单服务台排队系统仿真
队列的应用——单服务台排队系统的模拟

队列的应用:单服务台排队系统的模拟一、三个模拟1.离散事件模拟系统在排队系统中,主要有两类事件:顾客的到达事件和服务完毕后顾客的离去事件,整个系统就是不断有到达事件和离开事件的发生,这些事件并不是连续发生的,因此这样的系统被称为离散事件模拟系统。
(1)事件处理过程如果服务员没空,就去队列中排队;否则就为这个顾客生成服务所需的时间t,表示服务员开始为它服务,所需的服务时间是t。
每当一个离开事件发生,就检查有没有顾客在排队,如果有顾客在排队,则让队头顾客离队,为它提供服务,如果没有顾客排队,则服务员可以休息。
(2)如何产生顾客到达事件和离开事件在一个排队系统中,顾客的到达时间和为每个顾客服务的时间并不一定是固定的。
但从统计上来看是服从一定的概率分布。
假设到达的间隔时间和服务时间都满足均匀分布,则可以用随机数产生器产生的随机数。
①以生成顾客到达事件为例子如顾客到达的间隔时间服从[a,b]之间的均匀分布,则可以生成一个[a,b]之间的随机数x,表示前一个顾客到达后,经过了x的时间后又有一个顾客到达。
[a,b]之间的随机数可以按照下面的过程产生:假如系统的随机数生成器生成的随机数是均匀分布在0到RAND_MAX之间,可以把0到RAND_MAX之间的区间等分成b-a+1个,当生成的随机数落在第一个区间,则表示生成的是a,当落在第二个区间,则表示生成的是a+1…当落在最后一个区间,则表示生成的是b。
这个转换可以用rand()*(b-a+1)/( RAND_MAX+1)+a实现,rand 表示系统的随机数生成函数。
2.离散的时间驱动模拟在得到了在x秒后有一个事件生成的信息时,并不真正需要让系统等待x秒再处理该事件。
在模拟系统中,一般不需要使用真实的精确事件,只要用一个时间单位即可,这个时间单位是嘀嗒tick,可以表示1秒,也可以表示1min\1h.沿着时间轴,模拟每一个嘀嗒中发生了什么事件并处理该事件。
模拟开始时时钟是0嘀嗒,随后每一步都把时钟加1嘀嗒,并检查这个时间内是否有事件发生,如果有,则处理并生成统计信息。
实验2单服务台单队列排队系统仿真

实验2排队系统仿真一、学习目的1.了解仿真的特点2.学习如何建构模型3.熟悉eM-Plant基本的对象和操作4.掌握排队系统的特点与仿真的实现方法二、问题描述该银行服务窗口为每个到达的顾客服务的时间是随机的,表2.4是顾客服务时间纪录的统计结果表2.4 每个顾客服务时间的概率分布对于上述这样一个单服务待排队系统,仿真分析30天,分析该系统中顾客的到达、等待和被服务情况,以及银行工作人员的服务和空闲情况。
三、系统建模3.1 仿真目标通过对银行排队系统的仿真,研究银行系统的服务水平和改善银行服务水平的方法,为银行提高顾客满意度,优化顾客服务流程服务。
3.2.系统建模3.2.1 系统调研1. 系统结构: 银行服务大厅的布局, 涉及的服务设备2. 系统的工艺参数: 到达-取号-等待-服务-离开3. 系统的动态参数: 顾客的到达时间间隔, 工作人员的服务时间4. 逻辑参数: 排队规则, 先到先服务5. 系统的状态参数: 排队队列是否为空, 如果不为空队长是多少, 服务台是否为空6. 系统的输入输出变量:输入变量确定其分布和特征值,顾客的到达时间间隔的概率分布表和每个顾客被服务时间的概率分布. 输出变量根据仿真目标设定. 包括队列的平均队长、最大队长、仿真结束时队长、总服务人员、每个顾客的平均服务时间、顾客平均排队等待服务时间、业务员利用率等。
3.2.2系统假设1.取号机前无排队,取号时间为02.顾客排队符合先进先出的排队规则3.一个服务台一次只能对一个顾客服务4.所有顾客只有一种单一服务5.仿真时间为1个工作日(8小时)6.等候区的长度为无限长3.2.3系统建模系统模型:3.2.4 仿真模型1.实体:银行系统中的实体是人(主动体)2.属性:到达时间间隔、接受服务的时间、接受服务类型3.事件:顾客到达、开始取号、取号结束、进入队列、出队列、接受服务、服务完成、离开银行。
4.活动:到达、取号、排队、服务、离开5.资源:取号机、排队的座椅、服务柜台4 系统仿真4.1 eM-plant 界面与主要控件介绍1. 实体:eM-Plant 中包括3类实体:entity ,container ,transporter 。
实验单服务台单队列排队系统仿真

实验单服务台单队列排队系统仿真简介实验单服务台是指在实验室或研究机构等地,为科学实验、研究项目提供相关服务的地方。
对于一个实验室来说,合理的排队系统可以提高实验员的工作效率,并且能够更好地管理实验项目。
本文将介绍一种基于单队列的排队系统仿真方法,通过模拟实验单的排队过程,评估实验室排队系统的性能,为实验室提供有效的管理建议。
目标本次排队系统仿真的目标是评估实验室中的排队系统性能,包括等待时间、队列长度等指标,以及不同服务台数量下的性能表现。
通过仿真实验,可以找出最优的服务台数量,从而提高实验室的工作效率,减少实验员的等待时间,提供更好的服务。
方法实验单生成在排队系统仿真中,需要生成一批实验单用于模拟实验员的需求。
实验单的生成可以根据实验室的实际情况和需求来设计,可以包括实验名称、实验员姓名、实验日期等信息。
生成一批实验单后,即可进行排队模拟实验。
单队列排队模型本文使用单队列排队模型来模拟实验室的排队系统。
模型中有一个服务台,实验员依次排队等待被服务。
当服务台空闲时,队列中的第一个实验员将被服务,其余实验员依次推进队列。
在模拟过程中,需要记录实验员进入队列的时间和离开队列的时间,以计算等待时间、队列长度等性能指标。
仿真实验仿真实验的过程可以分为以下几个步骤:1.生成实验单:根据实验室的实际情况,生成一批实验单。
2.初始化队列和服务台:将生成的实验单放入队列中,并初始化服务台的状态。
3.开始仿真:根据队列中实验员的情况,模拟实验员进入队列、离开队列以及服务台的状态变化。
记录实验员的等待时间,计算队列长度等性能指标。
4.评估实验结果:根据实验的性能指标,评估排队系统的表现,并分析不同服务台数量下的性能差异。
5.提出改进建议:根据实验结果,提出优化排队系统的建议,如增加服务台数量、调整队列管理策略等。
结果与分析通过对排队系统的仿真实验,可以得到一些重要的结果和分析:1.等待时间分布:通过模拟实验员的等待时间,可以得到等待时间的分布情况,从而评估实验室排队系统的性能。
(完整版)单服务排队系统MATLAB仿真程序

%总仿真时间Total_time = 10;%队列最大长度N = 20;%到达率与服务率lambda = 10;mu = 6;%平均到达时间与平均服务时间arr_mean = 1/lambda;ser_mean = 1/mu;%可能到达的最大顾客数(round:四舍五入求整数)arr_num = round(Total_time*lambda*2);%顾客事件表初始化events = [];%按负指数分布产生各顾客达到时间间隔events(1,:) = exprnd(arr_mean,1,arr_num);%各顾客的到达时刻等于时间间隔的累积和events(1,:) = cumsum(events(1,:));%按负指数分布产生各顾客服务时间events(2,:) = exprnd(ser_mean,1,arr_num);%计算仿真顾客个数,即到达时刻在仿真时间内的顾客数len_sim = sum(events(1,:)<= Total_time);%*****************************************% 计算第1 个顾客的信息%*****************************************%第1 个顾客进入系统后直接接受服务,无需等待events(3,1) = 0;%其离开时刻等于其到达时刻与服务时间之和events(4,1) = events(1,1)+events(2,1);%其肯定被系统接纳,此时系统内共有1 个顾客,故标志位%置1events(5,1) = 1;%其进入系统后,系统内已有成员序号为1member = [1];%*****************************************% 计算第i 个顾客的信息%*****************************************for i = 2:arr_num%如果第i 个顾客的到达时间超过了仿真时间,则跳出循环if events(1,i)>Total_timebreak;%如果第i 个顾客的到达时间未超过仿真时间,则计算在其%到达时刻系统中已有的顾客个数else number = sum(events(4,member) > events(1,i));%如果系统已满,则系统拒绝第i 个顾客,其标志位置0 if number >= N+1events(5,i) = 0;%如果系统为空,则第i 个顾客直接接受服务else if number == 0%其等待时间为0events(3,i) = 0;%其离开时刻等于到达时刻与服务时间之和events(4,i) = events(1,i)+events(2,i);%其标志位置1events(5,i) = 1;member = [member,i];%如果系统有顾客正在接受服务,且系统等待队列未满,则%第i 个顾客进入系统else len_mem = length(member);%其等待时间等于队列中前一个顾客的离开时刻减去其到%达时刻events(3,i)=events(4,member(len_mem))-events(1,i);%其离开时刻等于队列中前一个顾客的离开时刻加上其服%务时间events(4,i)=events(4,member(len_mem))+events(2,i);%标识位表示其进入系统后,系统内共有的顾客数events(5,i) = number+1;member = [member,i];endendendend%仿真结束时,进入系统的总顾客数len_mem = length(member);%*****************************************% 输出结果%*****************************************%绘制在仿真时间内,进入系统的所有顾客的到达时刻和离%开时刻曲线图(stairs:绘制二维阶梯图)stairs([0 events(1,member)],0:len_mem);hold on;stairs([0 events(4,member)],0:len_mem,'.-r');legend(' 到达时间',' 离开时间');hold off;grid on;%绘制在仿真时间内,进入系统的所有顾客的停留时间和等%待时间曲线图(plot:绘制二维线性图)figure;plot(1:len_mem,events(3,member),'r-*',1:len_mem,events(2,member)+events(3,memb er),'k-');legend(' 等待时间',' 停留时间');grid on;。
单服务台排队系统仿真报告

单服务台排队系统仿真报告一、模型准备1、 顾客到达特性在该系统中,顾客的到达规模(成批到达还是单个到达)是单个到达,假设顾客到达率Ai 服从均值为 的指数分布,即2、 顾客服务时间顾客服务时间为Si ,服从指数分布,假设均值为,即二、 仿真模型设计1、 元素定义(Define )本系统的元素定义如表1所示。
2、 元素可视化设置(Display )本系统中各个元素的显示特征定义设置如图2所示:m in 5=A βAs Ae Af ββ/)(-=)0(≥A min 4=s βSA Se Sf ββ/)(-=)0(≥S图2 各元素的显示特征(1)Part元素可视化设置在元素选择窗口选择customer元素,鼠标右键点击Display,跳出Display 对话框(图3),设置它的Text(图4)、Icon(图5)。
图3 Display对话框图4 Display Text对话框图5 Display Icon对话框(2)Buffer元素可视化设置在元素选择窗口选择paidui元素,鼠标右键点击Display,跳出Display对话框(图3),设置它的Text、Icon、Rectangle(图6)。
图6 Display Rectangle对话框(3)Machine元素可视化设置在元素选择窗口选择Fuwuyuan元素,鼠标右键点击Display,跳出Display 对话框(图3),设置它的Text、Icon、Part Queue(图7)。
图7 Display Part Queue对话框(4)Variable元素可视化设置在元素选择窗口选择Jifen0元素,鼠标右键点击Display,跳出Display对话框(图3),设置它的Text 、Value(图8)。
图8 Display Value对话框(5)Timeseries元素可视化设置在元素选择窗口选择duichang元素,鼠标右键点击Display,跳出Display 对话框(图3),设置它的Text、Timeseries(图9)。
单服务台排队系统的仿真

实验2---单服务台排队系统的仿真姓名:学号:一、目标任务①模拟路由器缓存区M|M|1|m实验。
②设定:λ=8/s,μ=10/s,ρ=0.8,m=10。
③模拟系统106s,求系统报文的丢失率及报文在路由器中停留时间的均值。
④模拟100次,图展示每次的模拟结果,并与理论值0.0184比较。
二、编程语言Matlab三、关键代码lamda = 8; %报文到达强度u = 10; %路由器处理强度m = 10; %路由器缓冲区长度T = 1000000; %模拟时间a = []; %模拟运行时丢失率的运行结果mean_a = 0; %模拟运行时丢失率的平均运行结果ref_value = 0.0184; %丢失率理论值大小b = []; %模拟运行时报文在路由器中的停留时间mean_b = 0; %模拟运行时报文在路由器中停留时间的均值%模拟运行一百次for i=1:100time = 0; %绝对时钟t = 0; %路由器的下一空闲时刻N = 0; %到达报文数NI = 0; %丢失报文数q = 0; %队长stay_time = 0; %报文在路由器中的停留时间%按指数分布产生随机到达时间和服务时间while 1CRTime = exprnd(1/lamda); %按指数分布产生下一报文的到达随机时间间隔time = CRTime + time; %下一个报文到达的时间if time > Tbreak;endN = N + 1;q = q + 1;while q > 0 & t < timeq = q - 1;ServeTime = exprnd(1/u);%按指数分布产生报文的随机服务时间if q == 0t = time + ServeTime;elset = t + ServeTime;endstay_time = stay_time + ServeTime * (q + 1);endif q == m + 1 %如果超过缓冲区长,则丢失报文数加1,队长减1 NI = NI + 1;q = q - 1;endenda = [a, NI/N];b = [b, stay_time/(N-NI)];end%计算结果mean_a = mean(a);mean_b = mean(b);%绘图x = 1:100;plot(x, a, x, mean_a); %绘制模拟运行时丢包率变化图以及均值线scatter(x, a, '.'); %绘制模拟运行时丢包率变化散点图scatter(x, b, '.'); %绘制模拟运行时平均停留时间变化散点图fprintf('平均丢包率%6.5f\n', mean_a); % 打印平均丢包率fprintf('平均停留时间%6.5f\n', mean_b); % 打印平均停留时间四、实验结果与分析图1 丢包率和平均停留时间图2模拟运行时丢包率变化图以及均值线M/M/1/∞/∞ 模型模型条件(1) 输入过程――顾客源是无限的, 单个到来, 到达过程服从泊松分布, 即顾客到达间隔时间服从负指数分布;(2) 排队规则――单队, 且队长没有限制, 先到先服务;(3) 服务机构――单服务台, 服务时间的长短是随机的,服从相同的负指数分布 。
单服务排队系统的仿真

仿真钟:仿真中是离散事件系统仿真中的基 本组成部分,是随仿真的进程而不断更新的 时间推进机构,用来表示仿真时间的变化。
连续系统的仿真和离散系统仿真的区别:
1.在连续系统仿真中,仿真时间的变化是基于仿真步长 确定的;在离散事件系统仿真中,引起状态变化的事件 发生时间是随机的,仿真钟的推进步长完全是随机的。 2.连续系统仿真的模型一般由表征系统变量之间的关 系的方程来描述,如微分方程、差分方程等。离散事 件系统中的变量是反映系统各部分之间相互作用的一 些事件,系统模型则是反映这些事件状态的集合。
单服务排队系统的仿真
永久实体:永久驻留在系统中,是系统处 于活动状态的必要条件,如理发师; 临时实体:仅在系统中存在一段时间,按 一定规律到达,如顾客; 临时实体按一定规律不断产生,在永久实 体作用下通过系统,最后离开系统,整个系 统呈现出动态过程。
属性:每一实体所具有的有效特征。
事件:引起系统状态发生变化的行为;离 散事件系统本质是由事件驱动的(例: 顾客到达事件使服务员状态由闲到忙, 或使队列长度加1 );
Ë ¿ ¹ Í µ ½ ´ ï
Å ¶ Ó ½ á ¹
Å ¶ Ó ¹ æ Ô ò
· þ Î ñ ¹ æ Ô ò
þ Î · ñ » ú ¹
ë È À ¥
¼ 1 Å ¶ Í Ó Ï µ Í ³ Ê ¾ Ò â Í ¼
理发馆排队系统仿真
• • • • • • • •
一.仿真问题 理发馆一天的工作情况如下: 理发馆有1名理发员,同一时刻只能为1位顾客理发。 当顾客进门时,只要理发员状态为闲,就可坐下理发,否则需排队 等候。 一旦顾客理发完离去,排在对头的顾客便可开始理发。 若理发馆每天营业T分钟,求: 一天内顾客在理发馆内平均逗留的时间; 顾客排队等候理发的队列长度平均值; 二.基本要求 1) 模拟理发馆一天的工作过程:必须采用事件驱动的离散模型; 2) 每个顾客到达和下个顾客到达的时间间隔是随机的; 3) 每个顾客进门时都将生成两个随机数: 1>durtime:进门顾客理发所需服务时间(简称理发时间) 2>intertime:下个顾客将到达的时间间隔(简称间隔时间)
单服务台排队系统仿真ppt课件

Type:Single Duration.Cycle Time:-4*LN(RANDOM(2))
ppt课件.
19
点击Input.From,输入:PULL from Paidui,点击“OK”按钮
ppt课件.
20
Output.To…:PUSH to SHIP
ppt课件.
21
5.对Timeseries元素Duichag细节设计
5
Paidui 的Rcetangle属性设置
选择PartQueue属性项
选择Rectangle为边框
ppt课件.
6
பைடு நூலகம்
Paidui的PartQueue属性设置
选择Paidui的PartQueue属性
设置Direction为Diagona Display Size:10
ppt课件.
7
3.Machine元素Fuwuyuan的可视化设置
ppt课件e 元素的Icon属性
3
(2)Jifen 的可视化设置
Jifen的display对话框
Jifen的text属性设置
ppt课件.
4
2.Buffer元素Paidui的可视化设置
Paidui的display对话框
Paidui的text属性设置
Paidui的icon属性设置
ppt课件.
Fuwuyuan的display对话框
Fuwuyuan的text属性设置
Fuwuyuan的icon属性设置
ppt课件.
8
Fuwuyuan的PartQueue属性设置
选择Fuwuyuan的PartQueue属性
Direction设置为:Diagona
Display Size为:10
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
单服务台排队系统仿真
单服务台排队系统是指在一个服务台只有一个服务员的情况下,客户需要按顺序等待服务的系统。
本文将介绍一个针对单服务台排队系统的仿真模型。
在设计仿真模型之前,我们需要确定一些重要的参数。
首先是服务时间,即每个客户接受服务所需要的时间。
服务时间可以通过实际观察数据或者估算得出。
其次是到达间隔时间,即每个客户到达的时间间隔。
到达间隔时间可以通过实际观察数据或者使用随机数生成器进行模拟。
首先,我们需要创建一个事件队列来模拟客户的到达和离开。
事件队列是一个按照发生时间顺序排序的队列,每个事件都包含两个属性:时间和类型。
接下来,我们创建一个时钟来记录仿真进行的时间。
初始时,时钟指向第一个到达事件的时间。
然后,我们从事件队列中取出第一个事件,并更新时钟指向该事件的时间。
如果当前事件类型是到达事件,我们需要进行如下操作:首先,模拟下一个客户到达的时间,并将该事件添加到事件队列中。
然后,判断当前是否有客户正在接受服务。
如果没有,我们将当前事件类型设置为离开事件,并模拟该客户的服务时间和离开时间,并将该离开事件添加到事件队列中。
如果有客户正在接受服务,我们将当前事件类型设置为到达事件。
如果当前事件类型是离开事件,我们需要进行如下操作:首先,
更新服务台的空闲状态。
然后,判断是否还有等待服务的客户。
如果有,我们将当前事件类型设置为离开事件,并模拟下一个客户的服务时间和离开时间,并将该离开事件添加到事件队列中。
如果没有等待服务的客户,我们将当前事件类型设置为到达事件。
重复上述步骤,直到事件队列中没有事件为止。
最后,我们可以根据仿真的结果,比如客户的等待时间、服务时间和系统繁忙率等指标,来评估和优化该排队系统的性能。
通过以上的模型,我们可以对单服务台排队系统进行仿真,并评估其性能。
我们可以通过改变服务时间、到达间隔时间等参数,来探究不同情况下系统的表现和优化方案。
同时,我们还可以根据仿真结果,对系统进行调整和改进,以提高客户的满意度和服务效率。
综上所述,单服务台排队系统的仿真模型可以帮助我们了解和优化排队系统的性能,提高客户的满意度。
这对于实际的排队系统设计和管理具有重要的参考价值。
除了基本的排队系统仿真模型, 在单服务台排队系统中,我们还可以引入一些改进策
略来提高系统的性能。
下面将介绍一些常见的改进策略。
首先,可以引入预约服务。
预约服务可以让客户提前预约服务的时间,避免长时间等待。
在排队系统中,我们可以根据客户的预约时间来安排服务顺序,优先为预约客户提供服务。
同时,可以设置不同的服务时间分配给预约客户和临时到达的客户,以确保预约客户能够按时得到服务。
其次,可以引入优先级分配。
有些客户可能因为特殊原因需要优先得到服务。
例如,老年人、残疾人、孕妇等。
我们可以为这些特殊客户分配一个较高的优先级,并将其排在其他普通客户之前。
这样可以更好地满足特殊客户的需求。
再次,可以引入多个服务台。
在实际排队系统中,可能会有多个服务台,并且每个服务台对应一个服务员。
这样可以提高服务的并发处理能力,减少客户的等待时间。
在模拟中,我们可以增加服务台数量,并对每个服务台的服务时间和到达时间进行调整。
通过比较单服务台和多服务台系统的性能,可以评估多服务台系统的优势。
此外,还可以优化服务时间分配。
不同的客户可能需要不同的服务时间。
例如,办理简单业务的客户可以分配较短的服务时间,而办理复杂业务的客户可以分配较长的服务时间。
通过对服务时间的差异化分配,可以更好地提高系统的效率。
还有一种常见的改进策略是引入叫号系统。
叫号系统可以为客户提供更好的等待体验,并能够准确地通知客户何时轮到他们接受服务。
在排队仿真模型中,我们可以增加叫号系统的逻辑,包括生成叫号号码、提供等待信息、召唤客户等。
最后,可以引入实时监控和调度。
通过监控系统的运行情况,包括客户的等待时间、服务时间、服务台的空闲情况等,我们可以实时调整系统的参数,以优化系统的性能。
例如,根据客户的等待时间,可以调整服务台的数量或者服务员的工作安排,
以减少客户的等待时间。
总而言之,单服务台排队系统仿真模型可以帮助我们评估和改进排队系统的性能。
通过引入预约服务、优先级分配、多服务台、优化服务时间分配、叫号系统等改进策略,我们可以提高系统的效率和客户的满意度。
此外,实时监控和调度也可以进一步优化系统的性能。
这些改进策略对于实际的排队系统设计和管理具有重要的参考价值。
通过仿真模型的分析和优化,可以减少客户的等待时间,提高服务效率,为客户提供更好的服务体验。