高中线性回归习题含答案
高二线性回归方程试题及答案

回归直线方程1、某公司为了解广告投入对销售收益的影响,在若干地区各投入万元广告费用,并将各地的销售收益绘制成频率分布直方图(如图所示).由于工作人员操作失误,横轴的数据丢失,但可以确定横轴是从开始计数的. [附:回归直线的斜率和截距的最小二乘估计公式分别为.] (1)根据频率分布直方图计算图中各小长方形的宽度;(2)试估计该公司投入万元广告费用之后,对应销售收益的平均值(以各组的区间中点值代表该组的取值);(3)该公司按照类似的研究方法,测得另外一些数据,并整理得到下表:广告投入(单位:万元) 1 2 3 4 5 销售收益(单位:万元)2 3 27由表中的数据显示,与之间存在着线性相关关系,请将(2)的结果填入空白栏,并求出关于的回归直线方程.401221ˆˆˆ,ni ii nii x y nx ybay bx xnx ==-==--∑∑4x y x y y x2、某校在规划课程设置方案的调研中,随机抽取160名理科学生,想调查男生、女生对“坐标系与参数方程”与“不等式选讲”这两道题的选择倾向性,调研中发现选择“坐标系与参数方程”的男生人数与选择“不等式选讲”的总人数相等,且选择“坐标系与参数方程”的女生人数比选择“不等式选讲”的女生人数多25人,根据调()完成列联表,并判断在犯错误的概率不超过的前提下,能否认为选题与性 别有关.(Ⅰ)按照分层抽样的方法,从选择“坐标系与参数方程”与选择“不等式选讲”的学生中共抽取8人进行问卷.若从这8人中任选3人,记选择“坐标系与参数方程”与选择“不等式选讲”的人数的差为,求的分布列及数学期望. 附: ,其中.ξξE ξ()()()()()22n ad bc K a b c d a c b d -=++++n a b c d =+++3、面向全市招聘事业编工作人员,由人事、劳动、纪检等部门联合组织招聘考试,招聘考试分为两个阶段:笔试和面试.现将所有参赛选手参加笔试的成绩(得分均为整数,满分为100分)进行统计,制成如下频率分布表.(Ⅰ)求出上表中的x,y,z,s,p的值;(Ⅱ)按规定,笔试成绩不低于90分的应聘人员可以参加面试,且面试的方式采用单循环,以参加面试人员胜出的场数决定是否录用(即参加面试的所有人员中每两人必需进行一个场次的PK比赛).已知松山区有两名应聘人员取得面试资格,在所有的比赛中,求有松山区选手参加比赛的概率.答案1、某公司为了解广告投入对销售收益的影响,在若干地区各投入万元广告费用,并将各地的销售收益绘制成频率分布直方图(如图所示).由于工作人员操作失误,横轴的数据丢失,但可以确定横轴是从开始计数的. [附:回归直线的斜率和截距的最小二乘估计公式分别为.] (1)根据频率分布直方图计算图中各小长方形的宽度;(2)试估计该公司投入万元广告费用之后,对应销售收益的平均值(以各组的区间中点值代表该组的取值);(3)该公司按照类似的研究方法,测得另外一些数据,并整理得到下表:广告投入(单位:万元) 1 2 3 4 5 销售收益(单位:万元)2 3 27由表中的数据显示,与之间存在着线性相关关系,请将(2)的结果填入空白栏,并求出关于的回归直线方程.解:(1)设各小长方形的宽度为,由频率分布直方图中各小长方形的面积总和为1,可知,故,即图中各小长方形的宽度为2. …3分(2)由(1)知各小组依次是, 其中点分别为,对应的频率分别为,故可估计平均值为.7分 (3)由(2)可知空白栏中填5.由题意可知, ,401221ˆˆˆ,ni ii nii x y nx ybay bx xnx ==-==--∑∑4x y x y y x m (0.080.10.140.120.040.02)0.51m m +++++⋅==2m =[0,2),[2,4),[4,6),[6,8),[8,10),[10,12]1,3,5,7,9,110.16,0.20,0.28,0.24,0.08,0.0410.1630.250.2870.2490.08110.045⨯+⨯+⨯+⨯+⨯+⨯=12345232573, 3.855x y ++++++++====,,根据公式,可求得 ………………10分, ………………11分 所以所求的回归直线方程为. ………………12分2、某校在规划课程设置方案的调研中,随机抽取160名理科学生,想调查男生、女生对“坐标系与参数方程”与“不等式选讲”这两道题的选择倾向性,调研中发现选择“坐标系与参数方程”的男生人数与选择“不等式选讲”的总人数相等,且选择“坐标系与参数方程”的女生人数比选择“不等式选讲”的女生人数多25人,根据调()完成列联表,并判断在犯错误的概率不超过的前提下,能否认为选题与性别有关.(Ⅰ)按照分层抽样的方法,从选择“坐标系与参数方程”与选择“不等式选讲”的学生中共抽取8人进行问卷.若从这8人中任选3人,记选择“坐标系与参数方程”与选择“不等式选讲”的人数的差为,求的分布列及数学期望. 附: ,其中.【解析】(Ⅰ)51122332455769i ii x y=⨯+⨯+⨯+⨯+⨯==∑522222211234555ii x==++++=∑26953 3.8121.2,555ˆ310b-⨯⨯===-⨯3.8 1.230ˆ.2a=-⨯= 1.20.2y x =+ξξE ξ()()()()()22n ad bc K a b c d a c b d -=++++n a b c d =+++,故不能认为选题与性别有关.…………………5分(Ⅱ)选择“坐标系与参数方程”与选择“不等式选讲”的人数比例为100:60=5:3, 所以抽取的8人中倾向“坐标系与参数方程”的人数为5,倾向“不等式选讲”的人 数为3.依题意,得,,,, . …………………9分 故的分布列如下:所以. …………………12分 3、面向全市招聘事业编工作人员 ,由人事、劳动、纪检等部门联合组织招聘考试,招聘考试分为两个阶段:笔试和面试.现将所有参赛选手参加笔试的成绩(得分均为整数,满分为100分)进行统计,制成如下频率分布表.(Ⅰ)求出上表中的x ,y ,z ,s ,p 的值;(Ⅱ)按规定,笔试成绩不低于90分的应聘人员可以参加面试,且面试的方式采用单循环,以参加面试人员胜出的场数决定是否录用(即参加面试的所有人员中每两人必需进行一个场次的 PK 比赛).已知松山区有两名应聘人员取得面试资格,在所有的比赛中,求有松山区选手参加比赛的概率. 解:(1)由题意知,参加招聘考试的人员共有p == 50人, ∴x == 0.18, 22160(9001800) 3.74 5.0241055510060K -=≈<⨯⨯⨯3,1,1,3=--ξ33381(3)56C P C =-==ξ12533815(1)56C C P C =-==ξ21533830(1)56C C P C ===ξ30533810(3)56C C P C ===ξξ115301033(1)135********E =-⨯+-⨯+⨯+⨯=ξ160.32950y = 50×0.38 = 19, Z = 50﹣9﹣19﹣16 = 6, S = = 0.12 ----------------------------------------------------------6分(Ⅱ)由(Ⅱ)知,参加面试的应聘人员共6人.若参加面试的6人分别记为:S 1 , S 2 , a , b , c , d .( 其中S 1 , S 2 表示松山区的参赛选手,a , b , c , d 表示其他旗、县的选手)则所有的比赛为: (S 1 , S 2 ) (S 1 , a ) (S 1 ,b ) (S 1 ,c ) (S 1 , d ) (S 2 , a ) (S 2 , b ) (S 2 , c ) (S 2 ,d ) (a , b ) ( a , c ) ( a , d ) ( b , c ) (b , d ) (c , d ) 共十五个场次的比赛,有松山区选手出现的比赛有9场. 若有松山区选手参加比赛的事件为:A 则P (A ) =-------------------------------12分65035。
线性回归方程(人教A版)(含答案)

线性回归方程(人教A版)一、单选题(共8道,每道12分)1.人的年龄与人体脂肪的百分数的回归方程为:,如果某人36岁,那么这个人的脂肪含量( )A.一定是B.在附近的可能性比较大C.无任何参考数据D.以上解释均无道理答案:B解题思路:试题难度:三颗星知识点:可线性化的回归分析2.根据如下样本数据:得到的回归方程为,则( )A. B.C. D.答案:A解题思路:试题难度:三颗星知识点:可线性化的回归分析3.已知变量与负相关,且由观测数据算得样本平均数,,则由该观测数据算得的线性回归方程可能是( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:可线性化的回归分析4.对具有线性相关关系的变量,测得一组数据如下表:根据上表,利用最小二乘法得到它们的回归直线方程为,则的值为( )A.1B.1.5C.2D.2.5答案:B解题思路:试题难度:三颗星知识点:可线性化的回归分析5.某单位为了解办公楼用电量与气温之间的关系,随机统计了四个用电量与当地平均气温,并制作了对照表:由表中数据得到线性归回方程,当气温为时,预测用电量为( )A.68度B.52度C.12度D.28度答案:A解题思路:试题难度:三颗星知识点:可线性化的回归分析6.根据如下样本数据:得到回归方程,则( )A.,B.,C.,D.,答案:A解题思路:试题难度:三颗星知识点:可线性化的回归分析7.某样本数据如下表所示:假设根据表中数据所得线性回归直线方程为,某同学根据表中的两组数据和求得的直线方程为,根据散点图的分布情况,判断以下结论正确的是( )A.,B.,C.,D.,答案:D解题思路:试题难度:三颗星知识点:可线性化的回归分析8.实验测得四组的值分别为,,,,则与间的线性回归方程是( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:可线性化的回归分析。
《8.2 一元线性回归模型及其应用》(同步训练)高中数学选择性必修第三册_2024-2025学年

《8.2 一元线性回归模型及其应用》同步训练(答案在后面)一、单选题(本大题有8小题,每小题5分,共40分)1、以下哪个不是一元线性回归模型中的参数?A、截距bB、斜率aC、相关系数rD、自变量x2、某学校对16名高三学生的每周学习时间(单位:小时)和数学成绩(单位:分)进行调查,得到的数据如下:学习时间(x)成绩(y)1012012130151401814520150221552516028165学习时间(x)成绩(y)3017032175351803818540190431954520048205根据以上数据,采用一元线性回归模型进行拟合,下列哪个选项最接近于求得的回归直线方程(y=a+bx)中的(b)值?A. 2.5B. 3C. 3.5D. 43、已知某城市居民的收入(x)与消费支出(y)之间的关系数据如下:收入(x)/万元消费支出(y)/万元4 2.85 3.26 3.67 4.08 4.4现用最小二乘法拟合一元线性回归模型,下列说法错误的是()A. 拟合的回归直线必然通过点(5,3.2)B. 拟合的回归直线必然通过点(6,3.6)C. 回归直线的斜率k表示自变量x每增加1个单位,因变量y平均增加k个单位D. 可以通过计算回归直线的方程来预测当收入为9万元时的消费支出4、已知一组数据((x1,y1),(x2,y2), …,(x n,y n)) 在进行一元线性回归分析后,得到的回归直线方程为(y=a+bx),若该直线通过点 (1, 3) 和 (3, 7),则下列哪项选项正确表达了(a)和(b)的值?A、(a=1,b=2)B、(a=2,b=1)C、(a=1,b=1)D、(a=2,b=2)5、某公司近5年的年营业额(单位:万元)如下表所示:年份 | 年营业额-|—— 2016 | 500 2017 | 520 2018 | 545 2019 | 580 2020 | 610若以年份为自变量x,年营业额为因变量y,则下列回归方程中,最能反映这组数据的趋势的是()A. y = 1.2x - 580B. y = 1.6x - 1000C. y = 1.8x - 700D. y = 2.0x - 6006、某研究小组为了解高中学生的体质指数(BMI)与每周运动时间的关系收集了30名学生的相关数据,并构建了一元线性回归模型。
《9.1 线性回归分析》(同步训练)高中数学选择性必修第二册_苏教版_2024-2025学年

《9.1 线性回归分析》同步训练(答案在后面)一、单选题(本大题有8小题,每小题5分,共40分)1、某超市为了解顾客购买某种商品的数量与价格的关系,随机抽取了10位顾客的购买数据,得到以下表格:价格(元)数量105015452040253530303525402045155010555若用线性回归分析来估计该种商品的销售数量与价格的关系,以下最合适的回归模型是:A、(y=ax+b)B、(y=a+bx)C、(y=ax2+b)D、(y=a√x+b)2、已知一组数据点 (x,y) 如下表所示:x y12233546假设我们使用线性回归模型(y=ax+b)对这组数据进行拟合,其中(a)和(b)是模型参数。
如果通过最小二乘法得到的最佳拟合直线是(y=1.4x+0.8),那么根据这条直线预测当(x=5)时(y)的值是多少?A. 7.0B. 7.2C. 7.4D. 7.63、已知某城市近五年的居民人均年收入(单位:万元)如下表所示:年份年收入(万元)2016 4.52017 4.82018 5.22019 5.62020 6.0若以年份为自变量x,年收入为因变量y,建立线性回归方程,则下列选项中,最接近线性回归方程斜率的值为:A. 0.6B. 0.8C. 0.9D. 1.04、某研究机构对两个变量x与y进行线性回归分析,得到回归方程为(ŷ=0.8x+2)。
已知一组样本数据中x的均值为5,y的均值为6。
下列说法正确的是:A、回归系数(b=0.8),样本点在直线上B、回归系数(b=0.8),样本点完全在直线上C、回归系数(b=0.8),样本点围绕直线波动D、回归系数(b=−0.8),样本点围绕直线波动5、在直线回归分析中,假设我们拟合了以下数据点的散点图:x y12233445根据最小二乘法,下面哪个方程可以近似表示这组数据的线性关系?A. y = 0.5x + 0.5B. y = 2.0x + 1.0C. y = 0.5x + 0.9D. y = 2.0x - 1.06、某地区连续五年的年降水量数据如下表所示:年份年降水量(mm)20164002017420201845020194602020480若以年份为自变量x,年降水量为因变量y,根据下列选项中给出的相关系数,判断哪个选项的相关性最强:A、r = 0.8B、r = 0.6C、r = 0.4D、r = 0.27、某租赁公司对某型号汽车的租赁费用与租期(月)之间的关系进行了调查,得到了以下数据:租期(x)12345租赁费用(y)150180210240270利用这些数据,通过线性回归模型拟合得到的租赁费用关于租期的线性回归方程为y = 30x + b。
北师大高中数学选择性必修第一册第七章课时作业49一元线性回归【含答案】

北师大高中数学选择性必修第一册第七章课时作业49一元线性回归(原卷版)一、选择题1.为研究变量x和y的线性相关性,甲、乙二人分别作了研究,利用线性回归方法得到回归直线l1和l2,两人计算知相同,也相同,下列正确的是()A.l1与l2一定重合B.l1与l2一定平行C.l1与l2相交于点()D.无法判断l1和l2是否相交2.为了规定工时定额,需要确定加工某种零件所需的时间,为此进行了5次试验,得到5组数据:(x1,y1),(x2,y2),(x3,y3),(x4,y4),(x5,y5),由最小二乘法求得线性回归方程为=0.67x+54.9.若已知x1+x2+x3+x4+x5=150,则y1+y2+y3+y4+y5=()A.75B.155.4C.375D.466.23.已知变量x,y之间具有线性相关关系,其回归方程为Y=aX-(1-a),若x i=5,y i=8,则a的值为()A. B.C. D.14.为了研究某班学生的数学成绩X(分)和物理成绩Y(分)的关系,从该班随机抽取10名学生,根据测量数据的散点图可以看出Y与X之间有线性相关关系,设其线性回归方程为Y=.已知x i=750,y i=800,=1.2,该班某学生的物理成绩为86,据此估计其数学成绩约为()A.81B.80C.93D.945.学校小卖部为了研究气温对饮料销售的影响,经过统计,得到一个卖出饮料数与当天气温的对比表:摄氏温度-1381217饮料瓶数3405272122根据上表可得回归方程Y=中的为6,据此模型预测气温为30℃时销售饮料瓶数为()A.141B.191C.211D.2416.已知具有线性相关关系的变量X,Y,设其样本点为A i(x i,y i)(i=1,2,…,8),线性回归方程为Y=,若+…+=(6,2)(O为原点),则=()A. B.-C. D.-7.(多选题)下列说法错误的有()A.线性回归方程适用于一切样本和总体B.线性回归方程一般都有局限性C.样本取值的范围会影响线性回归方程的适用范围D.线性回归方程得到的预测值是预测变量的精确值8.(多选题)已知具有线性关系的五个样本点A1(0,0),A2(2,2),A3(3,2),A4(4,2),A5(6,4),用最小二乘法得到线性回归方程l1:Y=bX+a,过点A1,A2的直线方程l2:y=mx+n,下列结论正确的是()A.m>b,a>nB.直线l1过点A3C.(y i-bx i-a)2≥(y i-mx i-n)2D.|y i-bx i-a|≥|y i-mx i-n|二、填空题9.已知变量X,Y线性相关,由观测数据算得样本的平均数=4,=5,线性回归方程Y=bX+a中的系数b,a满足b+a=4,则线性回归方程为Y=.10.某公司为确定明年投入某产品的广告支出,对近5年的年广告支出X(单位:万元)与年销售额Y(单位:万元)进行了初步统计,如下表所示,经测算,年广告支出X与年销售额Y满足线性回归方程Y =6.4X+18,则a的值为55.(保留整数)年广告支出X/万元23578年销售额Y/万元2837a6070 11.为了解篮球爱好者小李的投篮命中率与打篮球时间之间的关系,下表记录了小李某月1号到5号每天打篮球时间X(单位:小时)与当天投篮命中率Y之间的关系:时间X12345命中率Y0.40.50.60.60.4小李这5天的平均投篮命中率为0.5;用线性回归分析的方法,预测小李该月6号打6小时篮球的投篮命中率为0.53.三、解答题12.通过市场调查,得到某种产品的资金投入X(单位:万元)与获得的利润Y(单位:万元)的数据,如表所示:资金投入X23456利润Y23569线性回归方程Y=中系数计算公式:.(1)根据上表提供的数据,用最小二乘法求线性回归方程Y=;(2)现投入资金10万元,求获得利润的估计值为多少万元?13.2013年以来精准扶贫政策的落实,使我国扶贫工作有了新进展,贫困发生率由2012年底的10.2%下降到2018年底的1.4%,创造了人类减贫史上的中国奇迹.“贫困发生率”是指低于贫困线的人口占全体人口的比例,2012年至2018年我国贫困发生率的数据如下表:年份(t)2012201320142015201620172018贫困发生10.28.57.2 5.7 4.5 3.1 1.4率Y(%)(1)从表中所给的7个贫困发生率数据中任选两个,求两个都低于5%的概率;(2)设年份代码X=t-2015,利用线性回归方程,分析2012年至2018年贫困发生率Y与年份代码X的相关情况,并估计2019年贫困发生率.附:回归直线Y=的斜率和截距的最小二乘估计公式分别为.(的值保留到小数点后三位)14.某数学老师身高177cm,他爷爷,父亲,儿子的身高分别是174 cm,171cm和183cm,因儿子的身高与父亲的身高有关,该老师用线性回归分析的方法预测他孙子的身高是()附:线性回归方程Y=中系数计算公式分别为:,其中为样本均值.A.185cmB.186cmC.187cmD.188cm15.已知关于变量x,y的一组数据如表所示.x23456y34689对于表中数据,现给出如下拟合直线:①y=x+1;②y=2x-1;③y=;④y=x.根据最小二乘法的思想得到拟合程度最好的直线是.(填序号)16.下表是某原料在市场上从2013年至2019年这7年中每年的平均价格(单位:千元/吨)数据:年份2013201420152016201720182019年份代号X1234567平均价格Y2.963.22 3.49 3.704.05 4.46 4.81(单位:千元/吨)(1)求出Y关于X的线性回归方程;(系数精确到0.01)(2)以(1)的结论为依据,预测2032年该原料价格.预估该原料价格在哪一年突破1万元/吨?参考数据:y i=26.69,x i y i=115.35,≈104.43,=140.参考公式:回归方程Y=中斜率和截距的最小二乘估计公式分别为.北师大高中数学选择性必修第一册第七章课时作业49一元线性回归(解析版)一、选择题1.为研究变量x和y的线性相关性,甲、乙二人分别作了研究,利用线性回归方法得到回归直线l1和l2,两人计算知相同,也相同,下列正确的是(C)A.l1与l2一定重合B.l1与l2一定平行C.l1与l2相交于点()D.无法判断l1和l2是否相交解析:因为两个人在试验中发现对变量x的观测数据的平均值都是,对变量y的观测数据的平均值都是,所以两组数据的样本中心点是(),因为回归直线经过样本的中心点,所以l1和l2都过().故选C.2.为了规定工时定额,需要确定加工某种零件所需的时间,为此进行了5次试验,得到5组数据:(x1,y1),(x2,y2),(x3,y3),(x4,y4),(x5,y5),由最小二乘法求得线性回归方程为=0.67x+54.9.若已知x1+x2+x3+x4+x5=150,则y1+y2+y3+y4+y5=(C)A.75B.155.4C.375D.466.2解析:由题意,可得=30,代入线性回归方程,可得=0. 67×30+54.9=75,所以y1+y2+y3+y4+y5=5×=375,故选C.3.已知变量x,y之间具有线性相关关系,其回归方程为Y=aX-(1-a),若x i=5,y i=8,则a的值为(A)A. B.C. D.1解析:依题意知,而直线Y=aX-(1-a)一定经过点(),所以a-1+a=,解得a=.故选A.4.为了研究某班学生的数学成绩X(分)和物理成绩Y(分)的关系,从该班随机抽取10名学生,根据测量数据的散点图可以看出Y与X之间有线性相关关系,设其线性回归方程为Y=.已知x i=750,y i=800,=1.2,该班某学生的物理成绩为86,据此估计其数学成绩约为(B)A.81B.80C.93D.94解析:=75,=80,故=-10,即Y=1.2X -10,当Y=86时,86=1.2X-10,解得X=80.故选B.5.学校小卖部为了研究气温对饮料销售的影响,经过统计,得到一个卖出饮料数与当天气温的对比表:摄氏温度-1381217饮料瓶数3405272122根据上表可得回归方程Y=中的为6,据此模型预测气温为30℃时销售饮料瓶数为(B)A.141B.191C.211D.241解析:由表格得=7.8,=57.8.因为回归方程过点(),且=6,所以57.8=6×7.8+,解得=11.所以回归方程为Y=6X+11.当x=30℃时,Y=6×30+11=191.故选B.6.已知具有线性相关关系的变量X,Y,设其样本点为A i(x i,y i)(i=1,2,…,8),线性回归方程为Y=,若+…+=(6,2)(O为原点),则=(B)A. B.-C. D.-解析:因为+…+=(x1+x2+…+x8,y1+y2+…+y8)=(8,8)=(6,2),所以8=6,8=2⇒,因此,∴,故选B.7.(多选题)下列说法错误的有(AD)A.线性回归方程适用于一切样本和总体B.线性回归方程一般都有局限性C.样本取值的范围会影响线性回归方程的适用范围D.线性回归方程得到的预测值是预测变量的精确值解析:样本或总体具有线性相关关系时,才可求线性回归方程,而且由线性回归方程得到的函数值是近似值,而非精确值,因此线性回归方程有一定的局限性,所以A、D错误.故选AD.8.(多选题)已知具有线性关系的五个样本点A1(0,0),A2(2,2),A3(3,2),A4(4,2),A5(6,4),用最小二乘法得到线性回归方程l1:Y=bX+a,过点A1,A2的直线方程l2:y=mx+n,下列结论正确的是(AB)A.m>b,a>nB.直线l1过点A3C.(y i-bx i-a)2≥(y i-mx i-n)2D.|y i-bx i-a|≥|y i-mx i-n|解析:由题意可得,=3,=2,则=0.6,=0.2,所以线性回归方程l1为Y=0.6X+0.2,直线l2的方程为y=x,即b=0.6,a=0.2,m=1,n =0,故A正确;又3×0.6+0.2=2,则直线l1过A3,故B正确;因为(y i-bx i-a)2=0.8,(y i-mx i-n)2=9,故C错误;又|y i-bx i-a|=1.6,|y i-mx i-n|=5,故D错误;综上,正确的是AB.故选AB.二、填空题9.已知变量X,Y线性相关,由观测数据算得样本的平均数=4,=5,线性回归方程Y=bX+a中的系数b,a满足b+a=4,则线性回归方程为Y=.解析:由题知,点(4,5)在回归直线上,则4b+a=5,又b+a=4,所以a=,b=,即线性回归方程为Y=.10.某公司为确定明年投入某产品的广告支出,对近5年的年广告支出X(单位:万元)与年销售额Y(单位:万元)进行了初步统计,如下表所示,经测算,年广告支出X与年销售额Y满足线性回归方程Y =6.4X+18,则a的值为55.(保留整数)年广告支出X/万元23578年销售额Y/万元2837a6070解析:根据所给数据求出=5,,∵根据()在线性回归方程Y=6.4X+18上,∴=6.4×5+18,解得a=55.11.为了解篮球爱好者小李的投篮命中率与打篮球时间之间的关系,下表记录了小李某月1号到5号每天打篮球时间X(单位:小时)与当天投篮命中率Y之间的关系:时间X12345命中率Y0.40.50.60.60.4小李这5天的平均投篮命中率为0.5;用线性回归分析的方法,预测小李该月6号打6小时篮球的投篮命中率为0.53.解析:小李这5天的平均投篮命中率×(0.4+0.5+0.6+0.6+0.4)=0.5,=3,=0.01,=0.5-0.03=0.47.∴回归方程为Y=0. 01X+0.47,则当X=6时,Y=0.53.∴预测小李该月6号打6小时篮球的投篮命中率为0.53.三、解答题12.通过市场调查,得到某种产品的资金投入X(单位:万元)与获得的利润Y(单位:万元)的数据,如表所示:资金投入X23456利润Y23569线性回归方程Y=中系数计算公式:.(1)根据上表提供的数据,用最小二乘法求线性回归方程Y=;(2)现投入资金10万元,求获得利润的估计值为多少万元?解:(1)由题意得=4,=5.x i y i=2×2+3×3+4×5+5×6+6×9=117,=22+32+42+52+62=90.∴=1.7,∴=5-1.7×4=-1.8.∴线性回归方程为Y=1.7X-1.8.(2)当X=10时,Y=1.7×10-1.8=15.2(万元),∴当投入资金10万元时,获得利润的估计值为15.2万元.13.2013年以来精准扶贫政策的落实,使我国扶贫工作有了新进展,贫困发生率由2012年底的10.2%下降到2018年底的1.4%,创造了人类减贫史上的中国奇迹.“贫困发生率”是指低于贫困线的人口占全体人口的比例,2012年至2018年我国贫困发生率的数据如下表:年份(t)2012201320142015201620172018贫困发生10.28.57.2 5.7 4.5 3.1 1.4率Y(%)(1)从表中所给的7个贫困发生率数据中任选两个,求两个都低于5%的概率;(2)设年份代码X=t-2015,利用线性回归方程,分析2012年至2018年贫困发生率Y与年份代码X的相关情况,并估计2019年贫困发生率.附:回归直线Y=的斜率和截距的最小二乘估计公式分别为.(的值保留到小数点后三位)解:(1)由数据表可知,贫困发生率低于5%的年份有3个,从7个贫困发生率中任选两个共有=21种情况,选中的两个贫困发生率低于5%的情况共有=3种情况,∴所求概率为P=.(2)由题意得=0,==5.8,x i y i=-3×10.2-2×8.5-7.2+0+4.5+2×3.1+3×1.4=-39.9,=9+4+1+0+1+4+9=28,∴=-1.425,=5.8,∴线性回归方程为Y=-1.425X+5.8.∵-1.425<0,∴2012年至2018年贫困发生率逐年下降,平均每年下降1.425%.当X=2019-2015=4时,Y=-1.425×4+5.8=0.1.∴2019年的贫困发生率估计为0.1%.14.某数学老师身高177cm,他爷爷,父亲,儿子的身高分别是174cm,171cm和183cm,因儿子的身高与父亲的身高有关,该老师用线性回归分析的方法预测他孙子的身高是(B)附:线性回归方程Y=中系数计算公式分别为:,其中为样本均值.A.185cmB.186cmC.187cmD.188cm解析:设数学老师孙子的身高为y4根据题意,列表如下:父亲身高X/cm174171177183儿子身高Y/cm171177183y4根据上表第1列到第3列数据可得,=174,=177,∴===1,=177-1×174=3,所以线性回归方程为Y=X+3,y4=183+3=186.故选B.15.已知关于变量x,y的一组数据如表所示.x23456y34689对于表中数据,现给出如下拟合直线:①y=x+1;②y=2x-1;③y=;④y=x.根据最小二乘法的思想得到拟合程度最好的直线是③.(填序号)解析:列表得x23456y34689y=x+134567y=2x-1357911y=6y=x369故s1=(3-3)2+(4-4)2+(6-5)2+(8-6)2+(9-7)2=9,s2=(3-3)2+(4-5)2+(6-7)2+(8-9)2+(9-11)2=7,s3=+(6-6)2+,s4=(3-3)2++(6-6)2++(9-9)2=,由s3最小知直线③是拟合程度最好的直线.16.下表是某原料在市场上从2013年至2019年这7年中每年的平均价格(单位:千元/吨)数据:年份2013201420152016201720182019年份代号X1234567平均价格Y2.963.22 3.49 3.704.05 4.46 4.81(单位:千元/吨)(1)求出Y关于X的线性回归方程;(系数精确到0.01)(2)以(1)的结论为依据,预测2032年该原料价格.预估该原料价格在哪一年突破1万元/吨?参考数据:y i=26.69,x i y i=115.35,≈104.43,=140.参考公式:回归方程Y=中斜率和截距的最小二乘估计公式分别为.解:(1),=4,=≈0.31,×4≈2.59,故回归方程为Y=0.31X+2.59.(2)2032年对应的年份代号为20,由(1)可知,Y=0.31×20+2.59=8.79,故预测2032年该原料的价格为8.79千元/吨.由不等式0.31x+2.59≥10,解得x≥23.90,故年份代号至少为24时该原料的价格才能突破1万元/吨.年份代号为24时对应2036年.故预估该原料在2036年的价格突破1万元/吨.。
高中数学选择性必修三 精讲精炼 8 一元线性回归模型及其应用(精练)(含答案)

8.2 一元线性回归模型及其应用(精练)【题组一 样本中心求参数】1.(2021·全国·高二单元测试)某公司生产某种婴幼儿纸尿裤的产量x 与相应的生产能耗y 有如下样本数据:已知这组样本数据具有线性相关关系,由表中数据,求得回归直线的斜率为0.72,则这组样本数据的回归直线方程是( )A .ˆ0.72 2.05yx =+ B .ˆ0.720.35yx =+ C .ˆ0.720.26yx =+ D .ˆ0.350.72yx =+ 【答案】C【解析】设回归直线方程为ˆˆ0.72yx a =+,由样本数据,可得 4.5x =, 3.5y =, 因为回归直线经过点(),x y ,所以ˆ3.50.72 4.5a=⨯+,解得ˆ0.26a =, 所以回归直线方程为ˆ0.720.26yx =+. 故选:C .2.(2021·江西·吉安一中高二开学考试 )已知x 与y 之间的一组数据:()()()()13253749,,,,,,,,则y 与x 的线性回归方程为y bx a =+必过( )A .()26,B .()38,C .()2.56,D .()3.58,【答案】C【解析】由题意可知:1234 2.54x +++==,357964y +++==, ∴y 与x 的线性回归方程必过点()2.5,6.故选:C.3(2021·河南·孟津县第一高级中学 )为了庆祝建党100周年,某网站从7月1日开始推出党史类书籍免费下载活动,已知活动推出时间x (单位:天)与累计下载量y (单位:万次)的统计数据如表所示:根据上表,利用最小二乘法得到回归直线方程 1.4ˆˆyx a =+,据此模型预测,活动推出11天的累计下载量约A .13.8万次B .14.6万次C .16万次D .18万次【答案】C【解析】由表格数据知4567868910126,955x y ++++++++====,由回归直线方程的性质,得ˆ1.469a⨯+=,所以ˆ0.6a =,故ˆ 1.40.6y x =+, 所以当11x =时, 1.4110.616y =⨯+=(万次), 故选:C.4.(2021·河北·藁城新冀明中学高二月考)(多选)随着养生观念的深入,国民对餐饮卫生条件和健康营养的要求逐渐提高.据了解,烧烤食品含有强致癌物,因此吃烧烤的人数日益减少,烧烤店也随之减少.某市对2014年至2018年这五年间全市烧烤店盈利店铺的个数进行了统计,具体统计数据如下表所示:根据所给数据,得出y 关于t 的回归直线方程为273y bt =+,则下列说法正确的是( ) A .该市2014年至2018年全市烧烤店盈利店铺个数的平均数219y = B .y 关于t 的回归直线方程为18273y t =-+ C .估计该市2020年烧烤店盈利店铺的个数为147D .预测从2025年起,该市烧烤店盈利店铺的个数将不超过100 【答案】ABC【解析】由已知数据得3t =,219y =,故A 正确;因为y 关于t 的回归直线过点()3,219,所以2193273b =+,所以18b =-, 所以y 关于t 的回归直线方程为18273y t =-+.故B 正确;2020年的年份代码为7,故2020年该市烧烤店盈利店铺的个数约为187273147y =-⨯+=.故C 正确; 令18273100t -+≤,由*t N ∈,得10t ≥,故从2023年起,该市烧烤店盈利店铺的个数将不超过100.故D 不正确,故选:ABC.5.(2021·广东惠州 )(多选)某种产品的价格x (单位:元/kg )与需求量y (单位:kg )之间的对应数据如根据表中的数据可得回归直线方程为14.4y bx =+,则以下结论正确的是( ) A .y 与x 正相关 B .y 与x 负相关C .样本中心为()20,8D .该产品价格为35元/kg 时,日需求量大约为3.4kg【答案】BC【解析】由表格数据,随着价格x 的增加,需求量y 随之减少,所以y 与x 负相关. 因为1015202530205x ++++==,111086585y ++++==,故样本中心为()20,8由回归直线14.4y bx =+必过样本点的中心()20,8, 所以有82014.4b =⨯+,解得0.32b =-,所以当35x =时,0.323514.4 3.2y =-⨯+=,日需求量不为最大 故选:BC6.(2021·重庆市秀山高级中学校 )(多选)已知变量x ,y 之间的线性回归方程为0.710.3y x =-+,且变量x ,y 之间的一组相关数据如表所示,则下列说法正确的是( )A .变量x ,y 之间呈负相关关系B .可以预测,当20x 时, 3.7y =-C .4m =D .该回归直线必过点()9,4 【答案】ABD【解析】对于A :由线性回归方程为0.710.3y x =-+可知:0.70-<,所以变量x ,y 之间呈负相关关系,故对于B :当20x 时,0.72010.3 3.7y =-⨯+=-,故选项B 正确;对于C :68101294x +++==,6321144m m y ++++==,因为回归直线过样本中心点,所以110.7910.34m+=-⨯+,解得:5m =,故选项C 不正确; 对于D :由C 可知5m =,所以11544y +==,所以该回归直线必过样本中心点()9,4,故选项D 正确; 故选:ABD.7.(2021·贵州·贵阳一中 )某产品的广告费用x 与销售额y 的统计数据如下表:根据上表已得回归方程为8.6.8ˆ5yx =-,表中一数据模糊不清,请推算该数据的值为___________. 【答案】12【解析】由题中数据可得3,8.63 5.820x y ==⨯-=,故空白数据为12. 故答案为:128.(2021·全国·高二课时练习)已知x ,y 的取值如下表所示,由散点图分析可知y 与x 线性相关,且回归直线方程为ˆ0.95 2.6yx =+,那么表格中的数据m 的值为______.【答案】6.7 【解析】013424x +++==, 2.2 4.3 4.811.344m m y ++++==, 把(),x y 的坐标代入回归直线方程得11.30.952 2.64m+=⨯+, 解得 6.7m =. 故答案为:6.79.(2021·全国·高二课时练习)蟋蟀鸣叫的频率P (每分钟鸣叫的次数)与气温T (单位:℃)有着很大的关系.某观测人员根据下表中的观测数据计算出P 关于T 的线性回归方程ˆ 5.2168PT =-,则下表中k 的值为______.【答案】51【解析】计算()138414239404T =⨯+++=,()110929443644k P k +=⨯+++=, 将点10940,4k +⎛⎫ ⎪⎝⎭的坐标代入P 与T 的线性回归方程ˆ 5.2168P T =-中,得109 5.2401684k +=⨯-, 解得51k =. 故答案为:51.10.(2021·福建宁德·高三期中)某电子产品的成本价格由两部分组成,一是固定成本,二是可变成本,为确定该产品的成本,进行5次试验,收集到的数据如表:由最小二乘法得到回归方程ˆ0.6754.9yx =+,则a =___________. 【答案】75 【解析】1020304050305x ++++==,62688189600.25a y a ++++==+,因为线性回归方程过样本中心点,所以600.20.673054.975a a +=⨯+⇒=,故答案为:75 【题组二 线性回归方程】1.(2021·河北·藁城新冀明中学高二月考)假定产品产量x (千件)与单位成本y (元/件)之间存在相关关系.数据如下:(1)以x 为解释变量,y 为预报变量,作出散点图;(2)求y 与x 之间的回归直线方程,对于单位成本70元/件时,预报产量为多少; (3)计算各组残差,并计算残差平方和;【答案】(1)散点图见解析;(2)ˆ 1.8277.37yx =-+,4.050千件;(3)各组残差见解析,残差平方和为3.8182. 【解析】(1)解:散点图如下:(2)解:因为2343453.56x +++++==,737271736968716y +++++==,61279ii x==∑,611481i ii x y==∑,所以6162221614816 3.571ˆ 1.82796 3.56i i i i ix yx ybx x==-⋅-⨯⨯==≈--⨯-∑∑,ˆˆ71 1.82 3.577.37ay bx =-=+⨯=, 所以回归直线方程为ˆ 1.8277.37yx =-+,令70y =,则70 1.8277.37x =-+,解得 4.050x ≈, 所以单位成本70元/件时,预报产量约为4.050千件. (3)解:各组残差分别为:()11173 1.822ˆ77.370.73ˆey y =--⨯+=-=-, ()22272 1.82377.370.0ˆˆ9ey y =--⨯+==-, ()33371 1.82477.370.9ˆˆ1ey y =--⨯+==-, ()44473 1.82377.37 1.0ˆˆ9ey y =--⨯+==-, ()55569 1.824ˆ77.37 1.09ˆey y =--⨯+=-=-, ()66668 1.825ˆ77.370.27ˆey y =--⨯+=-=-, 残差的平方和为()()()2222621220.730.090.91 1.09 1.090.27 3.2ˆ818i i i y y=--+++--==++∑. 2.(2021·甘肃张掖)某家庭2015~2019年的年收入和年支出情况统计如表:(1)已知y 与x 具有线性相关关系,求y 关于x 的线性回归方程(系数精确到0.01);(2)假设受新冠肺炎疫情影响,该家庭2021年的年收入为9.5万元,请根据(1)中的线性回归方程预测该家庭2021年的年支出金额.附:回归方程ˆˆˆybx a =+中的斜率的最小二乘估计公式为()()()1122211ˆnni iiii i nniii i x ynx y xxy y b xnxxx====---==--∑∑∑∑.【答案】(1)ˆ0.780.24yx =+;(2)7.65万元. 【解析】(1)依题意,1(99.61010.411)105x =++++=,1(7.37.588.58.7)85y =++++=,则()5212.32i i x x=-=∑,()()511.8i ii x xy y =--=∑,则有()()()125151.8ˆ0.782.32iii ii x x y y bx x ==--==≈-∑∑,则ˆˆ0.24a y bx =-≈, 所以y 关于x 的线性回归方程为ˆ0.780.24yx =+; (2)当2021年的年收入为9.5万元时,即9.5x =,ˆ0.789.50.247.65y=⨯+=, 所以预测该家庭2021年的年支出金额为7.65万元.3.(2021·云南师大附中)大气污染物PM 2.5的浓度超过一定的限度会影响人的健康.为了研究PM 2.5的浓度是否受到汽车流量的影响,研究人员选择了24个社会经济发展水平相近的城市,在每个城市选择一个交通点统计24小时内过往的汽车流量x (单位:千辆),同时在低空相同的高度测定该时间段空气中的PM 2.5的平均浓度y(单位:μg/m 3),制作了如图所示的散点图:(1)由散点图看出,可用线性回归模型拟合y 与x 的关系,请用相关系数加以说明(精确到0.01); (2)建立y 关于x 的回归方程;(3)我国规定空气中的PM 2.5浓度的安全标准为24小时平均依度75μg/m 3,某城市为使24小时的PM 2.5浓度的平均值在60~130μg/m 3,根据上述回归方程预测汽车的24小时流量应该控制在什么范围内?附:参考数据: 1.4x =,95y =,2421() 2.1i i x x =-=∑,2421()60343i i y y =-=∑,241()()294i i i x x y y =--=∑,357.参考公式:相关系数()()nii xx y y r --∑,回归方程ˆˆˆya bx =+中斜率和截距的最小二乘估计公式分别为:121()()ˆ()niii nii x x yy b x x ==--=-∑∑,ˆˆay bx =-. 【答案】(1)答案见解析;(2)140101y x =-;(3)24小时的车流量应该控制在1150~1650辆. 【解析】1)由题得2940.82357r =≈, 因为y 与x 的相关系数近似为0.82,说明y 与x 具有很强的相关性, 从而可以用线性回归模型拟合y 与x 的关系.(2)由95y =得2412421()()ˆ()iii ii x x y y bx x ==--=-∑∑2941402.1==,95140 1.4101a y bx =-=-⨯=-, 所以y 关于x 的回归方程为140101y x =-. (3)当60y =时,由14010160x -=得 1.15x =; 当130y =时,由140101130x -=得 1.65x =. 所以24小时的车流量应该控制在1150~1650辆.4.(2021·全国·高三专题练习)实施新规后,某商场2020年1月份至10月份的收入情况如表.并计算得101890i i i x y ==∑,1021385i i x ==∑,101150i i y ==∑75.99.(1)是否可用线性回归模型拟合y 与x 的关系?请用相关系数r 加以说明;(当0.751r ≤≤时,那么变量x ,y 有较强的线性相关关系)(2)建立y 关于x 的回归方程ˆˆˆybx a =+(结果保留1位小数),并预测该商场12月份的收入情况.(结果保留整数)附:()()()1122211ˆn niii ii i nniii i x x y y x y nx ybx x xnx====---==--∑∑∑∑,ˆˆay bx =-. 【答案】(1)y 与x 有较强的线性相关关系,可用线性回归模型拟合,说明答案见解析;(2)ˆ0.810.7yx =+,预测该商场12月份的收入为20万元.【解析】(1)由题中数据得1011155 5.51010i i x x ===⨯=∑,10111150151010i i y y ===⨯=∑,1010 5.515825x y =⨯⨯=,于是得1010111()()1089082565i i i i i x x y y x y y x ==--=-=-=∑∑,75.99,从而10()()650.8675.99iix x y y r --==≈∑,0.75||1r ≤≤, 所以y 与x 有较强的线性相关关系,可用线性回归模型拟合;(2)由(1)知1011065i i i x y x y =-=∑,而1021385i i x ==∑,221010 5.5302.5x =⨯=,从而得10122110106565ˆ0.8385302.582.510i ii i i x y ybx xx ==-===≈--∑∑,65ˆˆ15 5.510.782.5ay bx =-=-⨯=, 所以y 关于x 的线性回归方程为ˆ0.810.7yx =+,当12x =时,ˆ0.81210.720y =⨯+≈, 从而预测该商场12月份的收入为20万元.5(2021·河南许昌 )某新型外贸出口公司对2021年过去9个月的出口销售数据进行整理,得到了今年第x 个月份与截止该月底的销售额y (单位:万元)之间的关系,如下表:(1)若y 与x 满足线性关系,求出y 关于x 的回归方程;(ˆa,ˆb 精确到整数位) (2)预测该公司10月份的销售额附:参考数据:913087i i y ==∑;9117524i i i x y ==∑;921285i i x ==∑;参考公式:()()()1122211n niii ii i nniii i x x y y x y nx yb x x xnx====---==--∑∑∑∑,a y bx =-.【答案】(1)ˆ35169yx =+;(2)答案见解析. 【解析】(1)5x =,343y =,919175249534317524154352089i i i x y xy =∴-=-⨯⨯=-=∑92221952859560ii x=-⨯=-⨯=∑,2089ˆ3560b ∴=≈, 2089ˆ343516960a=-⨯≈, ˆ35169yx ∴=+ (2)当10x =时,ˆ3510169519y=⨯+=, 所以预测该公司10月份销售额为519万元.6.(2021·福建·莆田第二十五中学高三月考)2021年东京奥运会,中国举重选手8人参赛,7金1银,在全世界面前展现了真正的中国力量;举重比赛根据体重进行分级,某次举重比赛中,男子举重按运动员体重分为下列十级:每个级别的比赛分为抓举与挺举两个部分,最后综合两部分的成绩得出总成绩,所举重量最大者获胜,在该次举重比赛中,获得金牌的运动员的体重以及举重成绩如下表 (1)根据表中的数据,求出运动员举重成绩y 与运动员的体重x 的回归直线方程(保留1位小数); (2)某金牌运动员抓举成绩为170公斤,挺举成绩为204公斤,则该运动员最有可能是参加的哪个级别的举重?参考数据:()()()992112620,7076i i i i i x x x x y y ==-=--=∑∑;参考公式:()()()121ˆˆˆ,niii nii x x yy bay bx xx ==--==--∑∑. 【答案】(1) 2.7155.4y x =+;(2)83公斤级举重. 【解析】(1)依题意,5459647076839199106789x ++++++++==,2913043373533633894064214303669y ++++++++==,()()()1217076ˆ 2.702620nii i nii xx y y bxx ==--===-∑∑, 则366 2.778155.4a y bx =-=-⨯=, 故回归方程为: 2.7155.4y x =+.(2)该运动员的抓举和挺举的总成绩为374公斤,根据回归方程可知:374 2.7155.4x =+, 解得81x ≈,即该运动员的体重应该在81公斤左右,即参加的应该是83公斤级举重.7.(2021·西藏·拉萨中学高二月考)珠海国际赛车场(简称ZIC)位于珠海经济特区金鼎镇.创建于1996年,是中国国内第一座符合国际汽车联盟一级方程式标准的国际级赛车场.目前该赛事已打造成集赛车竞技运动、汽车文化极致体验、主题休闲度假为一体的超级汽车文化赛事娱乐综合体.为了减少对环境的污染,某环保部门租用了特制环保车清洁现场垃圾.通过查阅近5年参会人数(万人)与所需环保车辆数量(辆),得到如下统计表:(1)根据统计表所给5组数据,求出关于,x y 的线性回归方程ˆˆy bxa =+. (2)已知租用的环保车平均每辆的使用成本费用C (元)与数量(辆)的关系为3000200035,N 2900t t 35,N t t t C t +<<∈⎧=⎨≥∈⎩,主办方根据实际参会人数投入所需环保车,租车每辆支付费用6000元,超出实际需要的车辆,主办方不支付任何费用.预计本次赛车会大约有14万人参加,根据(1)中求出的线性回归方程,预测环保部门在确保清洁任务完成的前提下,应租用多少辆环保车?获得的利润是多少? (注:利润L =主办方支付费用-使用成本费用C ).参考公式:()()()1122211ˆ,ˆˆn niii ii i nniii i x x y y x y nxybay bx x x xnx ====---===---∑∑∑∑ 【答案】(1) 2.32y x =+;(2)为确保完成任务,需要租用35辆环保车,获得的利润108500元. 【解析】(1)11981012105x ++++==2823202529255y ++++== ()()()()()()()()()22222131******** 2.310111091081010101210ˆb ⨯+-⨯-+-⨯-++⨯===-+-+-+-+- ˆˆ2ay bx =-= 关于,x y 的线性回归方程 2.32y x =+ (2)将14x =代入 2.32y x =+得34.2y =为确保完成任务,需要租用35辆环保车, 所以290035101500C =⨯=获得的利润600035101500108500L =⨯-=元8.(2021·江西·新余市第一中学高二月考)某研究性学习小组对春季昼夜温差大小与某花卉种子发芽多少之间的关系进行研究,他们分别记录了3月1日至3月5日的每天昼夜温差与实验室每天每100颗种子浸泡后的发芽数,得到如下资料:(1)从3月1日至3月5日中任选2天,记发芽的种子数分别为m ,n ,求事件“m ,n 中至少有一个数小于25”的概率;(2)请根据3月2日至3月4日的数据,求出y 关于x 的线性回归方程y bx a =+.(参考公式:回归直线方程为y bx a =+,其中()1221ni ii nii x y nxyb xn x==-=-∑∑,a y bx =-)【答案】(1)710(2)532y x =-【解析】(1)从3月1日至3月5日中任选2天,m ,n 构成的基本事件(m ,n )有:(23,25),(23,30),(23,26),(23,16),(25,30),(25,26),(25,16),(30,26),(30,16),(26,16),共有10个.记“m ,n 至少有一个数小于25”为事件A ,包括:(23,25),(23,30),(23,26),(23,16),(25,16),30,16),(26,16),共有7个基本事件 由古典概型概率公式:7()10P A = (2)11131225302612,27,33x y ++++==== 22221125133012263122751113123122b ⨯+⨯+⨯-⨯⨯==++-⨯. 于是,5271232a =-⨯=-故所求线性回归方程为532y x =- 9.(2021·全国·高二单元测试)某地区2013年至2019年居民纯收入y (单位:千元)的部分数据如表所示:2018和2019年的居民纯收入y (单位:千元)数据采用随机抽样的方式获得,用样本的均值来代替当年的居民人均纯收入,其数据如下:2018年抽取的居民纯收入(单位:千元)数据:5.2 4.8 6.5 5.6 6.0 7.1 6.1 7.3 5.9 7.5 2019年抽取的居民纯收入(单位:千元)数据:6.2 7.8 6.6 5.8 7.1 6.8 7.2 7.9 5.9 7.7 (1)求y 关于t 的线性回归方程;(2)当地政府为了提高居民收入水平,现从2018和2019年居民纯收入(单位:千元)高于7.0千元的样本中随机选择3人进行座谈,了解其工作行业及主要收入来源.设X 为选出的3人中2018年纯收入高于7.0千元的人数,求随机变量X 的分布列和数学期望.附:回归直线的斜率和截距的最小二乘法估计公式分别为:121()()()niii nii t t y y b tt ==--=-∑∑,a y bt =-.【答案】(1)ˆ0.5 3.3yt =+;(2)分布列见解析;期望为98. 【解析】(1)根据2018年的抽样数据可得2018年的人均纯收入为1(5.2 4.8 6.5 5.6 6.07.1 6.17.3 5.97.5) 6.210+++++++++= 千元,根据2019年的抽样数据可得2019年的人均纯收入为1(6.27.8 6.6 5.87.1 6.87.27.9 5.97.75) 6.910+++++++++=千元,由所给的数据得1(1234567)47t =++++++=,1(3.9 4.3 4.6 5.4 5.8 6.2 6.9) 5.37y =++++++=, ∴721()941014928i i t t =-=++++++=∑,71()()(3)( 1.4)(2)(1)(1)(0.7)00.110.520.93 1.614ii i tt y y =--=-⨯-+-⨯-+-⨯-+⨯+⨯+⨯+⨯=∑,∴71721()()14ˆ0.528()ii i ii tt y y btt ==--===-∑∑, 则ˆˆ 5.30.54 3.3ay bt =-=-⨯=, 则所求y 关于t 的线性回归方程为ˆ0.5 3.3yt =+; (2)由2018年和2019年的抽样数据可知,2018年居民纯收入高于7.0千元的有3人,2019年居民纯收入高于7.0千元的有5人,由题意可得,随机变量X 的可能取值为0,1,2,3,则35385(0)28C P X C ===,12353815(1)28C C P X C ===,21353815(2)56C C P X C ===,33381(1)56C P X C ===,∴随机变量X 的分布列为则X 的分布列为:则5151519()0123282856568E X =⨯+⨯+⨯+⨯= 【题组三 非线性回归方程】1.(2021·福建·泉州科技中学 )数独是源自18世纪瑞士的一种数学游戏,玩家需要根据99⨯盘面上的已知数字,推理出所有剩余空格的数字,并满足每一行、每一列、每一个粗线宫(33⨯)内的数字均含1﹣9,不重复.数独爱好者小明打算报名参加“丝路杯”全国数独大赛初级组的比赛.(1)赛前小明在某数独APP 上进行一段时间的训练,每天的解题平均速度y (秒)与训练天数x (天)有关,经统计得到如表的数据:现用by a x=+作为回归方程模型,请利用表中数据,求出该回归方程,并预测小明经过100天训练后,每天解题的平均速度y约为多少秒?(2)小明和小红在数独APP 上玩“对战赛”,每局两人同时开始解一道数独题,先解出题的人获胜,两人约定先胜4局者赢得比赛.若小明每局获胜的概率为34,已知在前3局中小明胜2局,小红胜1局.若不存在平局,请你估计小明最终赢得比赛的概率.参考数据(其中1i t x =)参考公式:对于一组数据()11,u v ,()22,u v ,…,(),n n u v ,其回归直线v u αβ=+的斜率和截距的最小二乘估计公式分别为:1221ni i i nii u v nu vunuβ==-⋅=-∑∑,v u αβ=-⋅.【答案】(1)1000130y x=+,经过100天训练后,每天解题的平均速度y 约为140秒;(2)243256.【解析】(1)由题意,1(990990450320300240210)5007y =++++++=,令1t x=,设y 关于t 的线性回归方程为y bt a =+,则 717221184570.3750010000.5577i ii i i t y t yb t t==-⨯-⨯-===⋅∑∑,则50010000.37130a =-⨯=. ∴1000130y t =+,又1t x=,∴y 关于x 的回归方程为1000130y x=+, 故100x =时,140y =.∴经过100天训练后,每天解题的平均速度y 约为140秒.(2)设比赛再继续进行X 局小明最终赢得比赛,则最后一局一定是小明获胜, 由题意知,最多再进行4局就有胜负.当2X =时,小明4:1胜,∴339(2)4416P X ==⨯=;当3X =时,小明4:2胜,∴123339(3)144432P X C ⎛⎫==⨯⨯-⨯= ⎪⎝⎭;当4X =时,小明4:3胜,∴21333327(4)1444256P X C ⎛⎫==⨯⨯-⨯= ⎪⎝⎭.∴小明最终赢得比赛的概率为99272431632256256++=. 2.(2021·云南大理 )2021年6月17日9时22分,我国酒泉卫星发射中心用长征2F 遥十二运载火箭,成功将神舟十二号载人飞船送入预定轨道,顺利将聂海胜、刘伯明、汤洪波3名航天员送入太空,发射取得圆满成功,这标志着中国人首次进入自己的空间站.某公司负责生产的A 型材料是神舟十二号的重要零件,该材料应用前景十分广泛.该公司为了将A 型材料更好地投入商用,拟对A 型材料进行应用改造、根据市场调研与模拟,得到应用改造投入x (亿元)与产品的直接收益y (亿元)的数据统计如下:当017x <≤时,建立了y 与x 的两个回归模型:模型①: 4.1109ˆ.y x =+,模型②:ˆ14.4y =;当17x >时,确定y 与x 满足的线性回归方程为ˆˆ0.7yx a =-+. (1)根据下列表格中的数据,比较当017x <≤时模型①,②的相关指数2R 的大小,并选择拟合精度更高、更可靠的模型,预测对A 型材料进行应用改造的投入为17亿元时的直接收益;(2)为鼓励科技创新,当应用改造的投入不少于20亿元时,国家给予公司补贴5亿元,以回归方程为预测依据,根据(1)中选择的拟合精度更高更可靠的模型,比较投入17亿元与20亿元时公司收益(直接收益+国家补贴)的大小.附:刻画回归效果的相关指数()()22121ˆ1ni i i nii y yR y y ==-=--∑∑,且当2R 越大时,4.1≈.用最小二乘法求线性回归方程ˆˆˆybx a =+的截距:ˆˆa y bx =-. 【答案】(1)模型②拟合精度更高、更可靠,72.93亿;(2)投入17亿元比投入20亿元时收益小. 【解析】(1)对于模型①, 对应的15222740485460=387y ++++++=,故对应的()12222111271750i i i i y y y y ==-=-=∑∑,故对应的相关指数2179.1310.9551750R =-≈, 对于模型②,同理对应的相关指数2220.210.9881750R =-≈, 故模型②拟合精度更高、更可靠.故对A 型材料进行应用改造的投入为17亿元时的直接收益为ˆ14.472.93=≈y. (2)当17x >时, 后五组的2122232425235x ++++==,68.56867.5+66+65675y ++==,由最小二乘法可得()ˆ670.72383.1a=--⨯=, 故当投入20亿元时公司收益(直接收益+国家补贴)的大小为:0.72083.1+574.172.93-⨯+=>,故投入17亿元比投入20亿元时收益小.3.(2021·全国·高二单元测试)某企业新研发了一种产品,产品的成本由原料成本及非原料成本组成,每件产品的非原料成本y (元)与生产的产品数量x (千件)有关,经统计得到如下数据:根据以上数据,绘制了如下散点图.参考数据:(其中1iu x =) (1)观察散点图判断,by a x=+与y c dx =+哪一个适宜作为非原料成本y 与生产的产品数量x 的回归方程类型?(给出判断即可,不必说明理由)(2)根据(1)的判断结果及表中数据,建立y 关于x 的回归方程; (3)试预测生产该产品10千件时,每件产品的非原料成本为多少元? 【答案】(1)b y a x =+;(2)100ˆ11y x=+;(3)21元.【解析】(1)由题意,根据题设中的散点图,可得这些点分布在b y a x =+的两侧,所以选择函数by a x=+作为非原料成本y 与生产的产品数量x 的回归方程类型. (2)令1u x =,则by a x=+可转化为y a bu =+,则y 与u 的关系可看成线性相关关系. 因为360458y ==,所以8182218183.480.344561ˆ1001.5380.1150.618i ii ii u yu y b uu==-⋅-⨯⨯====-⨯-∑∑,则ˆˆ451000.3411a y bu =-=-⨯=,所以ˆ11100y u =+,代入1u x =,得100ˆ11y x=+.(3)当10x =时,100ˆ112110y=+=,所以预测生产该产品10千件时,每件产品的非原料成本为21元. 4.(2021·全国·高三课时练习)某芯片公司为制订下一年的研发投入计划,需了解年研发资金投入量x (单位:亿元)对年销售额y (单位:亿元)的影响,该公司对历史数据进行对比分析,建立了两个函数模型:①2y x αβ=+,②e x t y λ+=,其中α,β,λ,t 均为常数,e 为自然对数的底数.现该公司对收集的近12年的年研发资金投入量i x 和年销售额i y (1,2,,12i =⋅⋅⋅)的数据作了初步处理,令2u x =,ln v y =,经计算得到如下数据:(1)设u 和y 的样本相关系数为1r ,x 和v 的样本相关系数为2r ,请从样本相关系数(精确到0.01)的角度判断,哪个模型拟合效果更好;(2)(i)根据(1)的选择及表中数据,建立y 关于x 的非线性经验回归方程;(ii)若下一年销售额y 需达到90亿元,预测下一年的研发资金投入量x 约为多少亿元? 参考数据为308477=⨯9.4868, 4.4998e 90≈.【答案】(1)模型e x t y λ+=的拟合效果更好;(2)(i)0.018 3.84ˆe x y+=;(ii)36.66亿元. 【解析】(1)()()121215000.8625000iiu u y y r --====∑,()()12214100.91770.211iix x v v r --====≈⨯∑,因为12r r <,所以从样本相关系数的角度判断,模型e x t y λ+=的拟合效果更好. (2)(i)先建立v 关于x 的经验回归方程. 由e x t y λ+=,得ln y x t λ=+,即v λx t =+.()()()121122114ˆ0.018770iii ii x x v v x x λ==--==≈-∑∑, ˆˆ 4.20.01820 3.84tv x λ=-=-⨯=, 所以v 关于x 的经验回归方程为0.01838ˆ.4vx +=, 所以0.0134ˆln 8.8x y=+,即0.018 3.84ˆe x y +=.(ii)若下一年销售额y 需达到90亿元,则由0.018 3.84ˆe x y+=,得0.018 3.8490e x +=, 又 4.4998e 90≈,所以4.49980.018 3.84x ≈+, 所以 4.4998 3.8436.660.018x -≈≈,所以预测下一年的研发资金投入量约为36.66亿元.5.(2021·全国·高二课时练习)噪声污染已经成为影响人们身体健康和生活质量的严重问题,为了解声音强度D (单位:dB )与声音能量I (单位:2W cm -⋅)之间的关系,将测量得到的声音强度D 和声音能量I 的数据作了初步处理,得到如图所示的散点图:参考数据:111.0410I -⨯=,45.7D =,11.5W =-,()1022111.5610i i I I-=-=⨯∑,()10210.51i i W W=-=∑,()()101116.8810iii IID D -=--=⨯∑,()()1015.1i i i W W D D =-⋅-=∑,其中lg i i W I =,101110i i W W ==∑.(1)根据散点图判断,11D a b I =+与22lg D a b I =+哪一个适宜作为声音强度D 关于声音能量I 的回归模型?(给出判断即可,不必说明理由)(2)求声音强度D 关于声音能量I 的非线性经验回归方程.(3)假定当声音强度大于60dB 时,会产生噪声污染.城市中某点P 处共受到两个声源的影响,这两个声源的声音能量分别是a I 和b I ,且101410a bI I +=.已知点P 处的声音能量等于a I 与b I 之和.请根据(2)中的非线性经验回归方程,判断点P 处是否受到噪声污染,并说明理由.【答案】(1)22lg D a b I =+更适合;(2)ˆ10lg 160.7DI =+;(3)P 会受到噪声污染,理由见解析. 【解析】(1)22lg D a b I =+更适合. (2)设ˆˆD bW a =+,则 ∵()()()10110215.1ˆ100.51iii i i W W D D bW W==--===-∑∑, ∴ˆˆ160.7a D bW=-=, ∴D 关于W 的经验回归方程是ˆ10160.7DW =+,则D 关于I 的非线性经验回归方程是ˆ10lg 160.7DI =+. (3)设点P 处的声音能量为1I ,则1a b I I I =+. ∵101410a bI I +=, ∴()101010141410105910b a a b a b a b a b I I I I I I I I I I I ---=+=++=++≥⎛⎫⎛⎫ ⎪⎝⨯ ⎪⎝⎭⎭(当且仅当10310a I =,93510bI =⨯时等号成立) 根据(2)中非线性经验回归方程,知点P 处的声音强度D 的预报值的最小值,()10min 10lg 910160.710lg960.760D -=⨯+=+>,∴点P 会受到噪声污染.6.(2021·福建·福州三中高二期中)某地从2月20日开始的连续7天的某传染病累计确诊人数如下表:由上述表格得到如下散点图.(1)根据散点图判断lg =+y a b x 与x y c d =⋅(,c d 均为大于0的常数)哪一个更适合作为累计确诊人数y 与天数x 的回归方程类型(给出判断即可,不必说明理由),并求出y 关于x 的回归方程;(2)3月20日,该地的疾控中心接受了1000份血液样本,假设每份样本的检验结果是阳性还是阴性是相互独立的,且每份样本是阳性的概率是0.6,试剂把阳性样本检测出阳性结果的概率是0.99(试剂存在阳性样本检测不出来的情况,但不会把阴性样本检测呈阳性样本),求这1000份样本中检测出呈阳性的份数的期望.参考数据:其中11lg ,7i i i i v y v v ===∑参考公式:对于一组数据()()()1122,,,,,,n n u v u v u v ⋯,其回归直线ˆvu αβ=+的斜率和截距的最小二乘估计公式分别为1221,ni i i ni i u v nuvv u unuβαβ==-==--∑∑,v u αβ=-.【答案】(1)0.253.4710x x y c d y =⋅=⨯; (2)594【解析】(1)由散点图可知,x y c d =⋅更适合作为累计确诊人数y 与天数x 的回归方程类型. 把x y c d =⋅两边取对数,得lg lg lg y c x d =+, 令lg v y =,则lg lg v c x d =+,1(1234567)47x =++++++=,7211.54140i i v x ===∑,, 7172221750.1274 1.54lg 0.25140747i i i i i x v xvd x x==--⨯⨯===-⨯-∑∑,所以lg 1.540.2540.54c =-⨯=,则0.540.25v x =+, 所以y 关于x 的回归方程为0.253.4710x y =⨯; (2)设这1000份样本中检测出呈阳性的份数为X , 每份样本检测出阳性的概率为0.60.990.594P =⨯=, 由题意可知,(10000.594)XB ,,所以()10000.594594E X =⨯=份.故这1000份样本中检测出呈阳性的份数的期望为594.7.(2021·山西太原·高二期中(文))为了更好的指导青少年健康饮食,某机构调查了本地区不同身高的未成年男性,得到他们的体重的平均值,并对数据作了初步处理,得到下面的散点图及一些统计量的值.表中ln i i w y =(1)根据散点图判断,可采用x y a b =⋅作为这个地区未成年男性体重y 千克与身高x 厘米的回归方程.利用表中数据建立y 关于x 的回归方程;(2)若体重超过相同身高男性体重平均值的1.2倍为偏胖,低于0.8倍为偏瘦,那么该地区一名身高为175厘米,体重为78千克的在校男生的体重是否正常? 参考数据:0.020.71751.02,2,1.0231.99e e ===. 参考公式:对于一组数据()()()1122,,,,,,n n u v u v u v ,其回归直线v u αβ=+的斜率和截距的最小二乘估计分别为()()()121ˆˆˆ,nii i nii uu v v v u uu βαβ==--==--∑∑.【答案】(1)2 1.02x y =⨯;(2)体重偏胖. 【解析】(1)由x y a b =⋅,得ln ln ln y a x b =+⋅, 设ˆˆˆw cx d=+,由表格中数据,得801ˆ0.02400050c ===, ˆ 3.40.021350.7d=-⨯=, 则0.70.02ln 0.7,ln 0.02,2, 1.02a b a e b e ======, 则y 关于x 的回归方程为2 1.02x y =⨯.(2)当175x =时,1752 1.02231.9963.98y =⨯=⨯=,因为63.98 1.276.77678⨯=<,所以该名在校男生的体重偏胖.。
高中数学线性回归方程检测试题(附答案)

高中数学线性回归方程检测试题(附答案)高中苏教数学③2. 4线性回归方程测试题一、选择题1.下列关系属于线性负相关的是()A.父母的身高与子女身高的关系B.身高与手长C.吸烟与健康的关系D.数学成绩与物理成绩的关系答案:C2.由一组数据得到的回归直线方程,那么下面说法不正确的是()A.直线必经过点B.直线至少经过点中的一个点C.直线 a的斜率为D.直线和各点的总离差平方和是该坐标平面上所有直线与这些点的离差平方和中最小的直线答案:B3.实验测得四组的值为,则y与x之间的回归直线方程为()A.B.C.D.答案:A4.为了考查两个变量x和y之间的线性关系,甲、乙两位同学各自独立作了10次和15次试验,并且利用线性回归方法,求得回归直线分别为l1,l2,已知两人所得的试验数据中,变量x和y的数据的平均值都相等,且分别是,那么下列说法正确的是()A.直线和一定有公共点B.直线和相交,但交点不一定是C.必有直线D.和必定重合答案:A二、填空题5.有下列关系:(1)人的年龄与他(她)拥有的财富之间的关系(2)曲线上的点与该点的坐标之间的关系(3)苹果的产量与气候之间的关系(4)森林中的同一种树木,其断面直径与高度之间的关系(5)学生与他(她)的学号之间的关系其中,具有相关关系的是.答案:(1)(3)(4)6.对具有相关关系的两个变量进行的方法叫做回归分析.用直角坐标系中的坐标分别表示具有的两个变量,将数据表中的各对数据在直角坐标系中描点得到的表示具有相关关系的两个变量的一组数据的图形,叫做.答案:统计分析;相关关系;散点图7.将一组数据同时减去3.1,得到一组新数据,若原数据的平均数、方差分别为,则新数据的平均数是,方差是,标准差是.答案:;;8.已知回归直线方程为,则可估计x与y增长速度之比约为.答案:三、解答题9.某商店统计了近6个月某商品的进价x与售价y(单位:元)的对应数据如下:3 5 2 8 9 124 6 3 9 12 14求y对x的回归直线方程.解:,,回归直线方程为.10.已知10只狗的血球体积及红血球的测量值如下:45 42 46 48 426.53 6.30 9.257.580 6.9935 58 40 39 505.90 9.496.20 6.557.72x(血球体积,ml),y(红血球数,百万)(1)画出上表的散点图;(2)求出y对x的回归直线方程并且画出图形.解:(1)见下图(2),设回归直线方程为,则,.图形如下:11.某医院用光电比色计检验尿汞时,得尿汞含量(毫克/升)与消光系数如下表:尿汞含量:2 4 6 8 10消光系数 64 134 205 285 360(1)画出散点图;(2)如果y与x之间具有线性相关关系,求回归直线方程;(3)估计尿汞含量为9毫克/升时的消光系数.解:(1)(2)由散点图可知与线性相关,设回归直线方程为.列表:1 2 3 4 52 4 6 8 1064 134 205 285 360128 536 1230 2280 3600 回归直线方程为.(3)当时,.。
高中数学苏教版必修3分层测评习题16线性回归方程含解析

学业分层测评 (十六 )(建议用时: 45 分钟 )[ 学业达标 ]一、填空题1.以下对于线性回归的判断,正确的为 ________.(填序号 )①若散点图中全部点都在一条直线邻近,则这条直线为回归直线;②已知线性回归方程为 ^= - ,则 = 时, 的预计值为 ;y 0.50x 0.81 x 25 y 11.69③线性回归方程的意义是它反应了样本整体的变化趋向.【分析】 能使全部数据点都在它邻近的直线不只一条,而据回归直线的定^义知,只有按最小平方法求得直线y =a +bx 才是线性回归方程,①不对,③正^ ^确 .将 x =25 代入 y = 0.50x -0.81,解得 y =11.69,②正确 .【答案】②③2.(2015 南·通高一月考 )甲、乙两同学各自独立地观察两个变量 X 、 Y 的线性有关关系时,发现两人对 X 的察看数据的均匀值相等,都是 s ,对 Y 的察看数据的均匀值也相等,都是 t ,各自求出的回归直线分别是 l 1,2,则直线 1 与 2 必经lll过同一点 ________.【分析】- -经过的同一点由回归方程必过样本中心 ( x , y )知,直线 l 1, l 2 为 (s ,t).【答案】(s , t)3.已知某工厂在 2015 年每个月产品的总成本 y(万元 )与月产量 x(万件 )之间有线^性有关关系,回归方程为 y = 1.215x +0.974,若月产量增添 4 万件时,则预计成本增添 ________万元 .【分析】由^y 1=1.215x 1+0.974,^y 2=1.215(x 1 +4)+0.974,^ ^得y 2- y 1 =1.215×4=4.86(万元 ).【答案】 4.864.某台机器置后的运年限x(x=1,2,3,⋯ )与当年利 y 的剖析知具性有关关系,回方程y=10.47-1.3x,估台机器使用 ________年最合算 .【分析】只需利不数,使用机器就算合算,即y≥0,因此10.47- 1.3x≥0,解得 x≤8.05,因此台机器使用8 年最合算 .【答案】85.(2015 ·州高一 )已知 x,y 的取以下表所示:x0134y 2.2 4.3 4.8 6.7^从散点剖析, y 与 x 性有关,且 y=0.95x+ a, a=________.【分析】--=4.4,因此 4.4= 0.95×2+a,解得 a=2.5.由条件知 x =2, y【答案】 2.56.下表供给了某厂能降耗技改造后,在生 A 品程中的量x(位:吨 )与相的生能耗 y(位: 103 kJ)几的数据:x3456y 2.5t 4 4.5依据上表供给的数据,求出 y 对于 x 的性回方程y=0.7x+0.35,那么表中 t 的 ________.【分析】--+ 0.35,得由 y=0.7 x2.5+t+4+ 4.53+4+5+64=0.7×4+0.35,11+ t故4=3.5,即 t= 3.【答案】37.依据以下本数据x345678y 4.0 2.5-0.50.5- 2.0-3.0^获得的回归方程为 y=bx+a,则以下判断正确的选项是 ________.①a>0, b>0;② a>0, b<0;③ a<0, b>0;④ a<0, b<0.【分析】作出散点图以下:^察看图象可知,回归直线y=bx+ a 的斜率 b<0,^当 x=0 时, y=a>0.故 a>0,b<0.【答案】②8.某数学老师身高176 cm,他爷爷、父亲和儿子的身高分别是173 cm、170 cm 和 182 cm.因儿子的身高与父亲的身高有关,该老师用线性回归剖析的方法预测他孙子的身高为 ________cm. 【导学号: 90200059】【分析】设父亲自高为 x cm,儿子身高为 y cm,则x173170176y1701761820× -6 +-3 ×0+3×6x = 173, y = 176,b==1,02+9+9a= y - b x = 176-1×173=3,^^∴y= x+ 3,当 x=182 时, y=185.【答案】185二、解答题9.从某居民区随机抽取10 个家庭,经统计第i 个家庭的月收入x i (单位:千101010元 )与月积蓄 y i单位:千元)的数据资料,获得i =,i =,i i =,(x80y20x y184i =1i =1i =1102=720.x ii =1^(1)求家庭的月积蓄y 对月收入 x 的线性回归方程 y=bx+a;(2)判断变量 x 与 y 之间是正有关仍是负有关;(3)若该居民区某家庭月收入为 7千元,展望该家庭的月积蓄 .-1n80【解】(1)由题意知 n=10, x=n x i=10=8,i =1- 1 n20y=n y i=10=2,i=1n-222-×=,又x i-n x =72010 880n i=1--x i y i-n x y = 184-10× 8× 2= 24,i=124由此得 b=80= 0.3,--a= y - b x =2- 0.3× 8=- 0.4,^故所求线性回归方程为 y=0.3x-0.4.(2)因为变量 y 的值随 x 值的增添而增添 (b= 0.3>0),故 x 与 y 之间是正有关 .(3)将 x=7 代入线性回归方程能够展望该家庭的月积蓄约为y=0.3×7-0.4=1.7(千元 ).10.某种产品的广告支出x 与销售额 y(单位:百万元 )之间有以下的对应关系x2 4 5 6 8y 3040 60 50 70(1)假定 y 与 x 之间拥有线性有关关系,求线性回归方程;(2)若实质销售额许多于 60 百万元,则广告支出应当许多于多少?【解】-1(1) x =5(2+4+5+6+8)= 5,-1y = 5(30+40+ 60+ 50+70)=50,5x i 2= 22+42+52+ 62+82= 145.i =15x i y i =2×30+ 4× 40+5×60+6×50+ 8×70=1 380.i =15--x i y i -5 x yi =11 380-5×5×50 ∴b == 145- 5× 52 = 6.5,5 2-2x i -5 xi =1-- =- × = ,a = y -b x50 6.5 5 17.5 ^∴线性回归方程为 y =6.5x +17.5.^(2)由线性回归方程得 y ≥60,85即 6.5x +17.5≥ 60,∴x ≥13≈ 6.54, ∴广告花费支出应许多于 6.54 百万元 .[ 能力提高 ]1.某产品的广告花费 x 与销售额 y 的统计数据以下表:广告花费 x(万元 ) 4 2 3 5 销售额 y(万元 )49263954^中的 b 为 9.4,据此模型展望广告花费为 6依据上表可得回归方程 y =bx +a万元时销售额为 ________万元 .【分析】-,-=,由题意可知 x =y3.542则 42=9.4×3.5+a,a=9.1,^y=9.4× 6+ 9.1= 65.5.【答案】65.52.期中考试后,某校高一 (9)班对全班 65 名学生的成绩进行剖析,获得数学^成绩 y 对总成绩 x 的回归直线方程为 y=6+0.4x.由此能够预计:若两个同学的总成绩相差 50 分,则他们的数学成绩大概相差________分. 【导学号: 90200060】【分析】令两人的总成绩分别为 x1,2x .则对应的数学成绩预计为^^y1=6+0.4x1,y2= 6+ 0.4x2,^^-x )|=0.4×50=20.1212【答案】203.已知 x 与 y 之间的几组数据以下表:x123456y021334假定依据上表数据所得线性回归方程为^^^,若某同学依据上表中的前y=b +x a两组数据 (1,0) 和 (2,2) 求得的直线方程为^′,^y= b′ x+ a′,则 ba________b________a′ (填“ >、”“ <或”“=” ).【分析】由两组数据(1,0)和(2,2)可求得直线方程为y= 2x-2,b′=2,a′^=- 2. 而利用线性回归方程的公式与已知表格中的数据,可求得 b =6--x y- 6 x ·yi i713i =158-6×2×65^ -^-13571^62-2=91- 6×72=7, a= y-b x =6-7×2=-3,因此 b<b′,x i-6 x2 i=1^a>a′ .【答案】< >4.某农科所对冬天日夜温差大小与某反季节大豆新品种抽芽多少之间的关系进行剖析研究,他们分别记录了12 月 1 日至 12 月 5 日的每日日夜温差与实验室每日每 100 棵种子中的抽芽数,获得以下资料:日期12月1日12月 2日12月 3日12月4日12月5日温差 x(℃)101113128抽芽数 y(颗)2325302616该农科所确立的研究方案是:先从这 5 组数据中选用 2 组,用剩下的 3 组数据求回归直线方程,再对被选用的 2 组数据进行查验 .(1)若选用的是 12 月 1 日与 12 月 5 日的两组数据,请依据12月2日至 12^月 4 日的数据,求出 y 对于 x 的回归直线方程 y=bx+a;(2)若由回归直线方程获得的预计数据与所选出的查验数据的偏差均不超出2 颗,则以为获得的回归直线方程是靠谱的,试问(1)中所得的回归直线方程能否靠谱?【解】(1)由数据求得,--=27,x=12, y由公式求得,5--b=2,a= y -b x =- 3.^5因此 y 对于 x 的回归直线方程为 y=2x- 3.^5(2)当 x=10 时, y=2×10- 3= 22,|22-23|<2;^5当 x=8 时, y=2×8-3=17,|17-16|<2.因此该研究所获得的回归直线方程是靠谱的.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高二选修1—2线性回归习题
1. 独立性检验,适用于检查______变量之间的关系 ( )
A.线性
B.非线性
C.解释与预报
D.分类
2. 样本点),(,),,(),,(2211n n y x y x y x 的样本中心与回归直线a x b y
ˆˆˆ+=的关系( ) A.在直线上 B.在直线左上方 C. 在直线右下方 D.在直线外
3 已知数列 ,11,22,5,2,则52是这个数列的 ( )
A.第6项
B.第7项
C.第19项
D.第11项
4 用数学归纳法证明)5,(22≥∈>*n N n n n 成立时,第二步归纳假设正确写法是( )
A.假设k n =时命题成立
B.假设)(*∈=N k k n 时命题成立
C.假设)5(≥=n k n 时命题成立
D.假设)5(>=n k n 时命题成立
5 .确定结论“X 与Y 有关系”的可信度为5.99℅时,则随即变量2
k 的观测值k 必须( )
A.大于828.10
B.小于829.7
C.小于635.6
D.大于706.2
6.有下列关系:①人的年龄与他(她)拥有的财富之间的关系;②曲线上的点与该点的坐标之间的关系;③苹果的产量与气候之间的关系;④森林中的同一种树木,其横断面直径与高度之间的关系,其中有相关关系的是 ( )
A .①②③
B .①②
C .②③
D .①③④ 7.在线性回归模型y bx a e =++中,下列说法正确的是
A .y bx a e =++是一次函数
B .因变量y 是由自变量x 唯一确定的
C .因变量y 除了受自变量x 的影响外,可能还受到其它因素的影响,这些因素会导致随机误
差e 的产生
D .随机误差e 是由于计算不准确造成的,可以通过精确计算避免随机误差e 的产生
8.对相关系数r ,下列说法正确的是 ( )
A .||r 越大,线性相关程度越大
B .||r 越小,线性相关程度越大
C .||r 越大,线性相关程度越小,||r 越接近0,线性相关程度越大
D .||1r ≤且||r 越接近1,线性相关程度越大,||r 越接近0,线性相关程度越小
9.在独立性检验中,统计量2K 有两个临界值:3.841和6.635;当2K >3.841时,有95%的把握
说明两个事件有关,当2K >6.635时,有99%的把握说明两个事件有关,当2K ≤3.841时,认
N M P
C
B
A 为两个事件无关.在一项打鼾与患心脏病的调查中,共调查了2000人,经计算的2K =20.87,根据这一数据分析,认为打鼾与患心脏病之间 ( )
A .有95%的把握认为两者有关
B .约有95%的打鼾者患心脏病
C .有99%的把握认为两者有关
D .约有99%的打鼾者患心脏病
10
必过点 .
11.已知,x y R +∈,且2x y +>, 求证:1x y +与1y x +中至少有一个小于2
12. 如图P 是ABC ∆所在平面外一点,,PA PB CB =⊥平面PAB ,M 是PC 的中点,N 是AB 上的点,3AN NB =。
求证:MN AB ⊥.
13. 若0a >,0b >,求证:()11()4a b a b
++≥
14.在调查男女乘客是否晕机的情况中,已知男乘客晕机为28人,不会晕机的也是28人,而女乘客晕机为28人,不会晕机的为56人.
(1)根据以上数据建立一个22⨯列联表;
(2)试判断是否晕机与性别有关?
(参考数据:2 2.706K >时,有90%的把握判定变量A ,B 有关联;2
3.841K >时,有95%的把握判定变量A ,B 有关联;2 6.635K >时,有99%的把握判定变量A ,B 有关联. 参考公式:2
2
()()()()()n ad bc K a b c d a c b d -=++++)
参考答案
1.D
2.A
3.B ;
4.C ;
5.B ; .6-10A DCD 10,(1.5,4)
11. 证明:设12x y
+≥且12y x +≥ 因为,x y R +∈,所以1222212x y x y x y y x +≥⎫⇒++≥+⎬+≥⎭
所以2x y +≤与2x y +>矛盾 所以
1x y +与1y x +中至少有一个小于2. 12.取PB 的中点Q ,连结,MQ NQ ,∵M 是PC 的中点,∴//MQ BC ,∵CB ⊥平面PAB ,∴MQ ⊥平面PAB ,∴MQ ⊥AB ,取AB 的中点D ,连结QD ,则QD ∥PA ,∵,PA PB =∴QD =QB ,又3AN NB =,∴BN ND =,∴QN AB ⊥,∴AB ⊥平面QMN ,∴MN AB ⊥
13. 110,0a b a b a b >>∴+≥+≥()114a b a b ⎛⎫∴++≥ ⎪⎝⎭
14.(1)解:2×2列联表如下:
(2)假设是否晕机与性别无关,
则2k 的观测值2140(28562828)35 3.888568456849
k ⨯⨯-⨯==≈⨯⨯⨯ 又知k ︽3.888>3.841,
所以有95%的把握认为是否晕机与性别有关。