q ”.第四步:根据新命题的真假,确定参数的范围. 第五步:反思回顾.查看关键点、易错点及解题规范.温馨提醒 解决此类问题的关键是准确地把每个条件所对应的参数的取值范围求解出来,然后转化为集合交、并、补的基本运算.答题时,可依答题模板的格式进行,这样可使答题思路清晰,过程完整.老师在阅卷时,便于查找得分点.方法与技巧1.要写一个命题的否定,需先分清其是全称命题还是存在性命题,对照否定结构去写,并注意与否命题的区别;对于命题否定的真假,可以直接判定,也可以先判定原命题,再判定其否定.判断命题的真假要注意:全称命题为真需证明,为假举反例即可;存在性命题为真需举一个例子,为假则要证明全称命题为真.2.要把握命题的形成、相互转化,会根据复合命题来判断简单命题的真假. 3.全称命题与存在性命题可以互相转化,即从反面处理,再求其补集. 失误与防范1.p ∨q 为真命题,只需p 、q 有一个为真即可,p ∧q 为真命题,必须p 、q 同时为真. 2.p 或q 的否定:非p 且非q ;p 且q 的否定:非p 或非q . 3.全称命题的否定是存在性命题;存在性命题的否定是全称命题.4.简单逻辑联结词内容的考查注重基础、注重交汇,较多地考查简单逻辑与其他知识的综合问题,要注意其他知识的提取与应用,一般先化简转化命题,再处理关系.A 组 专项基础训练(时间:35分钟,满分:57分)一、选择题(每小题5分,共20分) 1.下列命题中的假命题是( )A .∃x ∈R ,lg x =0B .∃x ∈R ,tan x =1C .∀x ∈R ,x 3>0D .∀x ∈R,2x >0答案 C解析 对于A ,当x =1时,lg x =0,正确;对于B ,当x =π4时,tan x =1,正确;对于C ,当x <0时,x 3<0,错误;对于D ,∀x ∈R,2x >0,正确. 2.(2012·湖北)命题“存在一个无理数,它的平方是有理数”的否定是( )A .任意一个有理数,它的平方是有理数B .任意一个无理数,它的平方不是有理数C .存在一个有理数,它的平方是有理数D .存在一个无理数,它的平方不是有理数 答案 B解析 通过否定原命题得出结论.原命题的否定是“任意一个无理数,它的平方不是有理数”.3.(2012·山东)设命题p :函数y =sin 2x 的最小正周期为π2;命题q :函数y =cos x 的图象关于直线x =π2对称.则下列判断正确的是( ) A .p 为真 B .綈q 为假 C .p ∧q 为假D .p ∨q 为真答案 C解析 p 是假命题,q 是假命题,因此只有C 正确.4.已知命题p :“∀x ∈[1,2],x 2-a ≥0”,命题q :“∃x ∈R ,使x 2+2ax +2-a =0”,若命题“p 且q ”是真命题,则实数a 的取值范围是( )A .{a |a ≤-2或a =1}B .{a |a ≥1}C .{a |a ≤-2或1≤a ≤2}D .{a |-2≤a ≤1}答案 A解析 由题意知,p :a ≤1,q :a ≤-2或a ≥1, ∵p 且q 为真命题,∴p 、q 均为真命题, ∴a ≤-2或a =1,故选A. 二、填空题(每小题5分,共15分)5.命题:“∀x ∈R ,e x ≤x ”的否定是__________________.答案 ∃x ∈R ,e x >x6.若命题p :关于x 的不等式ax +b >0的解集是{x |x >-ba },命题q :关于x 的不等式(x-a )(x -b )<0的解集是{x |a <x <b },则在命题“p ∧q ”、“p ∨q ”、“綈p ”、“綈q ”中,是真命题的有________. 答案 綈p 、綈q解析 依题意可知命题p 和q 都是假命题,所以“p ∧q ”为假、“p ∨q ”为假、“綈p ”为真、“綈q ”为真.7.已知命题p :x 2+2x -3>0;命题q :13-x >1,若“綈q 且p ”为真,则x 的取值范围是____________________.答案 (-∞,-3)∪(1,2]∪[3,+∞)解析 因为“綈q 且p ”为真,即q 假p 真,而q 为真命题时,x -2x -3<0,即2<x <3,所以q 假时有x ≥3或x ≤2;p 为真命题时,由x 2+2x -3>0,解得x >1或x <-3,由⎩⎪⎨⎪⎧x >1或x <-3,x ≥3或x ≤2,得x ≥3或1<x ≤2或x <-3,所以x 的取值范围是x ≥3或1<x ≤2或x <-3.三、解答题(共22分)8.(10分)写出下列命题的否定,并判断真假: (1)q :∀x ∈R ,x 不是5x -12=0的根; (2)r :有些质数是奇数; (3)s :∃x ∈R ,|x |>0.解 (1)綈q :∃x ∈R ,x 是5x -12=0的根,真命题. (2)綈r :每一个质数都不是奇数,假命题. (3)綈s :∀x ∈R ,|x |≤0,假命题.9.(12分)已知c >0,设命题p :函数y =c x 为减函数.命题q :当x ∈⎣⎡⎦⎤12,2时,函数f (x )=x +1x >1c 恒成立.如果“p 或q ”为真命题,“p 且q ”为假命题,求c 的取值范围.解 由命题p 为真知,0<c <1, 由命题q 为真知,2≤x +1x ≤52,要使此式恒成立,需1c <2,即c >12,若“p 或q ”为真命题,“p 且q ”为假命题, 则p 、q 中必有一真一假,当p 真q 假时,c 的取值范围是0<c ≤12;当p 假q 真时,c 的取值范围是c ≥1. 综上可知,c 的取值范围是⎩⎨⎧⎭⎬⎫c |0<c ≤12或c ≥1.B 组 专项能力提升 (时间:25分钟,满分:43分)一、选择题(每小题5分,共15分)1.(2011·安徽)命题“所有能被2整除的整数都是偶数”的否定..是( )A .所有不能被2整除的整数都是偶数B .所有能被2整除的整数都不是偶数C .存在一个不能被2整除的整数是偶数D .存在一个能被2整除的整数不是偶数 答案 D解析 由于全称命题的否定是存在性命题,本题“所有能被2整除的整数都是偶数”是全称命题,其否定为存在性命题“存在一个能被2整除的整数不是偶数”. 2.(2012·辽宁)已知命题p :∀x 1,x 2∈R ,(f (x 2)-f (x 1))·(x 2-x 1)≥0,则綈p 是 ( ) A .∃x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≤0 B .∀x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≤0 C .∃x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<0 D .∀x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<0 答案 C解析 綈p :∃x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<0.3.设有两个命题,p :不等式e x 4+1e x >a 的解集为R ;q :函数f (x )=-(7-3a )x 在R 上是减函数,如果这两个命题中有且只有一个真命题,那么实数a 的取值范围是( ) A .1≤a <2 B .2<a ≤73C .2≤a <73D .1<a ≤2答案 A解析 记A ={a |不等式e x 4+1e x >a 的解集为R }; B ={a |f (x )=-(7-3a )x 在R 上是减函数}.由于函数y =e x 4+1e x 的最小值为1,故A ={a |a <1}. 又因为函数f (x )=-(7-3a )x 在R 上是减函数,故7-3a >1,即a <2,所以B ={a |a <2}.要使这两个命题中有且只有一个真命题,a 的取值范围为[(∁R A )∩B ]∪[(∁R B )∩A ], 而(∁R A )∩B =[1,+∞)∩(-∞,2)=[1,2),(∁R B )∩A =[2,+∞)∩(-∞,1)=∅,因此[(∁R A )∩B ]∪[(∁R B )∩A ]=[1,2),故选A.二、填空题(每小题5分,共15分)4.已知命题p :“∀x ∈R ,∃m ∈R,4x -2x +1+m =0”,若命题綈p 是假命题,则实数m 的取值范围是__________.答案 (-∞,1]解析 若綈p 是假命题,则p 是真命题,即关于x 的方程4x -2·2x +m =0有实数解,由于m =-(4x -2·2x )=-(2x -1)2+1≤1,∴m ≤1.5.设p :方程x 2+2mx +1=0有两个不相等的正根,q :方程x 2+2(m -2)x -3m +10=0无实根.则使“p ∨q ”为真,“p ∧q ”为假的实数m 的取值范围是____________. 答案 (-∞,-2]∪[-1,3)解析 设方程x 2+2mx +1=0的两个正根分别为x 1,x 2,则由⎩⎪⎨⎪⎧Δ1=4m 2-4>0x 1+x 2=-2m >0,得m <-1,∴p :m <-1. 由Δ2=4(m -2)2-4(-3m +10)<0知-2<m <3,∴q :-2<m <3.由p ∨q 为真,p ∧q 为假可知,命题p 和q 一真一假,当p 真q 假时,得⎩⎪⎨⎪⎧ m <-1m ≥3或m ≤-2,此时m ≤-2; 当p 假q 真时,得⎩⎪⎨⎪⎧m ≥-1-2<m <3,此时-1≤m <3, ∴m 的取值范围是(-∞,-2]∪[-1,3).6.下列结论:①若命题p :∃x ∈R ,tan x =1;命题q :∀x ∈R ,x 2-x +1>0.则命题“p ∧綈q ”是假命题;②已知直线l 1:ax +3y -1=0,l 2:x +by +1=0,则l 1⊥l 2的充要条件是a b=-3; ③命题“若x 2-3x +2=0,则x =1”的逆否命题:“若x ≠1,则x 2-3x +2≠0”.其中正确结论的序号为________.答案 ①③解析 ①中命题p 为真命题,命题q 为真命题,所以p ∧綈q 为假命题,故①正确; ②当b =a =0时,有l 1⊥l 2,故②不正确;③正确.所以正确结论的序号为①③.三、解答题7.(13分)已知命题p :方程2x 2+ax -a 2=0在[-1,1]上有解;命题q :只有一个实数x 0满足不等式x 20+2ax 0+2a ≤0,若命题“p 或q ”是假命题,求a 的取值范围.解 由2x 2+ax -a 2=0得(2x -a )(x +a )=0,∴x =a 2或x =-a , ∴当命题p 为真命题时⎪⎪⎪⎪a 2≤1或|-a |≤1,∴|a |≤2.又“只有一个实数x 0满足不等式x 20+2ax 0+2a ≤0”,即抛物线y =x 2+2ax +2a 与x 轴只有一个交点,∴Δ=4a 2-8a =0,∴a =0或a =2.∴当命题q 为真命题时,a =0或a =2.∴命题“p 或q ”为真命题时,|a |≤2.∵命题“p 或q ”为假命题,∴a >2或a <-2.即a 的取值范围为{a |a >2或a <-2}.。

简单的逻辑联结词、全称量词与存在量词

简单的逻辑联结词、全称量词与存在量词
第三节
简单的逻辑联结词、全称量词与存在量词
【知识重温】
一、必记3个知识点
1.简单的逻辑联结词
(1) 命 题 中 的 ________
_________ 叫 做 逻 辑 联 结
判断真假 、 __________
判断为真 、判断为假
词.
(2)命题p且q、p或q、非p的真假判断
p
q


p且q
若q,则p
1
-x
+e ≥2,命题q:∃x0∈(0,+∞),2x0 = ,则下列判断正确的是
2
(
)
A.p∧q是真命题
B.(綈p)∧(綈q)是真命题
C.p∧(綈q)是真命题
D.(綈p)∧q是真命题
1
x
-x
x
解析:因为e +e =e + ≥2成立,所以命题p是真命题;又由
e
1
2x0 = =2 - 1 ,得x0 =-1∉(0,+∞),所以命题q是假命题.所以
______


______
綈q,则綈p






p或q
若______
p,则綈q

____
没有关系
____
必要
非p

相同
__
____
充分
____

2.全称量词与存在量词
(1)全称量词:短语“所有的”“任何一个”在逻辑中通常叫做全
充分不必要
称量词,用“∀”表示;含有全称量词的命题叫做________.
不管是全称命题,还是特称命题,若其真假不容易正面判断时,
可先判断其否定的真假.
命题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(2)因为“¬p 或¬q”是假命题,所以¬p 和¬q 都是假命题, 所以 p 和 q 都是真命题,由真值表可得“p 或 q”“p 且 q”“¬p 或 q”都是真命题,而“¬p 且 q”是假命题.故选 C.
[答案] (1)D (2)C
考点二 含有一个量词的命题的否定(基础型考点——自
主练透)
[方法链接]
[解析] x=±1 时,p 成立,所以 p 真,q 假,p∨q 真,p ∧q 假.
[答案] p、p∨q
5.已知命题 p:∃a0∈R,曲线 x2+ay20=1 为双曲线:命题 q:x2-7x+12<0 的解集是{x|3<x<4}.给出下列结论:①命 题“p∧q”是真命题;②命题“p∧¬q”是假命题;③命题“¬p ∨q”是真命题;④命题“¬p∨¬q”是假命题.其中正确的是 ________.
[解析] “∀x∈[0,+∞),x3+x≥0”是含有全称量词的 命题,其否定是“∃x0∈[0,+∞),x30+x0<0”故选 C.
[答案] C
2.有下列四个命题,其中真命题是( ) A.∀n∈R,n2≥n B.∃n∈R,∀m∈R,m·n=m C.∀n∈R,∃m∈R,m2<n D.∀n∈R,n2<n
[解析] p∧q 为假命题时,p,q 可能一个真命题一个假命 题,也可能两个都是假命题.故选 A,B,C 中的结论都不正确; 选项 D 中结论等价于 p,q 至少有一个假命题,故正确.
[答案] D
4.已知命题 p:∃x∈R,x2+x12≤2,命题 q 是命题 p 的否 定,则命题 p、q、p∧q、p∨q 中是真命题的是________.
提醒:不管是全称命题,还是特称命题,若其真假不容易 正面判断时,可先判断其否定的真假.
[题组集训] 1.(2016·郑州模拟)下列命题中的假命题是( ) A.∀x∈R,x2≥0 B.∀x∈R,2x-1>0 C.∃x0∈R,lgx0<1 D.∃x0∈R,sinx0+cosx0=2
[解析] A 显然正确;由指数函数的性质知 2x-1>0 恒成立, 所以 B 正确;当 0<x<10 时,lg x<1,所以 C 正确;因为 sin x+cos x= 2sinx+π4,所以- 2≤sin x+cos x≤ 2,所以 D 错误.
∈Z)时,函数 y= 2(sin 2x+cos 2x)取得极小值.下列说法正确
的是( )
A.p∨q 是假命题
B.¬p∨q 是假命题
C.p∧q 是真命题
D.¬p∨q 是真命题
思路点拨 (1)先判定命题 p 与 q 的真假,再由含有逻辑联 结词命题的真值表进行判断.
(2)分别判定 p 与 q 的真假.再判定复合命题的真假.
1(a>0 且 a≠1)恒过(1,2)点;命题 q:若函数 f(x-1)为偶函数,
则 f(x)的图象关于直线 x=1 对称,则下列命题为真命题的是
() A.p∧q
B.¬p∧¬q
C.¬p∧q
D.p∧¬q
(2)(2016·长春市调研)给定命题 p:函数 y=sin2x-34π和函
数 y=cos2x-34π的图象关于原点对称;命题 q:当 x=kπ-π2(k
[解析] ∀x 的否定为∃x0,>的否定为≤,所以命题¬p 为 ∃x0∈-π2,π2,tan x0≤sin x0.
[答案] C
3.(2016·保定二模)已知命题 P 为:“∃x∈R,|x|≤0”, 则¬P 为:________.
[解析] 因为特称命题的否定是全称命题,所以命题 P“∃ x∈R,|x|≤0”的否定为¬P 为“∀x∈R,|x|>0”.
[解析] 选对于选项 A,令 n=12即可验证其不正确;对于 选项 C、选项 D,可令 n=-1 加以验证,均不正确,故选 B.
[答案] B
3.已知命题 p∧q 为假命题,下列结论正确的是( ) A.p∨q 为真命题 B.(¬p)∧q 为真命题 C.p,q 有且只有一个假命题 D.¬p,¬q 至少有一个真命题
[答案] B
考点四 利用复合命题的真假求参数范围(深化型考点 ——引申发散)
【例 2】 已知命题 p:关于 x 的不等式 ax>1(a>0,a≠1) 的解集是{x|x<0},命题 q:函数 y=lg(ax2-x+a)的定义域为 R, 如果 p∨q 为真命题,p∧q 为假命题,则实数 a 的取值范围为 ________.
[答案] (1)B (2)B
【名师说法】
(1)“p∧q”“p∨q”“¬p”形式命题的真假判断步骤 ①准确判断简单命题p、q的真假; ②判断“p∧q”“p∨q”“¬p”命题的真假. (2)含有逻辑联结词的命题的真假判断规律 ①p∨q:p、q中有一个为真,则p∨q为真,即一真全真; ②p∧q:p、q中有一个为假,则p∧q为假,即一假即假; ③¬p:与p的真假相反,即一真一假,真假相反.
(2) 命 题 p 中 y = cos 2x-34π = cos 2x-π4-π2 = cosπ2-2x-π4=sin2x-π4与 y=sin2x+π4关于原点对称,故 p 为真命题;命题 q 中 y= 2(sin 2x+cos 2x)=2sin2x+π4取极小 值时,2x+π4=2kπ-π2,则 x=kπ-38π,k∈Z,故 q 为假命题, 则¬p∧q 为假命题,故选 B.
[解析] 命题 p:所有指数函数都是单调函数,则¬p 为: 存在一个指数函数,它不是单调函数.选 C.
[答案] C
2.(2016·洛阳市统一考试)若命题 p:∀x∈-π2,π2,tan x >sin x,则命题¬p 为( )
A.∃x0∈-π2,π2,tan x0≥sin x0 B.∃x0∈-π2,π2,tan x0>sin x0 C.∃x0∈-π2,π2,tan x0≤sin x0 D.∃x0∈-∞,-π2∪π2,+∞,tan x0>sin x0
3.下列命题中,真命题是( ) A.∃x0∈0,π2,sin x0+cos x0≥2 B.∀x∈(3,+∞),x2>2x+1 C.∃x0∈R,x20+x0=-1 D.∀x∈π2,π,tan x>sin x
[解析] 对于选项 A,sin x+cos x= 2sinx+π4≤ 2,所 以此命题不成立;对于选项 B,x2-2x-1=(x-1)2-2,当 x> 3 时,(x-1)2-2>0,所以此命题成立;对于选项 C,x2+x+1 =x+122+34>0,所以 x2+x=-1 对任意实数 x 都不成立,所 以此命题不成立;对于选项 D,当 x∈π2,π时,tan x<0,sin x >0,命题显然不成立.
(4)全称命题与特称命题的否定
命题
命题的否定
∀x∈M,p(x) ∃x0∈M,p(x0)
∃x0∈M,¬p(x0) ∀x∈M,¬p(x)
[小题查验] 1.(2014·福建高考)命题“∀x∈[0,+∞),x3+x≥0”的 否定是( ) A.∀x∈(-∞,0),x3+x<0 B.∀x∈(-∞,0),x3+x≥0 C.∃x0∈[0,+∞),x30+x0<0 D.∃x0∈[0,+∞),x30+x0≥0
[解析] 由关于 x 的不等式 ax>1(a>0,a≠1)的解集是{x|x <0},知 0<a<1;
[解析] (1)当 x=1 时,y=2-a2≠2,所以命题 p 为假,故 ¬p 为真;由函数 f(x-1)是偶函数知,函数 y=f(x-1)的图象关 于 y 轴对称,由函数图象的平移法则知,y=f(x)的图象关于直 线 x=-1 对称,所以命题 q 为假,故¬q 为真.所以¬p∧¬q 为 真.故选 B.
跟踪训练
(1)(2016·商丘二模)已知命题 p:函数 y=ax+1+1(a>0 且
a≠1)的图象恒过(-1,2)点;命题 q:已知平面 α∥平面 β,则直
线 m∥α 是直线 m∥β 的充要条件;则下列命题为真命题的是
() A.p∧q
B2016·重庆模拟)已知命题“¬p 或¬q”是假命题,则下列
词.
(2)p命题真值表q




p∧q _真___ __假__
p∨q __真__ __真__
¬p _假___ __真__


__假__
__真__
__假__


__假__
__假__
__真__
2.全称量词与全称命题 (1)全称量词:短语“_____所__有______”在陈述中表示所述事 物的__全__体___,逻辑中通常叫做全称量词,并用符号“_∀____” 表示. (2)全称命题:含有__全__称__量__词____的命题. (3)全称命题的符号表示 形 如 “ 对 M 中 的 所 有 x , p(x)” 的 命 题 , 用 符 号 简 记 为 “__∀_x_∈__M__,__p_(_x)____”.
含有一个量词的命题的否定的重点题型及破解策略:
重点题型
破解策略
全称命题的否 把全称量词改为存在量词,把后面的结论

进行否定
特称命题的否 把存在量词改为全称量词,把后面的结论

进行否定
提醒:没有量词的要结合命题的含义加上量词.
[题组集训] 1.(2016·湖北省八校联考)已知命题 p:所有指数函数都是 单调函数,则¬p 为( ) A.所有的指数函数都不是单调函数 B.所有的单调函数都不是指数函数 C.存在一个指数函数,它不是单调函数 D.存在一个单调函数,它不是指数函数
[解析] 因为命题 p 和命题 q 都是真命题,所以命题“p∧ q”是真命题,命题“p∧¬q”是假命题,命题“¬p∨q”是真 命题,命题“¬p∨¬q”是假命题.
[答案] ①②③④
考点一 含有逻辑联结词的命题的真假(重点型考点——
师生共研)
【例 1】 (1)(2016·吉林模拟)已知命题 p:函数 y=2-ax+
[答案] D
2.已知 a>0,函数 f(x)=ax2+bx+c,若 m 满足关于 x 的 方程 2ax+b=0,则下列选项中的命题为假命题的是( )
相关文档
最新文档